Systematic Literature Review of the Epidemiological Characteristics of Pneumococcal Disease Caused by the Additional Serotypes Covered by the 20-Valent Pneumococcal Conjugate Vaccine
Abstract
:1. Introduction
2. Methods
2.1. Systematic Literature Review
2.2. Data Collection and Analysis
- Sterile site: inclusive of IPD defined as pneumococcus identified from any normally sterile site (blood, cerebrospinal fluid, pleural fluid, etc.) [13]. IPD clinical presentations included bacteremia/sepsis, meningitis, or pneumonia. “Other IPD” was defined as infrequently occurring infections of other normally sterile sites (joint fluid, pericardial fluid, peritoneal fluid, and infected bone, among others).
- Non-sterile site: inclusive of Non-IPD defined as pneumococcus identified from a site that is not considered to be normally sterile. Non-IPD clinical presentations included bronchitis and non-bacteremic pneumonia (respiratory tract sample, identified by sputum), acute otitis media (AOM, identified from middle ear fluid), or sinusitis (sinuses swab).
- Undifferentiated site: inclusive of pneumococcal disease that could not be differentiated in the reported results, whether by site (sterile or non-sterile) or by clinical presentation (invasive or non-invasive disease). Most often, undifferentiated diseases included pneumococcal pneumonia reported together that was bacteremic (IPD) or non-bacteremic (Non-IPD).
3. Results
3.1. Studies Included in the Systematic Literature Review
3.2. Proportion of PCV20nonPCV13 Serotypes Causing IPD
3.3. Proportion of PCV20nonPCV13 Serotypes by Clinical Presentation and PCV13 Use Period
3.4. Proportion of PCV20nonPCV13 Serotypes Causing IPD by PCV13 Use Period
3.5. Incidence of PCV20nonPCV13 Serotypes by Clinical Presentation
3.6. Mortality Outcomes by PCV20nonPCV13 Serotype
3.7. Antimicrobial Non-Susceptibility by PCV20nonPCV13 Serotype
3.8. Summary of the Characteristics of the PCV20nonPCV13 Serotypes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Papadatou, I.; Tzovara, I.; Licciardi, P.V. The role of serotype-specific immunological memory in pneumococcal vaccination: Current knowledge and future prospects. Vaccines 2019, 7, 13. [Google Scholar] [CrossRef]
- Bonten, M.J.; Huijts, S.M.; Bolkenbaas, M.; Webber, C.; Patterson, S.; Gault, S.; van Werkhoven, C.H.; van Deursen, A.M.; Sanders, E.A.; Verheij, T.J. Polysaccharide conjugate vaccine against pneumococcal pneumonia in adults. N. Engl. J. Med. 2015, 372, 1114–1125. [Google Scholar] [CrossRef]
- Dagan, R.; Van Der Beek, B.A.; Ben-Shimol, S.; Pilishvili, T.; Givon-Lavi, N. Effectiveness of the 7- and 13-valent pneumococcal conjugate vaccines against vaccine-serotype otitis media. Clin. Infect. Dis. 2021, 73, 650–658. [Google Scholar] [CrossRef]
- Hurley, D.; Griffin, C.; Young, M., Jr.; Scott, D.A.; Pride, M.W.; Scully, I.L.; Ginis, J.; Severs, J.; Jansen, K.U.; Gruber, W.C. Safety, tolerability, and immunogenicity of a 20-valent pneumococcal conjugate vaccine (PCV20) in adults 60 to 64 years of age. Clin. Infect. Dis. 2021, 73, e1489–e1497. [Google Scholar] [CrossRef]
- Bonnave, C.; Mertens, D.; Peetermans, W.; Cobbaert, K.; Ghesquiere, B.; Deschodt, M.; Flamaing, J. Adult vaccination for pneumococcal disease: A comparison of the national guidelines in Europe. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 785–791. [Google Scholar] [CrossRef]
- Senders, S.; Klein, N.P.; Lamberth, E.; Thompson, A.; Drozd, J.; Trammel, J.; Peng, Y.; Giardina, P.C.; Jansen, K.U.; Gruber, W.C. Safety and Immunogenicity of a 20-valent Pneumococcal Conjugate Vaccine in Healthy Infants in the United States. Pediatr. Infect. Dis. J. 2021, 40, 944. [Google Scholar] [CrossRef]
- van Selm, S.; van Cann, L.M.; Kolkman, M.A.; van der Zeijst, B.A.; van Putten, J.P. Genetic basis for the structural difference between Streptococcus pneumoniae serotype 15B and 15C capsular polysaccharides. Infect. Immun. 2003, 71, 6192–6198. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Janssens, E.; Flamaing, J.; Vandermeulen, C.; Peetermans, W.E.; Desmet, S.; De Munter, P. The 20-valent pneumococcal conjugate vaccine (PCV20): Expected added value. Acta Clin. Belg. 2023, 78, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Grant, L.R.; Slack, M.P.; Theilacker, C.; Vojicic, J.; Dion, S.; Reinert, R.R.; Jodar, L.; Gessner, B.D. Distribution of serotypes causing invasive pneumococcal disease in children from high-income countries and the impact of pediatric pneumococcal vaccination. Clin. Infect. Dis. 2023, 76, e1062–e1070. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Bull. World Health Organ. 2007, 85, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Amin-Chowdhury, Z.; Collins, S.; Sheppard, C.; Litt, D.; Fry, N.K.; Andrews, N.; Ladhani, S.N. Characteristics of invasive pneumococcal disease caused by emerging serotypes after the introduction of the 13-valent pneumococcal conjugate vaccine in England: A prospective observational cohort study, 2014–2018. Clin. Infect. Dis. 2020, 71, e235–e243. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Pneumococcus: Vaccine-Preventable Diseases Surveillance Standards. Available online: https://www.who.int/publications/m/item/vaccine-preventable-diseases-surveillance-standards-pneumococcus (accessed on 19 April 2023).
- Hao, L.; Kuttel, M.M.; Ravenscroft, N.; Thompson, A.; Prasad, A.K.; Gangolli, S.; Tan, C.; Cooper, D.; Watson, W.; Liberator, P. Streptococcus pneumoniae serotype 15B polysaccharide conjugate elicits a cross-functional immune response against serotype 15C but not 15A. Vaccine 2022, 40, 4872–4880. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses; Ottawa Hospital Research Institute: Ottawa, ON, Canada, 2011; pp. 1–12. [Google Scholar]
- Bedos, J.P.; Varon, E.; Porcher, R.; Asfar, P.; Le Tulzo, Y.; Megarbane, B.; Mathonnet, A.; Dugard, A.; Veinstein, A.; Ouchenir, K.; et al. Host-pathogen interactions and prognosis of critically ill immunocompetent patients with pneumococcal pneumonia: The nationwide prospective observational STREPTOGENE study. Intensive Care Med. 2018, 44, 2162–2173. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.Y.; Choi, E.H.; Kang, J.H.; Kim, K.H.; Kim, D.S.; Kim, Y.J.; Ahn, Y.M.; Eun, B.W.; Oh, S.H.; Cha, S.H.; et al. Early Changes in the Serotype Distribution of Invasive Pneumococcal Isolates from Children after the Introduction of Extended-valent Pneumococcal Conjugate Vaccines in Korea, 2011–2013. J. Korean Med. Sci. 2016, 31, 1082–1088. [Google Scholar] [CrossRef]
- Ciruela, P.; Broner, S.; Izquierdo, C.; Pallarés, R.; Muñoz-Almagro, C.; Hernández, S.; Grau, I.; Domínguez, A.; Jané, M. Indirect effects of paediatric conjugate vaccines on invasive pneumococcal disease in older adults. Int. J. Infect. Dis. 2019, 86, 122–130. [Google Scholar] [CrossRef]
- Danis, K.; Varon, E.; Lepoutre, A.; Janssen, C.; Forestier, E.; Epaulard, O.; N’Guyen, Y.; Labrunie, A.; Lanotte, P.; Gravet, A.; et al. Factors Associated with Severe Nonmeningitis Invasive Pneumococcal Disease in Adults in France. Open Forum. Infect. Dis. 2019, 6, ofz510. [Google Scholar] [CrossRef]
- Oligbu, G.; Collins, S.; Djennad, A.; Sheppard, C.L.; Fry, N.K.; Andrews, N.J.; Borrow, R.; Ramsay, M.E.; Ladhani, S.N. Effect of Pneumococcal Conjugate Vaccines on Pneumococcal Meningitis, England and Wales, July 1, 2000–June 30, 2016. Emerg. Infect. Dis. 2019, 25, 1708–1718. [Google Scholar] [CrossRef]
- van Hoek, A.J.; Andrews, N.; Waight, P.A.; George, R.; Miller, E. Effect of serotype on focus and mortality of invasive pneumococcal disease: Coverage of different vaccines and insight into non-vaccine serotypes. PLoS ONE 2012, 7, e39150. [Google Scholar] [CrossRef]
- Wagenvoort, G.H.; Sanders, E.A.; Vlaminckx, B.J.; Elberse, K.E.; de Melker, H.E.; van der Ende, A.; Knol, M.J. Invasive pneumococcal disease: Clinical outcomes and patient characteristics 2–6 years after introduction of 7-valent pneumococcal conjugate vaccine compared to the pre-vaccine period, the Netherlands. Vaccine 2016, 34, 1077–1085. [Google Scholar] [CrossRef]
- Rudnick, W.; Liu, Z.; Shigayeva, A.; Low, D.E.; Green, K.; Plevneshi, A.; Devlin, R.; Downey, J.; Katz, K.; Kitai, I.; et al. Pneumococcal vaccination programs and the burden of invasive pneumococcal disease in Ontario, Canada, 1995–2011. Vaccine 2013, 31, 5863–5871. [Google Scholar] [CrossRef] [PubMed]
- Correa, M.; Onieva-García, M.Á.; López, I.; Montiel, N. Invasive neumococcal disease in Costa del Sol Hospital: Replacement by non-vaccinable serotypes. Rev. Esp. Salud Publica 2018, 92, e201806034. [Google Scholar]
- Fenoll, A.; Aguilar, L.; Gimenez, M.J.; Vicioso, M.D.; Robledo, O.; Granizo, J.J.; Coronel, P. Variations in serotypes and susceptibility of adult non-invasive Streptococcus pneumoniae isolates between the periods before (May 2000–May 2001) and 10 years after (May 2010–May 2011) introduction of conjugate vaccines for child immunisation in Spain. Int. J. Antimicrob. Agents 2012, 40, 18–23. [Google Scholar] [CrossRef]
- Golden, A.R.; Adam, H.J.; Zhanel, G.G. Invasive Streptococcus pneumoniae in Canada, 2011–2014: Characterization of new candidate 15-valent pneumococcal conjugate vaccine serotypes 22F and 33F. Vaccine 2016, 34, 2527–2530. [Google Scholar] [CrossRef]
- Izquierdo, C.; Ciruela, P.; Hernández, S.; García-García, J.J.; Esteva, C.; Moraga-Llop, F.; Díaz-Conradi, A.; Martínez-Osorio, J.; Solé-Ribalta, A.; de Sevilla, M.F.; et al. Pneumococcal serotypes in children, clinical presentation and antimicrobial susceptibility in the PCV13 era. Epidemiol. Infect. 2020, 148, e279. [Google Scholar] [CrossRef]
- Kawaguchiya, M.; Urushibara, N.; Aung, M.S.; Shinagawa, M.; Takahashi, S.; Kobayashi, N. Serotype distribution, antimicrobial resistance and prevalence of pilus islets in pneumococci following the use of conjugate vaccines. J. Med. Microbiol. 2017, 66, 643–650. [Google Scholar] [CrossRef]
- Ktari, S.; Jmal, I.; Mroua, M.; Maalej, S.; Ben Ayed, N.E.; Mnif, B.; Rhimi, F.; Hammami, A. Serotype distribution and antibiotic susceptibility of Streptococcus pneumoniae strains in the south of Tunisia: A five-year study (2012–2016) of pediatric and adult populations. Int. J. Infect. Dis. 2017, 65, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Mendes, R.E.; Hollingsworth, R.C.; Costello, A.; Jones, R.N.; Isturiz, R.E.; Hewlett, D., Jr.; Farrell, D.J. Noninvasive Streptococcus pneumoniae serotypes recovered from hospitalized adult patients in the United States in 2009 to 2012. Antimicrob. Agents Chemother. 2015, 59, 5595–5601. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Lage, S.; Losada-Castillo, I.; Agulla-Budiño, A. Streptococcus pneumoniae: Serotype distribution, antimicrobial susceptibility, risk factors and mortality in Galicia over a two year-period. Enferm. Infecc. Microbiol. Clin. 2015, 33, 579–584. [Google Scholar] [CrossRef]
- Naziat, H.; Saha, S.; Islam, M.; Saha, S.; Uddin, M.J.; Hussain, M.; Luby, S.P.; Darmstadt, G.L.; Whitney, C.G.; Gessner, B.D.; et al. Epidemiology of otitis media with otorrhea among Bangladeshi children: Baseline study for future assessment of pneumococcal conjugate vaccine impact. Pediatr. Infect. Dis. J. 2018, 37, 715–721. [Google Scholar] [CrossRef]
- Richter, S.S.; Heilmann, K.P.; Dohrn, C.L.; Riahi, F.; Diekema, D.J.; Doern, G.V. Pneumococcal serotypes before and after introduction of conjugate vaccines, United States, 1999–2011. Emerg. Infect. Dis. 2013, 19, 1074–1083. [Google Scholar] [CrossRef]
- Sanz, J.C.; Rodríguez-Avial, I.; Ríos, E.; García-Comas, L.; Ordobás, M.; Cercenado, E. Increase of serotype 8, ST53 clone, as the prevalent strain of Streptococcus pneumoniae causing invasive disease in Madrid, Spain (2012–2015). Enferm. Infecc. Microbiol. Clin. 2020, 38, 105–110. [Google Scholar] [CrossRef]
- Sheppard, C.; Fry, N.K.; Mushtaq, S.; Woodford, N.; Reynolds, R.; Janes, R.; Pike, R.; Hill, R.; Kimuli, M.; Staves, P.; et al. Rise of multidrug-resistant non-vaccine serotype 15A Streptococcus pneumoniae in the United Kingdom, 2001 to 2014. Euro Surveill. 2016, 21, 30423. [Google Scholar] [CrossRef] [PubMed]
- Suaya, J.A.; Mendes, R.E.; Sings, H.L.; Arguedas, A.; Reinert, R.-R.; Jodar, L.; Isturiz, R.E.; Gessner, B.D. Streptococcus pneumoniae serotype distribution and antimicrobial nonsusceptibility trends among adults with pneumonia in the United States, 2009–2017. J. Infect. 2020, 81, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Uddén, F.; Rünow, E.; Slotved, H.C.; Fuursted, K.; Ahl, J.; Riesbeck, K. Characterization of Streptococcus pneumoniae detected in clinical respiratory tract samples in southern Sweden 2 to 4 years after introduction of PCV13. J. Infect. 2021, 83, 190–196. [Google Scholar] [CrossRef]
- Nakano, S.; Fujisawa, T.; Ito, Y.; Chang, B.; Suga, S.; Noguchi, T.; Yamamoto, M.; Matsumura, Y.; Nagao, M.; Takakura, S. Serotypes, antimicrobial susceptibility, and molecular epidemiology of invasive and non-invasive Streptococcus pneumoniae isolates in paediatric patients after the introduction of 13-valent conjugate vaccine in a nationwide surveillance study conducted in Japan in 2012–2014. Vaccine 2016, 34, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Garcia Quesada, M.; Yang, Y.; Bennett, J.C.; Hayford, K.; Zeger, S.L.; Feikin, D.R.; Peterson, M.E.; Cohen, A.L.; Almeida, S.C.; Ampofo, K. Serotype distribution of remaining pneumococcal meningitis in the mature PCV10/13 period: Findings from the PSERENADE project. Microorganisms 2021, 9, 738. [Google Scholar] [CrossRef]
- Hanquet, G.; Krizova, P.; Dalby, T.; Ladhani, S.N.; Nuorti, J.P.; Danis, K.; Mereckiene, J.; Knol, M.J.; Winje, B.A.; Ciruela, P. Serotype Replacement after Introduction of 10-Valent and 13-Valent Pneumococcal Conjugate Vaccines in 10 Countries, Europe. Emerg. Infect. Dis. 2022, 28, 127. [Google Scholar] [CrossRef]
- Quesada, M.G.; Hetrich, M.; Knoll, M.D. 1181. Serotype Distribution by Age of Remaining Invasive Pneumococcal Disease after Long-Term PCV10/13 Use: The PSERENADE Project. Open Forum Infect. Dis. 2021, 8, S683–S684. [Google Scholar] [CrossRef]
- Lewnard, J.A.; Hanage, W.P. Making sense of differences in pneumococcal serotype replacement. Lancet Infect. Dis. 2019, 19, e213–e220. [Google Scholar] [CrossRef]
- Balsells, E.; Guillot, L.; Nair, H.; Kyaw, M.H. Serotype distribution of Streptococcus pneumoniae causing invasive disease in children in the post-PCV era: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0177113. [Google Scholar] [CrossRef]
- Moore, M.R.; Link-Gelles, R.; Schaffner, W.; Lynfield, R.; Lexau, C.; Bennett, N.M.; Petit, S.; Zansky, S.M.; Harrison, L.H.; Reingold, A. Effect of use of 13-valent pneumococcal conjugate vaccine in children on invasive pneumococcal disease in children and adults in the USA: Analysis of multisite, population-based surveillance. Lancet Infect. Dis. 2015, 15, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Ladhani, S.N.; Collins, S.; Djennad, A.; Sheppard, C.L.; Borrow, R.; Fry, N.K.; Andrews, N.J.; Miller, E.; Ramsay, M.E. Rapid increase in non-vaccine serotypes causing invasive pneumococcal disease in England and Wales, 2000–2017: A prospective national observational cohort study. Lancet Infect. Dis. 2018, 18, 441–451. [Google Scholar] [CrossRef]
- Hausdorff, W.P. Pneumococcal conjugate vaccines in different settings. Lancet Infect. Dis. 2019, 19, 1283–1284. [Google Scholar] [CrossRef]
- Miller, E.; Andrews, N.J.; Waight, P.A.; Slack, M.P.; George, R.C. Herd immunity and serotype replacement 4 years after seven-valent pneumococcal conjugate vaccination in England and Wales: An observational cohort study. Lancet Infect. Dis. 2011, 11, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Løchen, A.; Croucher, N.J.; Anderson, R.M. Divergent serotype replacement trends and increasing diversity in pneumococcal disease in high income settings reduce the benefit of expanding vaccine valency. Sci. Rep. 2020, 10, 18977. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, I.; Hanage, W.P.; Lipsitch, M.; Shea, K.M.; Stevenson, A.; Finkelstein, J.; Huang, S.S.; Lee, G.M.; Kleinman, K.; Pelton, S. Serotype specific invasive capacity and persistent reduction in invasive pneumococcal disease. Vaccine 2010, 29, 283–288. [Google Scholar] [CrossRef]
- Varon, E.; Cohen, R.; Béchet, S.; Doit, C.; Levy, C. Invasive disease potential of pneumococci before and after the 13-valent pneumococcal conjugate vaccine implementation in children. Vaccine 2015, 33, 6178–6185. [Google Scholar] [CrossRef]
- Riley, R.D.; Higgins, J.P.; Deeks, J.J. Interpretation of random effects meta-analyses. BMJ 2011, 342, d549. [Google Scholar] [CrossRef]
- Whitney, C.G.; Toscano, C.M. Direct effects of pneumococcal conjugate vaccines among children in Latin America and the Caribbean. Lancet Infect. Dis. 2021, 21, 306–308. [Google Scholar] [CrossRef]
Age Group | Sampling Site and Clinical Presentation | Proportion All PCV20nonPCV13 1 | Proportion All PCV20nonPCV15 1 | ||
---|---|---|---|---|---|
n, Studies (Isolates) | Mean (Min–Max) | n, Studies (Isolates) | Mean (Min–Max) | ||
Children | 18 (6062) | 21 (6615) | |||
Sterile site: IPD overall | 17 (6006) | 27.8 (0–52.0) | 19 (6395) | 19.7 (0–41.8) | |
IPD, presentation specified: | |||||
Pneumococcal bacteremia | 1 (25) | 20.0 | 2 (89) | 24.9 (20.0–29.7) | |
Pneumococcal meningitis | 1 (18) | 11.2 | 2 (50) | 16.5 (11.2–21.8) | |
Bacteremic pneumococcal pneumonia | 1 (187) | 3.6 | 2 (313) | 7.3 (3.1–10.2) | |
Other IPD 2 | 1 (23) | 34.6 | 1 (23) | 26.0 | |
IPD, presentation unspecified 3 | 16 (5753) | 28.3 (0–52.0) | 17 (5920) | 21.4 (0–41.8) | |
Non-sterile site: Non-IPD overall | 1 (56) | 28.6 | 2 (220) | 16.5 (9.7–23.2) | |
Non-IPD, presentation specified: | |||||
Pneumococcal AOM | 1 (56) | 28.6 | 2 (220) | 16.5 (9.7–23.2) | |
Adults | 20 (44,349) | 23 (49,699) | |||
Sterile site: IPD overall | 16 (42,323) | 27.5 (8.9–55.4) | 18 (47,505) | 19.7 (8.0–37.3) | |
IPD, presentation specified: | |||||
Pneumococcal bacteremia | 1 (101) | 26.7 | 1 (101) | 22.7 | |
Pneumococcal meningitis | 1 (98) | 27.5 | 2 (375) | 25.7 (20.4–31.0) | |
Bacteremic pneumococcal pneumonia | 3 (1071) | 23.1 (19.9–28.1) | 4 (5976) | 17.1 (14.6–23.3) | |
Other IPD 2 | 1 (51) | 25.5 | 1 (51) | 23.5 | |
IPD, presentation unspecified 3 | 13 (41,002) | 28.6 (8.9–55.4) | 13 (41,002) | 19.6 (8.0–37.3) | |
Non-sterile site: Non-IPD overall | 2 (312) | 15.8 (9.5–22.0) | 2 (312) | 10.8 (5.7–15.8) | |
Non-IPD, presentation specified | 2 (312) | 15.8 (9.5–22.0) | 2 (312) | 10.8 (5.7–15.8) | |
Undifferentiated site | 3 (1714) | 14.6 (8.7–23.9) | 4 (1882) | 8.0 (4.8–17.5) | |
All pneumococcal pneumonia | 3 (1714) | 14.6 (8.7–23.9) | 4 (1882) | 8.0 (4.8–17.5) | |
All ages | 14 (14,381) | 15 (15,924) | |||
Sterile site: IPD overall | 14 (14,381) | 29.1 (0–58.3) | 15 (15,924) | 21.6 (0–40.8) | |
IPD, presentation specified: | |||||
Pneumococcal bacteremia | 1 (2) | 0 4 | 1 (2) | 0 4 | |
Pneumococcal meningitis | 3 (2084) | 34.8 (29.2–58.3) | 3 (2084) | 25.0 (23.0–33.3) | |
Bacteremic pneumococcal pneumonia | 1 (57) | 35.1 | 1 (57) | 26.3 | |
IPD, presentation unspecified 3 | 11 (12,238) | 28.4 (10.0–47.8) | 12 (13,781) | 21.3 (9.3–40.8) |
Sampling Site | Clinical Presentation | Region | Country | Study Period | Age | Reference | 8 | 10A | 11A | 12F | 15B/C | 22F | 33F |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Children | |||||||||||||
Sterile site: IPD | IPD, presentation unspecified 1 | EUR | UK (England) | 2002–2014 | <5 y | [21] | nr | nr | nr | nr | nr | 3 | 3 |
EUR | UK | 2014–2018 | <15 y | [12] | 1 | 4 | 4 | 5 | 12 | 7 | nr | ||
WPR | Republic of Korea | 2011–2014 | <18 y | [17] | nr | 17 | 0 | 0 | 0 | nr | 0 | ||
Adults | |||||||||||||
Sterile site: IPD | IPD, presentation unspecified 1,2 | EUR | France | 2014–2017 | ≥18 y | [19] | 5 | 33 | 32 | 14 | nr | 16 | nr |
EUR | Netherlands | 2004–2012 | ≥5 y | [22] | 9 | 14 | 25 | 10 | 21 | 12 | 15 | ||
EUR | Spain (Catalonia) | 2014–2016 | >65 y | [18] | 7 | 14 | 22 | 4 | 22 | 11 | 5 | ||
EUR | UK | 2002–2014 | 5–64 y | [21] | 6 | 18 | 30 | 14 | 19 | 11 | 10 | ||
EUR | UK | 2002–2014 | >65 y | [21] | 25 | 38 | 39 | 21 | 24 | 28 | 26 | ||
EUR | UK | 2014–2018 | >65 y | [12] | 15 | nr | 39 | 18 | nr | 22 | 25 | ||
Undifferentiated site | All pneumococcal pneumonia | EUR | France | 2008–2012 | >18 y | [16] | nr | nr | 20 | 0 | nr | nr | nr |
All ages | |||||||||||||
Sterile site: IPD | IPD, presentation specified: | ||||||||||||
Pneumococcal meningitis | EUR | UK | 2011–2016 | all | [20] | 34 | nr | nr | nr | nr | nr | nr | |
IPD, presentation unspecified 1 | EUR | UK | 2014–2018 | all | [12] | 9 | nr | 30 | 10 | nr | 16 | 17 |
Population | Epidemiological Characteristic (Cause of) | Serotype | ||||||
---|---|---|---|---|---|---|---|---|
8 | 10A | 11A | 12F | 15B/C | 22F | 33F | ||
Children | IPD 1,2 | ++ | ++ | + | ++ | +++ | ++ | ++ |
Pneumococcal meningitis 2,3 | +++ | ++ | + | ++ | ++++ | +++ | ++ | |
Bacteremic pneumococcal pneumonia 2,3 | ++ | ++ | + | ++ | ++ | + | ++ | |
Non-IPD 2,3 | + | +++ | + | + | ++++ | nr | + | |
Pneumococcal AOM 2,3 | + | +++ | +++ | + | ++++ | ++ | + | |
Adults | IPD 1 | ++++ | + | + | +++ | + | +++ | + |
Pneumococcal meningitis 3 | +++ | ++ | ++ | ++++ | + | ++ | + | |
Bacteremic pneumococcal pneumonia 3 | ++++ | + | + | +++ | + | ++ | + | |
Non-IPD 3 | + | + | + | + | + | + | + | |
Children | Death due to IPD 4 | + | ++++ | ++ | ++ | ++++ | +++ | ++ |
Adults | Death due to IPD 5 | ++ | +++ | ++++ | ++ | ++++ | ++ | +++ |
All Ages | Penicillin non-susceptible IPD or Non-IPD 6 | + | + | + | + | ++ | + | + |
Macrolide non-susceptible IPD or Non-IPD 6 | ++ | +++ | +++ | nr | ++++ | +++ | ++++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méroc, E.; Fletcher, M.A.; Hanquet, G.; Slack, M.P.E.; Baay, M.; Hayford, K.; Gessner, B.D.; Grant, L.R. Systematic Literature Review of the Epidemiological Characteristics of Pneumococcal Disease Caused by the Additional Serotypes Covered by the 20-Valent Pneumococcal Conjugate Vaccine. Microorganisms 2023, 11, 1816. https://doi.org/10.3390/microorganisms11071816
Méroc E, Fletcher MA, Hanquet G, Slack MPE, Baay M, Hayford K, Gessner BD, Grant LR. Systematic Literature Review of the Epidemiological Characteristics of Pneumococcal Disease Caused by the Additional Serotypes Covered by the 20-Valent Pneumococcal Conjugate Vaccine. Microorganisms. 2023; 11(7):1816. https://doi.org/10.3390/microorganisms11071816
Chicago/Turabian StyleMéroc, Estelle, Mark A. Fletcher, Germaine Hanquet, Mary P. E. Slack, Marc Baay, Kyla Hayford, Bradford D. Gessner, and Lindsay R. Grant. 2023. "Systematic Literature Review of the Epidemiological Characteristics of Pneumococcal Disease Caused by the Additional Serotypes Covered by the 20-Valent Pneumococcal Conjugate Vaccine" Microorganisms 11, no. 7: 1816. https://doi.org/10.3390/microorganisms11071816
APA StyleMéroc, E., Fletcher, M. A., Hanquet, G., Slack, M. P. E., Baay, M., Hayford, K., Gessner, B. D., & Grant, L. R. (2023). Systematic Literature Review of the Epidemiological Characteristics of Pneumococcal Disease Caused by the Additional Serotypes Covered by the 20-Valent Pneumococcal Conjugate Vaccine. Microorganisms, 11(7), 1816. https://doi.org/10.3390/microorganisms11071816