Revealing the Bacterial Quorum-Sensing Effect on the Biofilm Formation of Diatom Cylindrotheca sp. Using Multimodal Imaging
Abstract
1. Introduction
2. Materials and Methods
2.1. Algal Cultures and Chemicals
2.2. The Growth and EPS of the Diatom-Biofilm Assay
2.3. The Morphology of Diatom-Biofilm Assay
2.4. Data Analysis
3. Results
3.1. Effects of AHLs on the Growth of the Diatom-Biofilm
3.2. Effects of AHLs on the EPS Contents in the Diatom-Biofilm
3.3. Effects of AHLs on the Morphology of the Diatom-Biofilm
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-saied, H.A.-A.; Ibrahim, A.M. Effective fabrication and characterization of eco-friendly nano chitosan capped zinc oxide nanoparticles for effective marine fouling inhibition. J. Environ. Chem. Eng. 2020, 8, 103949. [Google Scholar] [CrossRef]
- Rajitha, K.; Nancharaiah, Y.V.; Venugopalan, V.P. Insight into bacterial biofilm-barnacle larvae interactions for environmentally benign antifouling strategies. Int. Biodeterior. Biodegrad. 2020, 149, 104937. [Google Scholar] [CrossRef]
- Rajitha, K.; Nancharaiah, Y.V.; Venugopalan, V.P. Role of bacterial biofilms and their eps on settlement of barnacle (amphibalanus reticulatus) larvae. Int. Biodeterior. Biodegrad. 2020, 150, 104958. [Google Scholar] [CrossRef]
- Najid, N.; Hakizimana, J.N.; Kouzbour, S.; Gourich, B.; Ruiz-García, A.; Vial, C.; Stiriba, Y.; Semiat, R. Fouling control and modeling in reverse osmosis for seawater desalination: A review. Comput. Chem. Eng. 2022, 162, 107794. [Google Scholar] [CrossRef]
- Qian, P.-Y.; Cheng, A.; Wang, R.; Zhang, R. Marine biofilms: Diversity, interactions and biofouling. Nat. Rev. Microbiol. 2022, 20, 671–684. [Google Scholar] [CrossRef] [PubMed]
- Lépinay, A.; Turpin, V.; Mondeguer, F.; Grandet-Marchant, Q.; Capiaux, H.; Baron, R.; Lebeau, T. First insight on interactions between bacteria and the marine diatom haslea ostrearia: Algal growth and metabolomic fingerprinting. Algal Res. 2018, 31, 395–405. [Google Scholar] [CrossRef]
- Paterson, D.M.; Hope, J.A. Diatom biofilms: Ecosystem engineering and niche construction. In Diatom Gliding Motility; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; pp. 135–158. [Google Scholar]
- Lukáčová, A.; Beck, T.; Koptašiková, L.; Benda, A.; Tomečková, L.; Trniková, M.; Lihanová, D.; Steiner, J.M.; Krajčovič, J.; Vesteg, M. Euglena gracilis can grow in the mixed culture containing cladosporium westerdijkiae, lysinibacillus boronitolerans and pseudobacillus badius without the addition of vitamins b1 and b12. J. Biotechnol. 2022, 351, 50–59. [Google Scholar] [CrossRef]
- Nowruzi, B.; Shishir, A.M.; Porzani, J.S.; Ferdous, T.U. Exploring the interactions between algae and bacteria. Mini-Rev. Med. Chem. 2022, 22, 2596–2607. [Google Scholar] [CrossRef]
- Shi, H.-X.; Wang, J.; Liu, S.-Y.; Guo, J.-S.; Fang, F.; Chen, Y.-P.; Yan, P. Potential role of ahl-mediated quorum sensing in inducing non-filamentous sludge bulking under high organic loading. Chem. Eng. J. 2023, 454, 140514. [Google Scholar] [CrossRef]
- Vadakkan, K.; Choudhury, A.A.; Gunasekaran, R.; Hemapriya, J.; Vijayanand, S. Quorum sensing intervened bacterial signaling: Pursuit of its cognizance and repression. J. Genet. Eng. Biotechnol. 2018, 16, 239–252. [Google Scholar] [CrossRef]
- Huang, Y.-L.; Ki, J.-S.; Lee, O.O.; Qian, P.-Y. Evidence for the dynamics of acyl homoserine lactone and ahl-producing bacteria during subtidal biofilm formation. ISME J. 2009, 3, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Billot, R.; Plener, L.; Grizard, D.; Elias, M.H.; Chabrière, É.; Daudé, D. Applying molecular and phenotypic screening assays to identify efficient quorum quenching lactonases. Enzym. Microb. Technol. 2022, 160, 110092. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Bassler, B.L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 2019, 17, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Anandan, K.; Vittal, R.R. Quorum quenching activity of aiia lactonase kmmi17 from endophytic bacillus thuringiensis kmcl07 on ahl- mediated pathogenic phenotype in pseudomonas aeruginosa. Microb. Pathog. 2019, 132, 230–242. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Guo, Y.; Zhu, T.; Tao, H.; Liu, S. Identification of quorum sensing signal ahls synthases in candidatus jettenia caeni and their roles in anammox activity. Chemosphere 2019, 225, 608–617. [Google Scholar] [CrossRef]
- Joint, I.; Tait, K.; Callow, M.E.; Callow, J.A.; Milton, D.; Williams, P.; Ca’mara, M. Cell-to-cell communication across the prokaryote-eukaryote boundary. Science 2002, 298, 1207. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, C.; Fu, L.; Xu, L.; Cui, X.; Li, Q.; Crittenden, J.C. Responses of the microalga chlorophyta sp. To bacterial quorum sensing molecules (n-acylhomoserine lactones): Aromatic protein-induced self-aggregation. Environ. Sci. Technol. 2017, 51, 3490–3498. [Google Scholar] [CrossRef]
- Yu, X.-Y.; Liu, B.; Yang, L. Imaging liquids using microfluidic cells. Microfluid. Nanofluidics 2013, 15, 725–744. [Google Scholar] [CrossRef]
- Yu, X.-Y. In situ, in vivo, and in operando imaging and spectroscopy of liquids using microfluidics in vacuum. J. Vac. Sci. Technol. A 2020, 38, 040804. [Google Scholar] [CrossRef]
- Yang, C.; Wei, W.; Liu, F.; Yu, X.-Y. Peak selection matters in principal component analysis: A case study of syntrophic microbes. Biointerphases 2019, 14, 051004. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, Y.; Komorek, R.; Plymale, A.; Yu, R.; Wang, B.; Zhu, Z.; Liu, F.; Yu, X.-Y. Characterization of syntrophic geobacter communities using tof-sims. Biointerphases 2017, 12, 05G601. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Zhou, Y.; Zhang, F.; Zhang, Y.; Chen, J.; Zhu, Z.; Yu, X.-Y. Tof-sims characterization of glyoxal surface oxidation products by hydrogen peroxide: A comparison between dry and liquid samples. Surf. Interface Anal. 2018, 50, 927–938. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, Y.; Zhang, F.; Chen, J.; Zhu, Z.; Yu, X.-Y. Does interfacial photochemistry play a role in the photolysis of pyruvic acid in water? Atmos. Environ. 2018, 191, 36–45. [Google Scholar] [CrossRef]
- Ding, Y.; Zhou, Y.; Yao, J.; Szymanski, C.; Frdrickson, J.; Shi, L.; Cao, B.; Zhu, Z.; Yu, X.-Y. In situ molecular imaging of the biofilm and its matrix. Anal. Chem. 2016, 88, 11244–11252. [Google Scholar] [CrossRef]
- Guillard, R.R.L.; Ryther, J.H. Studies of marine planktonic diatoms: I. Cyclotella nana hustedt, and detonula confervacea (cleve) gran. Can. J. Microbiol. 1962, 8, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Tait, K.; Havenhand, J. Investigating a possible role for the bacterial signal molecules n-acylhomoserine lactones in balanus improvisus cyprid settlement. Mol. Ecol. 2013, 22, 2588–2602. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhou, J.; Liu, S.; Fan, P.; Wang, W.; Xia, C. Allelochemical induces growth and photosynthesis inhibition, oxidative damage in marine diatom phaeodactylum tricornutum. J. Exp. Mar. Biol. Ecol. 2013, 444, 16–23. [Google Scholar] [CrossRef]
- Cohen, L.; Walt, D.R. Highly sensitive and multiplexed protein measurements. Chem. Rev. 2019, 119, 293–321. [Google Scholar] [CrossRef]
- Masuko, T.; Minami, A.; Iwasaki, N.; Majima, T.; Nishimura, S.; Lee, Y.C. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal. Biochem. 2005, 339, 69–72. [Google Scholar] [CrossRef]
- Zgłobicka, I.; Gluch, J.; Liao, Z.; Werner, S.; Guttmann, P.; Li, Q.; Bazarnik, P.; Plocinski, T.; Witkowski, A.; Kurzydlowski, K.J. Insight into diatom frustule structures using various imaging techniques. Sci. Rep. 2021, 11, 14555. [Google Scholar] [CrossRef]
- Zhou, S.; Bu, L.; Shi, Z.; Deng, L.; Zhu, S.; Gao, N. Electrochemical inactivation of microcystis aeruginosa using bdd electrodes: Kinetic modeling of microcystins release and degradation. J. Hazard. Mater. 2018, 346, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Komorek, R.; Son, J.; Riechers, S.; Zhu, Z.; Jansson, J.; Jansson, C.; Yu, X.-Y. Molecular imaging of plant–microbe interactions on the brachypodium seed surface. Analyst 2021, 146, 5855–5865. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Komorek, R.; Zhu, Z.; Huang, Q.; Chen, W.; Jansson, J.; Jansson, C.; Yu, X.-Y. Mass spectral imaging showing the plant growth-promoting rhizobacteria’s effect on the brachypodium awn. Biointerphases 2022, 17, 031006. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhou, Y.; Yao, J.; Xiong, Y.; Zhu, Z.; Yu, X.-Y. Molecular evidence of a toxic effect on a biofilm and its matrix. Analyst 2019, 144, 2498–2503. [Google Scholar] [CrossRef] [PubMed]
- Grainha, T.; Jorge, P.; Alves, D.; Lopes, S.P.; Pereira, M.O. Unraveling pseudomonas aeruginosa and candida albicans communication in coinfection scenarios: Insights through network analysis. Front. Cell. Infect. Microbiol. 2020, 10, 550505. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wang, Y.; Chen, C.; Feng, Z.; Huo, Y.; Zhou, D. C12-hsl is an across-boundary signal molecule that could alleviate fungi galactomyces’s filamentation: A new mechanism on activated sludge bulking. Environ. Res. 2022, 204, 111823. [Google Scholar] [CrossRef]
- Gonza´lez, J.F.; Venturi, V. A novel widespread interkingdom signaling circuit. Trends Plant Sci. 2013, 18, 167–174. [Google Scholar] [CrossRef]
- Cellini, A.; Buriani, G.; Correia, C.; Fiorentini, L.; Vandelle, E.; Polverari, A.; Santos, C.; Vanneste, J.L.; Spinelli, F. Host-specific signal perception by psar2 luxr solo induces pseudomonas syringae pv. Actinidiae virulence traits. Microbiol. Res. 2022, 260, 127048. [Google Scholar] [CrossRef]
- Yang, C.; Fang, S.; Chen, D.; Wang, J.-H.; Liu, F.; Xia, C. The possible role of bacterial signal molecules n-acyl homoserine lactones in the formation of diatom-biofilm (Cylindrotheca sp.). Mar. Pollut. Bull. 2016, 107, 118–124. [Google Scholar] [CrossRef]
- Liu, Q.; Xuan, F.; Zhiya, S.; Wenxin, S.; Shuo, W.; Ji, L. Enhanced wastewater treatment performance by understanding the interaction between algae and bacteria based on quorum sensing. Bioresour. Technol. 2022, 354, 127161. [Google Scholar] [CrossRef]
- Bruckner, C.G.; Rehm, C.; Grossart, H.P.; Kroth, P.G. Growth and release of extracellular organic compounds by benthic diatoms depend on interactions with bacteria. Environ. Microbiol. 2011, 13, 1052–1063. [Google Scholar] [CrossRef]
- Khan, M.J.; Singh, R.; Shewani, K.; Shukla, P.; Bhaskar, P.V.; Joshi, K.B.; Vinayak, V. Exopolysaccharides directed embellishment of diatoms triggered on plastics and other marine litter. Sci. Rep. 2020, 10, 18448. [Google Scholar] [CrossRef] [PubMed]
- Sweity, A.; Ying, W.; Ali-Shtayeh, M.S.; Yang, F.; Bick, A.; Oron, G.; Herzberg, M. Relation between eps adherence, viscoelastic properties, and mbr operation: Biofouling study with qcm-d. Water Res. 2011, 45, 6430–6440. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, N.E.-A.; Hussein, M.H.; Shaaban-Dessuuki, S.A.; Dalal, S.R. Production, extraction and characterization of chlorella vulgaris soluble polysaccharides and their applications in agnps biosynthesis and biostimulation of plant growth. Sci. Rep. 2020, 10, 3011. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Marshall, M.J.; Xiong, Y.; Ma, X.; Zhou, Y.; Tucker, A.E.; Zhu, Z.; Liu, S.; Yu, X.-Y. Two-dimensional and three-dimensional dynamic imaging of live biofilms in a microchannel by time-of-flight secondary ion mass spectrometry. Biomicrofluidics 2015, 9, 031101. [Google Scholar] [CrossRef]
- Hua, X.; Yu, X.-Y.; Wang, Z.; Yang, L.; Liu, B.; Zhu, Z.; Tucker, A.E.; Chrisler, W.B.; Hill, E.A.; Thevuthasan, T.; et al. In situ molecular imaging of a hydrated biofilm in a microfluidic reactor by tof-sims. Analyst 2014, 139, 1609–1613. [Google Scholar] [CrossRef]
Sample | Control | C4-HSL | C8-HSL | C12-HSL |
---|---|---|---|---|
EPS/Chl.a | 1.0 ± 0.05 | 1.32 ± 0.1 * | 0.94 ± 0.09 | 2.4 ± 0.39 ** |
PN/PS | 1.0 ± 0.17 | 0.73 ± 0.03 | 0.53 ± 0.01 ** | 0.05 ± 0.01 ** |
Group | Control | C4-HSL | C8-HSL | C12-HSL |
---|---|---|---|---|
Biofilm thickness (μm) | 27.7 ± 4.04 | 28 ± 4.36 | 34.5 ± 3.54 * | 35.5 ± 2.12 * |
Fluorescence intensity | 18.9 ± 18.37 | 678.9 ± 181.04 | 583.2 ± 118.06 ** | 918.3 ± 158.15 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Song, G.; Son, J.; Howard, L.; Yu, X.-Y. Revealing the Bacterial Quorum-Sensing Effect on the Biofilm Formation of Diatom Cylindrotheca sp. Using Multimodal Imaging. Microorganisms 2023, 11, 1841. https://doi.org/10.3390/microorganisms11071841
Yang C, Song G, Son J, Howard L, Yu X-Y. Revealing the Bacterial Quorum-Sensing Effect on the Biofilm Formation of Diatom Cylindrotheca sp. Using Multimodal Imaging. Microorganisms. 2023; 11(7):1841. https://doi.org/10.3390/microorganisms11071841
Chicago/Turabian StyleYang, Cuiyun, Guojuan Song, Jiyoung Son, Logan Howard, and Xiao-Ying Yu. 2023. "Revealing the Bacterial Quorum-Sensing Effect on the Biofilm Formation of Diatom Cylindrotheca sp. Using Multimodal Imaging" Microorganisms 11, no. 7: 1841. https://doi.org/10.3390/microorganisms11071841
APA StyleYang, C., Song, G., Son, J., Howard, L., & Yu, X.-Y. (2023). Revealing the Bacterial Quorum-Sensing Effect on the Biofilm Formation of Diatom Cylindrotheca sp. Using Multimodal Imaging. Microorganisms, 11(7), 1841. https://doi.org/10.3390/microorganisms11071841