Antimicrobial Resistance Patterns and Risk Factors Associated with ESBL-Producing and MDR Escherichia coli in Hospital and Environmental Settings in Lusaka, Zambia: Implications for One Health, Antimicrobial Stewardship and Surveillance Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Site Location
2.2. Data Collection
2.3. Specimen Collection and Processing
2.4. Antibiotic Susceptibility Testing
2.5. Data Analysis
3. Results
3.1. Descriptive Characteristics of Clinical and Environmental E. coli Strains
3.2. Antibiotic Susceptibility Patterns of E. coli Isolated from Clinical Samples
3.3. Antibiotic Susceptibility Patterns of E. coli Isolated from Environmental Samples
3.4. Prevalence of ESBL-Producing, and MDR/XDR E. coli from Clinical and Environmental Sources
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iramiot, J.S.; Kajumbula, H.; Bazira, J.; Kansiime, C.; Asiimwe, B.B. Antimicrobial resistance at the human-animal interface in the Pastoralist Communities of Kasese District, South Western Uganda. Sci. Rep. 2020, 10, 14737. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Ding, Y.; Yao, K.; Gao, W.; Wang, Y. Antimicrobial Resistance Analysis of Clinical Escherichia coli Isolates in Neonatal Ward. Front. Pediatr. 2021, 9, 670470. [Google Scholar] [CrossRef] [PubMed]
- Peterson, E.; Kaur, P. Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol. 2018, 9, 2928. [Google Scholar] [CrossRef] [Green Version]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolhouse, M.; Ward, M.; Van Bunnik, B.; Farrar, J. Antimicrobial resistance in humans, livestock and the wider environment. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20140083. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Ikuta, K.S.; Swetschinski, L.R.; Robles Aguilar, G.; Sharara, F.; Mestrovic, T.; Gray, A.P.; Davis Weaver, N.; Wool, E.E.; Han, C.; Gershberg Hayoon, A.; et al. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef]
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.-N.; et al. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef]
- Chang, D.; Sharma, L.; Dela Cruz, C.S.; Zhang, D. Clinical Epidemiology, Risk Factors, and Control Strategies of Klebsiella pneumoniae Infection. Front. Microbiol. 2021, 12, 750662. [Google Scholar] [CrossRef]
- Denissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. Int. J. Hyg. Environ. Health 2022, 244, 114006. [Google Scholar] [CrossRef]
- Abass, A.; Ahmed, M.; Ibrahim, I.; Yahia, S. Bacterial Resistance to Antibiotics: Current Situation in Sudan. J. Adv. Microbiol. 2017, 6, 1–7. [Google Scholar] [CrossRef]
- Khalifa, H.O.; Soliman, A.M.; Ahmed, A.M.; Shimamoto, T.; Nariya, H.; Matsumoto, T.; Shimamoto, T. High Prevalence of Antimicrobial Resistance in Gram-Negative Bacteria Isolated from Clinical Settings in Egypt: Recalling for Judicious Use of Conventional Antimicrobials in Developing Nations. Microb. Drug Resist. 2019, 25, 371–385. [Google Scholar] [CrossRef] [PubMed]
- Nossair, M.A.; Abd El Baqy, F.A.; Rizk, M.S.Y.; Elaadli, H.; Mansour, A.M.; El-Aziz, A.H.A.; Alkhedaide, A.; Soliman, M.M.; Ramadan, H.; Shukry, M.; et al. Prevalence and Molecular Characterization of Extended-Spectrum β-Lactamases and AmpC β-lactamase-Producing Enterobacteriaceae among Human, Cattle, and Poultry. Pathogens 2022, 11, 852. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.M.M.; Ahmed, S.F.; Klena, J.D.; Mohamed, Z.K.; Moussa, T.A.A.; Ghenghesh, K.S. Enteroaggregative Escherichia coli in diarrheic children in Egypt: Molecular characterization and antimicrobial susceptibility. J. Infect. Dev. Ctries. 2014, 8, 589–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dadgostar, P. Antimicrobial resistance: Implications and costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [Green Version]
- Azab, K.S.M.; Abdel-Rahman, M.A.; El-Sheikh, H.H.; Azab, E.; Gobouri, A.A.; Farag, M.M.S. Distribution of extended-spectrum β-lactamase (Esbl)-encoding genes among multidrug-resistant gram-negative pathogens collected from three different countries. Antibiotics 2021, 10, 247. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, T.M.; Dyda, A.; Merlo, G.; Hall, L. Disease burden, associated mortality and economic impact of antimicrobial resistant infections in Australia. Lancet Reg. Health-West. Pacific 2022, 27, 100521. [Google Scholar] [CrossRef]
- Innes, G.K.; Randad, P.R.; Korinek, A.; Davis, M.F.; Price, L.B.; So, A.D.; Heaney, C.D. External societal costs of antimicrobial resistance in humans attributable to antimicrobial use in livestock. Annu. Rev. Public Health 2019, 41, 141–157. [Google Scholar] [CrossRef] [Green Version]
- Jonas, O.B.; Irwin, A.; Berthe, F.C.J.; Le Gall, F.G.; Marquez, P. Drug-resistant infections: A Threat to Our Economic Future. World Bank Rep. 2017, 2, 1–132. [Google Scholar]
- Naylor, N.R.; Atun, R.; Zhu, N.; Kulasabanathan, K.; Silva, S.; Chatterjee, A.; Knight, G.M.; Robotham, J.V. Estimating the burden of antimicrobial resistance: A systematic literature review. Antimicrob. Resist. Infect. Control 2018, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Tacconelli, E.; Pezzani, M.D. Public health burden of antimicrobial resistance in Europe. Lancet Infect. Dis. 2019, 19, 4–6. [Google Scholar] [CrossRef] [Green Version]
- Mazumder, R.; Hussain, A.; Phelan, J.E.; Campino, S.; Haider, S.M.A.; Mahmud, A.; Ahmed, D.; Asadulghani, M.; Clark, T.G.; Mondal, D. Non-lactose fermenting Escherichia coli: Following in the footsteps of lactose fermenting E. coli high-risk clones. Front. Microbiol. 2022, 13, 1027494. [Google Scholar] [CrossRef]
- Braz, V.S.; Melchior, K.; Moreira, C.G. Escherichia coli as a Multifaceted Pathogenic and Versatile Bacterium. Front. Cell. Infect. Microbiol. 2020, 10, 548492. [Google Scholar] [CrossRef] [PubMed]
- Yaratha, G.; Perloff, S.; Changala, K. Lactose vs Non-Lactose Fermenting E. coli: Epidemiology, Clinical Outcomes, and Resistance. Open Forum Infect. Dis. 2017, 4, S589–S590. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, P.; Cooper, B.S.; Coast, J.; Oppong, R.; Do Thi Thuy, N.; Phodha, T.; Celhay, O.; Guerin, P.J.; Wertheim, H.; Lubell, Y. Enumerating the economic cost of antimicrobial resistance per antibiotic consumed to inform the evaluation of interventions affecting their use. Antimicrob. Resist. Infect. Control 2018, 7, 98. [Google Scholar] [CrossRef] [Green Version]
- Muloi, D.; Kiiru, J.; Ward, M.J.; Hassell, J.M.; Bettridge, J.M.; Robinson, T.P.; van Bunnik, B.A.D.; Chase-Topping, M.; Robertson, G.; Pedersen, A.B.; et al. Epidemiology of antimicrobial-resistant Escherichia coli carriage in sympatric humans and livestock in a rapidly urbanizing city. Int. J. Antimicrob. Agents 2019, 54, 531–537. [Google Scholar] [CrossRef]
- Phiri, N.; Mainda, G.; Mukuma, M.; Sinyangwe, N.N.; Banda, L.J.; Kwenda, G.; Muonga, E.M.; Flavien, B.N.; Mwansa, M.; Yamba, K.; et al. Antibiotic-resistant Salmonella species and Escherichia coli in broiler chickens from farms, abattoirs, and open markets in selected districts of Zambia. J. Epidemiol. Res. 2020, 6, 13–21. [Google Scholar] [CrossRef]
- Muligisa-Muonga, E.; Mainda, G.; Mukuma, M.; Kwenda, G.; Hang’ombe, B.; Flavien, B.N.; Phiri, N.; Mwansa, M.; Munyeme, M.; Muma, J.B. Antimicrobial resistance of Escherichia coli and Salmonella isolated from retail broiler chicken carcasses in Zambia. J. Epidemiol. Res. 2021, 6, 35–43. [Google Scholar] [CrossRef]
- Kabali, E.; Pandey, G.S.; Munyeme, M.; Kapila, P.; Mukubesa, A.N.; Ndebe, J.; Muma, J.B.; Mubita, C.; Muleya, W.; Muonga, E.M.; et al. Identification of Escherichia coli and related enterobacteriaceae and examination of their phenotypic antimicrobial resistance patterns: A pilot study at a wildlife-livestock interface in Lusaka, Zambia. Antibiotics 2021, 10, 238. [Google Scholar] [CrossRef] [PubMed]
- Nomamiukor, B.O.; Horner, C.; Kirby, A.; Hughes, G.J. Living conditions are associated with increased antibiotic resistance in community isolates of Escherichia coli. J. Antimicrob. Chemother. 2015, 70, 3154–3158. [Google Scholar] [CrossRef]
- Leski, T.A.; Taitt, C.R.; Bangura, U.; Stockelman, M.G.; Ansumana, R.; Cooper, W.H.; Stenger, D.A.; Vora, G.J. High prevalence of multidrug-resistant Enterobacteriaceae isolated from outpatient urine samples but not the hospital environment in Bo, Sierra Leone. BMC Infect. Dis. 2016, 16, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chem, E.D.; Anong, D.N.; Akoachere, J.F.K.T. Prescribing patterns and associated factors of antibiotic prescription in primary health care facilities of Kumbo East and Kumbo West Health Districts, North West Cameroon. PLoS ONE 2018, 13, e0193353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasimanickam, V.; Kasimanickam, M.; Kasimanickam, R. Antibiotics Use in Food Animal Production: Escalation of Antimicrobial Resistance: Where Are We Now in Combating AMR? Med. Sci. 2021, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Chusri, S.; Sangthong, R.; McNeil, E.; Hu, J.; Du, W.; Li, D.; Fan, X.; Zhou, H.; Chongsuvivatwong, V.; et al. Clinical pattern of antibiotic overuse and misuse in primary healthcare hospitals in the southwest of China. PLoS ONE 2018, 14, e0214779. [Google Scholar] [CrossRef] [Green Version]
- Watts, J.E.M.; Schreier, H.J.; Lanska, L.; Hale, M.S. The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Mar. Drugs 2017, 15, 158. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Malak, H.A.; Abulreesh, H.H. Environmental antimicrobial resistance and its drivers: A potential threat to public health. J. Glob. Antimicrob. Resist. 2021, 27, 101–111. [Google Scholar] [CrossRef]
- Tola, M.A.; Abera, N.A.; Gebeyehu, Y.M.; Dinku, S.F.; Tullu, K.D. High prevalence of extended-spectrum beta-lactamase- producing Escherichia coli and Klebsiella pneumoniae fecal carriage among children under five years in Addis Ababa, Ethiopia. PLoS ONE 2021, 16, e0258117. [Google Scholar] [CrossRef]
- MacKinnon, M.C.; McEwen, S.A.; Pearl, D.L.; Lyytikäinen, O.; Jacobsson, G.; Collignon, P.; Gregson, D.B.; Valiquette, L.; Laupland, K.B. Increasing incidence and antimicrobial resistance in Escherichia coli bloodstream infections: A multinational population-based cohort study. Antimicrob. Resist. Infect. Control 2021, 10, 131. [Google Scholar] [CrossRef]
- Tadesse, S.; Mulu, W.; Genet, C.; Kibret, M.; Belete, M.A. Emergence of High Prevalence of Extended-Spectrum Beta-Lactamase and Carbapenemase-Producing Enterobacteriaceae Species among Patients in Northwestern Ethiopia Region. Biomed Res. Int. 2022, 2022, 5727638. [Google Scholar] [CrossRef]
- Hendriksen, R.S.; Munk, P.; Njage, P.; van Bunnik, B.; McNally, L.; Lukjancenko, O.; Röder, T.; Nieuwenhuijse, D.; Pedersen, S.K.; Kjeldgaard, J.; et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 2019, 10, 1124. [Google Scholar] [CrossRef] [Green Version]
- Allocati, N.; Masulli, M.; Alexeyev, M.F.; Di Ilio, C. Escherichia coli in Europe: An overview. Int. J. Environ. Res. Public Health 2013, 10, 6235–6254. [Google Scholar] [CrossRef] [Green Version]
- Irek, E.O.; Amupitan, A.A.; Obadare, T.O.; Aboderin, A.O. A systematic review of healthcare-associated infections in Africa: An antimicrobial resistance perspective. Afr. J. Lab. Med. 2018, 7, a796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teklu, D.S.; Negeri, A.A.; Legese, M.H.; Bedada, T.L.; Woldemariam, H.K.; Tullu, K.D. Extended-spectrum beta-lactamase production and multi-drug resistance among Enterobacteriaceae isolated in Addis Ababa, Ethiopia. Antimicrob. Resist. Infect. Control 2019, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; So, H.J.; Kim, M.N.; Lee, J. Initial empirical antibiotics of non-carbapenems for ESBL-producing E. coli and K. pneumoniae bacteremia in children: A retrospective medical record review. BMC Infect. Dis. 2022, 22, 866. [Google Scholar] [CrossRef] [PubMed]
- Robert, E.; Grippa, M.; Nikiema, D.E.; Kergoat, L.; Koudougou, H.; Auda, Y.; Rochelle-Newall, E. Environmental determinants of E. coli, link with the diarrheal diseases, and indication of vulnerability criteria in tropical west africa (kapore, burkina faso). PLoS Neglected Trop. Dis. 2021, 15, e0009634. [Google Scholar] [CrossRef] [PubMed]
- Mfoutou Mapanguy, C.C.; Adedoja, A.; Kecka, L.G.V.; Vouvoungui, J.C.; Nguimbi, E.; Velavan, T.P.; Ntoumi, F. High prevalence of antibiotic-resistant Escherichia coli in Congolese students. Int. J. Infect. Dis. 2021, 103, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Silva, V.; Pereira, J.E.; Maltez, L.; Igrejas, G.; Valentão, P.; Falco, V.; Poeta, P. Antimicrobial Resistance and Clonal Lineages of Escherichia coli from Food-Producing Animals. Antibiotics 2023, 12, 1061. [Google Scholar] [CrossRef]
- Ramos, S.; Silva, V.; de Lurdes Enes Dapkevicius, M.; Caniça, M.; Tejedor-Junco, M.T.; Igrejas, G.; Poeta, P. Escherichia coli as commensal and pathogenic bacteria among food-producing animals: Health implications of extended-spectrum β-lactamase (ESBL) production. Animals 2020, 10, 2239. [Google Scholar] [CrossRef]
- Ribeiro, J.; Silva, V.; Monteiro, A.; Vieira-Pinto, M.; Igrejas, G.; Reis, F.S.; Barros, L.; Poeta, P. Antibiotic Resistance among Gastrointestinal Bacteria in Broilers: A Review Focused on Enterococcus spp. and Escherichia coli. Animals 2023, 13, 1362. [Google Scholar] [CrossRef]
- Bumbangi, F.N.; Llarena, A.-K.; Skjerve, E.; Hang’ombe, B.M.; Mpundu, P.; Mudenda, S.; Mutombo, P.B.; Muma, J.B. Evidence of Community-Wide Spread of Multi-Drug Resistant Escherichia coli in Young Children in Lusaka and Ndola Districts, Zambia. Microorganisms 2022, 10, 1684. [Google Scholar] [CrossRef]
- Choudhuri, A.H.; Ahuja, B.; Biswas, P.S.; Uppal, R. Epidemiology of multidrug-resistant infections after inter ICU transfer in India. Indian J. Crit. Care Med. 2019, 23, 1–6. [Google Scholar] [CrossRef]
- Ema, F.A.; Shanta, R.N.; Rahman, M.Z.; Islam, M.A.; Khatun, M.M. Isolation, identification, and antibiogram studies of Escherichia coli from ready-to-eat foods in Mymensingh, Bangladesh. Vet. World 2022, 15, 1497–1505. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, Z.H.; Kabir, M.H.; Ali, S.; Moniruzzaman, M.; Imran, K.M.; Nafiz, T.N.; Islam, M.S.; Hussain, A.; Hakim, S.A.I.; Worth, M.; et al. Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Drinking Water Samples From a Forcibly Displaced, Densely Populated Community Setting in Bangladesh. Front. Public Health 2020, 8, 228. [Google Scholar] [CrossRef] [PubMed]
- Peirano, G.; Chen, L.; Nobrega, D.; Finn, T.J.; Kreiswirth, B.N.; DeVinney, R.; Pitout, J.D.D. Genomic Epidemiology of Global Carbapenemase-Producing Escherichia coli, 2015–2017. Emerg. Infect. Dis. 2022, 28, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Martischang, R.; François, P.; Cherkaoui, A.; Gaïa, N.; Renzi, G.; Agostinho, A.; Perez, M.; Graf, C.E.; Harbarth, S. Epidemiology of ESBL-producing Escherichia coli from repeated prevalence studies over 11 years in a long-term-care facility. Antimicrob. Resist. Infect. Control 2021, 10, 148. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC-Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef]
- Mora-Ochomogo, M.; Lohans, C.T. β-Lactam antibiotic targets and resistance mechanisms: From covalent inhibitors to substrates. RSC Med. Chem. 2021, 12, 1623–1639. [Google Scholar] [CrossRef]
- Kayastha, K.; Dhungel, B.; Karki, S.; Adhikari, B.; Banjara, M.R.; Rijal, K.R.; Ghimire, P. Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella Species in Pediatric Patients Visiting International Friendship Children’s Hospital, Kathmandu, Nepal. Infect. Dis. Res. Treat. 2020, 13, 117863372090979. [Google Scholar] [CrossRef] [Green Version]
- Franiczek, R.; Sobieszczańska, B.; Turniak, M.; Kasprzykowska, U.; Krzyzanowska, B.; Jermakow, K.; Mokracka-Latajka, G. ESBL-producing Escherichia coli isolated from children with acute diarrhea—Antimicrobial susceptibility, adherence patterns and phylogenetic background. Adv. Clin. Exp. Med. 2012, 21, 187–192. [Google Scholar]
- Kumar, N.; Chatterjee, K.; Deka, S.; Shankar, R.; Kalita, D. Increased Isolation of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli From Community-Onset Urinary Tract Infection Cases in Uttarakhand, India. Cureus 2021, 13, e13837. [Google Scholar] [CrossRef]
- Mboya, E.A.; Sanga, L.A.; Ngocho, J.S. Irrational use of antibiotics in the moshi municipality Northern Tanzania: A cross-sectional study. Pan Afr. Med. J. 2018, 31, 165. [Google Scholar] [CrossRef]
- Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic Resistance in Bacteria—A Review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef]
- Mudenda, S.; Nsofu, E.; Chisha, P.; Daka, V.; Chabalenge, B.; Mufwambi, W.; Kainga, H.; Kanaan, M.H.G.; Mfune, R.L.; Mwaba, F.; et al. Prescribing Patterns of Antibiotics According to the WHO AWaRe Classification during the COVID-19 Pandemic at a Teaching Hospital in Lusaka, Zambia: Implications for Strengthening of Antimicrobial Stewardship Programmes. Pharmacoepidemiology 2023, 2, 42–53. [Google Scholar] [CrossRef]
- Mudenda, S.; Chomba, M.; Chabalenge, B.; Hikaambo, C.N.; Banda, M.; Daka, V.; Zulu, A.; Mukesela, A.; Kasonde, M.; Lukonde, P.; et al. Antibiotic Prescribing Patterns in Adult Patients According to the WHO AWaRe Classification: A Multi-Facility Cross-Sectional Study in Primary Healthcare Hospitals in Lusaka, Zambia. Pharmacol. Pharm. 2022, 13, 379–392. [Google Scholar] [CrossRef]
- Bush, K.; Bradford, P.A. β-lactams and β-lactamase inhibitors: An overview. Cold Spring Harb. Perspect. Med. 2016, 6, a025247. [Google Scholar] [CrossRef] [PubMed]
- Kasanga, M.; Mudenda, S.; Siyanga, M.; Chileshe, M.; Mwiikisa, M.J.; Kasanga, M.; Solochi, B.B.; Gondwe, T.; Kantenga, T.; L Shibemba, A.; et al. Antimicrobial susceptibility patterns of bacteria that commonly cause bacteremia at a tertiary hospital in Zambia. Future Microbiol. 2020, 15, 1735–1745. [Google Scholar] [CrossRef] [PubMed]
- Kasanga, M.; Mukosha, R.; Kasanga, M.; Siyanga, M.; Mudenda, S.; Solochi, B.B.; Chileshe, M.; Mwiikisa, M.J.; Gondwe, T.; Kantenga, T.; et al. Antimicrobial resistance patterns of bacterial pathogens their distribution in university teaching hospitals in Zambia. Future Microbiol. 2020, 16, 811–824. [Google Scholar] [CrossRef]
- Badulla, W.F.S.; Alshakka, M.; Mohamed Ibrahim, M.I. Antimicrobial Resistance Profiles for Different Isolates in Aden, Yemen: A Cross-Sectional Study in a Resource-Poor Setting. Biomed Res. Int. 2020, 2020, 1810290. [Google Scholar] [CrossRef] [Green Version]
- Kasanga, M.; Chileshe, M.; Mudenda, S.; Mukosha, R.; Kasanga, M.; Daka, V.; Mudenda, T.; Chisembele, M.; Musuku, J.; Solochi, B.B.; et al. Antibiotic Prescribing Patterns and Prevalence of Surgical Site Infections in Caesarean Section Deliveries at Two Tertiary Hospitals in Lusaka, Zambia. Pharmacol. Pharm. 2022, 13, 313–330. [Google Scholar] [CrossRef]
- Seman, A.; Mihret, A.; Sebre, S.; Awoke, T.; Yitayew, B.; Aseffa, A.; Asrat, D.; Abebe, T.; Yeshitela, B. Prevalence and Molecular Characterization of Extended Spectrum β-Lactamase and Carbapenemase-Producing Enterobacteriaceae Isolates from Bloodstream Infection Suspected Patients in Addis Ababa, Ethiopia. Infect. Drug Resist. 2022, 15, 1367–1382. [Google Scholar] [CrossRef]
- Hassell, J.M.; Ward, M.J.; Muloi, D.; Bettridge, J.M.; Robinson, T.P.; Kariuki, S.; Ogendo, A.; Kiiru, J.; Imboma, T.; Kang’ethe, E.K.; et al. Clinically relevant antimicrobial resistance at the wildlife–livestock–human interface in Nairobi: An epidemiological study. Lancet Planet. Health 2019, 3, e259–e269. [Google Scholar] [CrossRef] [Green Version]
- Enany, M.E.; Algammal, A.M.; Nasef, S.A.; Abo-Eillil, S.A.M.; Bin-Jumah, M.; Taha, A.E.; Allam, A.A. The occurrence of the multidrug resistance (MDR) and the prevalence of virulence genes and QACs resistance genes in E. coli isolated from environmental and avian sources. AMB Express 2019, 9, 192. [Google Scholar] [CrossRef] [PubMed]
- Guardabassi, L.; Butaye, P.; Dockrell, D.H.; Fitzgerald, J.R.; Kuijper, E.J. One Health: A multifaceted concept combining diverse approaches to prevent and control antimicrobial resistance. Clin. Microbiol. Infect. 2020, 26, 1604–1605. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Action Plan on Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2015; pp. 1–28. [Google Scholar]
- Rhouma, M.; Soufi, L.; Cenatus, S.; Archambault, M.; Butaye, P. Current Insights Regarding the Role of Farm Animals in the Spread of Antimicrobial Resistance from a One Health Perspective. Vet. Sci. 2022, 9, 480. [Google Scholar] [CrossRef]
- Meier, H.; Spinner, K.; Crump, L.; Kuenzli, E.; Schuepbach, G.; Zinsstag, J. State of Knowledge on the Acquisition, Diversity, Interspecies Attribution and Spread of Antimicrobial Resistance between Humans, Animals and the Environment: A Systematic Review. Antibiotics 2023, 12, 73. [Google Scholar] [CrossRef] [PubMed]
- Saleem, Z.; Godman, B.; Cook, A.; Khan, M.A.; Campbell, S.M.; Seaton, R.A.; Siachalinga, L.; Haseeb, A.; Amir, A.; Kurdi, A.; et al. Ongoing Efforts to Improve Antimicrobial Utilization in Hospitals among African Countries and Implications for the Future. Antibiotics 2022, 11, 1824. [Google Scholar] [CrossRef]
- Siachalinga, L.; Mufwambi, W.; Lee, I.H. Impact of antimicrobial stewardship interventions to improve antibiotic prescribing for hospital inpatients in Africa: A systematic review and meta-analysis. J. Hosp. Infect. 2022, 129, 124–143. [Google Scholar] [CrossRef]
- Dyar, O.J.; Huttner, B.; Schouten, J.; Pulcini, C. What is antimicrobial stewardship? Clin. Microbiol. Infect. 2017, 23, 793–798. [Google Scholar] [CrossRef] [Green Version]
- Lammie, S.L.; Hughes, J.M. Antimicrobial Resistance, Food Safety, and One Health: The Need for Convergence. Annu. Rev. Food Sci. Technol. 2016, 7, 287–312. [Google Scholar] [CrossRef]
- Godman, B.; Egwuenu, A.; Haque, M.; Malande, O.O.; Schellack, N.; Kumar, S.; Saleem, Z.; Sneddon, J.; Hoxha, I.; Islam, S.; et al. Strategies to improve antimicrobial utilization with a special focus on developing countries. Life 2021, 11, 528. [Google Scholar] [CrossRef]
- Republic of Zambia NAP on AMR Multi-Sectoral National Action Plan on Antimicrobial Resistance. Available online: https://www.afro.who.int/publications/multi-sectoral-national-action-plan-antimicrobial-resistance-2017-2027 (accessed on 24 July 2022).
- Kapona, O. Zambia successfully launches the first multi-sectoral national action plan on antimicrobial resistance (AMR). Health Press Zamb. Bull 2017, 1, 5–7. [Google Scholar]
- Mwikuma, G.; Kainga, H.; Kallu, S.A.; Nakajima, C.; Suzuki, Y.; Hang’ombe, B.M. Determination of the Prevalence and Antimicrobial Resistance of Enterococcus Faecalis and Enterococcus Faecium Associated with Poultry in Four Districts in Zambia. Antibiotics 2023, 12, 657. [Google Scholar] [CrossRef] [PubMed]
- Mudenda, S.; Malama, S.; Munyeme, M.; Matafwali, S.K.; Kapila, P.; Katemangwe, P.; Mainda, G.; Mukubesa, A.N.; Hadunka, M.A.; Muma, J.B. Antimicrobial Resistance Profiles of Escherichia Coli Isolated from Laying Hens in Zambia: Implications and Significance on One Health. JAC-Antimicrob. Resist. 2023, 5, dlad060. [Google Scholar] [CrossRef]
- Mudenda, S.; Hankombo, M.; Saleem, Z.; Sadiq, M.J.; Banda, M.; Munkombwe, D.; Mwila, C.; Kasanga, M.; Zulu, A.C.; Hangoma, J.M.; et al. Knowledge, Attitude, and Practices of Community Pharmacists on Antibiotic Resistance and Antimicrobial Stewardship in Lusaka, Zambia. J. Biomed. Res. Environ. Sci. 2021, 2, 1005–1014. [Google Scholar] [CrossRef]
- Tembo, N.; Mudenda, S.; Banda, M.; Chileshe, M.; Matafwali, S. Knowledge, Attitudes and Practices on Antimicrobial Resistance among Pharmacy Personnel and Nurses at a Tertiary Hospital in Ndola, Zambia: Implications for Antimicrobial Stewardship Programmes. JAC-Antimicrob. Resist. 2022, 4, dlac107. [Google Scholar] [CrossRef]
- Mudenda, S.; Malama, S.; Munyeme, M.; Hang’ombe, B.M.; Mainda, G.; Kapona, O.; Mukosha, M.; Yamba, K.; Bumbangi, F.N.; Mfune, R.L.; et al. Awareness of Antimicrobial Resistance and Associated Factors among Layer Poultry Farmers in Zambia: Implications for Surveillance and Antimicrobial Stewardship Programs. Antibiotics 2022, 11, 383. [Google Scholar] [CrossRef]
- Mudenda, S.; Matafwali, S.K.; Malama, S.; Munyeme, M.; Yamba, K.; Katemangwe, P.; Siluchali, G.; Mainda, G.; Mukuma, M.; Bumbangi, F.N.; et al. Prevalence and Antimicrobial Resistance Patterns of Enterococcus Species Isolated from Laying Hens in Lusaka and Copperbelt Provinces of Zambia: A Call for AMR Surveillance in the Poultry Sector. JAC-Antimicrob. Resist. 2022, 4, dlac126. [Google Scholar] [CrossRef]
- Mudenda, S.; Mukosha, M.; Godman, B.; Fadare, J.; Malama, S.; Munyeme, M.; Hikaambo, C.N.; Kalungia, A.C.; Hamachila, A.; Kainga, H.; et al. Knowledge, Attitudes and Practices of Community Pharmacy Professionals on Poultry Antimicrobial Dispensing, Use and Resistance in Zambia: Implications on Antibiotic Stewardship and WHO AWaRe Classification of Antibiotics. Antibiotics 2022, 11, 1210. [Google Scholar] [CrossRef]
- Yamba, K.; Lukwesa-Musyani, C.; Samutela, M.T.; Kapesa, C.; Hang’ombe, M.B.; Mpabalwani, E.; Hachaambwa, L.; Fwoloshi, S.; Chanda, R.; Mpundu, M.; et al. Phenotypic and Genotypic Antibiotic Susceptibility Profiles of Gram-Negative Bacteria Isolated from Bloodstream Infections at a Referral Hospital, Lusaka, Zambia. PLOS Glob. Public Health 2023, 3, e0001414. [Google Scholar] [CrossRef]
- ZamStats Total Number of Households by Province, Zambia 2022. Available online: https://www.zamstats.gov.zm/total-number-of-household-by-province-zambia-2022/ (accessed on 24 January 2023).
- ZamStats Population Size by Province, Zambia 2010 and 2022. Available online: https://www.zamstats.gov.zm/population-size-by-province-zambia-2010-and-2022/# (accessed on 24 January 2023).
- Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, Thirtieth Edition: M100. Available online: https://unitedvrg.com/2021/05/20/m100-performance-standards-for-antimicrobial-susceptibility-testing-30th-edition-2020-pdf/ (accessed on 26 August 2021).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. The Review on Antimicrobial Resistance. 2016, pp. 1–84. Available online: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (accessed on 27 May 2023).
- Bush, K.; Bradford, P.A. Epidemiology of β-lactamase-producing pathogens. Clin. Microbiol. Rev. 2020, 33, e00047-19. [Google Scholar] [CrossRef] [PubMed]
- Ullah, W.; Ali, S. Antimicrobial Resistance in Escherichia coli. In Escherichia coli—Old and New Insights; IntechOpen: London, UK, 2023; ISBN 978-1-83969-870-5. [Google Scholar]
- Osińska, A.; Korzeniewska, E.; Korzeniowska-Kowal, A.; Wzorek, A.; Harnisz, M.; Jachimowicz, P.; Buta-Hubeny, M.; Zieliński, W. The challenges in the identification of Escherichia coli from environmental samples and their genetic characterization. Environ. Sci. Pollut. Res. 2023, 30, 11572–11583. [Google Scholar] [CrossRef] [PubMed]
- Akbar, A.; Naeem, W.; Liaqat, F.; Sadiq, M.B.; Shafee, M.; Gul, Z.; Khan, S.A.; Mengal, H.; Chein, S.H.; Qasim, S.; et al. Hospital Acquired Pathogenic Escherichia coli from Clinical and Hospital Water Samples of Quetta Balochistan. J. Trop. Med. 2022, 2022, 6495044. [Google Scholar] [CrossRef]
- Velazquez-Meza, M.E.; Galarde-López, M.; Carrillo-Quiróz, B.; Alpuche-Aranda, C.M. Antimicrobial resistance: One Health approach. Vet. World 2022, 15, 743–749. [Google Scholar] [CrossRef]
- Roberts, L.W.; Hoi, L.T.; Khokhar, F.A.; Hoa, N.T.; Van Giang, T.; Bui, C.; Ninh, T.H.; Co, D.X.; Binh, N.G.; Long, H.B.; et al. Genomic characterisation of multidrug-resistant Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii in two intensive care units in Hanoi, Viet Nam: A prospective observational cohort study. Lancet Microbe 2022, 3, e857–e866. [Google Scholar] [CrossRef] [PubMed]
- Reza Mortazavi-Tabatabaei, S.; Ghaderkhani, J.; Nazari, A.; Sayehmiri, K.; Sayehmiri, F.; Pakzad, I. Pattern of antibacterial resistance in urinary tract infections: A systematic review and meta-analysis. Int. J. Prev. Med. 2019, 10, 169. [Google Scholar] [CrossRef]
- Dela Peña, L.B.R.O.; Nacario, M.A.G.; Bolo, N.R.; Rivera, W.L. Multiple Antibiotic Resistance in Escherichia coli Isolates from Fecal and Water Sources in Laguna Lake, Philippines. Water 2022, 14, 1517. [Google Scholar] [CrossRef]
- Salvador-Membreve, D.M.; Rivera, W.L. Predominance of blatem and teta genes in antibiotic-resistant escherichia coli isolates from laguna lake, Philippines. J. Water Sanit. Hyg. Dev. 2021, 11, 814–823. [Google Scholar] [CrossRef]
- Naqid, I.A.; Balatay, A.A.; Hussein, N.R.; Saeed, K.A.; Ahmed, H.A.; Yousif, S.H. Antibiotic Susceptibility Pattern of Escherichia coli Isolated from Various Clinical Samples in Duhok City, Kurdistan Region of Iraq. Int. J. Infect. 2020, 7, e103740. [Google Scholar] [CrossRef]
- Ramatla, T.; Ramaili, T.; Lekota, K.E.; Ndou, R.; Mphuti, N.; Bezuidenhout, C.; Thekisoe, O. A systematic review and meta-analysis on prevalence and antimicrobial resistance profile of Escherichia coli isolated from water in africa (2000–2021). Heliyon 2023, 9, e16123. [Google Scholar] [CrossRef]
- Pormohammad, A.; Nasiri, M.J.; Azimi, T. Prevalence of antibiotic resistance in escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: A systematic review and meta-analysis. Infect. Drug Resist. 2019, 12, 1181–1197. [Google Scholar] [CrossRef] [Green Version]
- Agbagwa, O.E.; Okorafor, O.N.; Horsfall, S.J. Multidrug Resistant Pattern and Plasmid Detection of Escherichia coli from Various Sources within the University of Port Harcourt. Open J. Med. Microbiol. 2022, 12, 11–23. [Google Scholar] [CrossRef]
- Chiyangi, H.; Muma, B.; Malama, S.; Manyahi, J.; Abade, A.; Kwenda, G.; Matee, M. Identification and antimicrobial resistance patterns of bacterial enteropathogens from children aged 0–59 months at the University Teaching Hospital, Lusaka, Zambia: A prospective cross-sectional study. BMC Infect. Dis. 2017, 17, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Liu, Y.; Yang, L.; Wu, X.; Wu, Y.; Shao, B. Prevalence of Escherichia coli and Antibiotic Resistance in Animal-Derived Food Samples—Six Districts, Beijing, China, 2020. China CDC Wkly. 2021, 3, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Kim, Y.J.; Binn-Kim; Seo, K.H. Spread of multidrug-resistant Escherichia coli harboring integron via swine farm waste water treatment plant. Ecotoxicol. Environ. Saf. 2018, 149, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Sula, I.; Alreshidi, M.A.; Alnasr, N.; Hassaneen, A.M.; Saquib, N. Urinary Tract Infections in the Kingdom of Saudi Arabia, a Review. Microorganisms 2023, 11, 952. [Google Scholar] [CrossRef]
- Aworh, M.K.; Kwaga, J.K.P.; Hendriksen, R.S.; Okolocha, E.C.; Harrell, E.; Thakur, S. Quinolone-resistant Escherichia coli at the interface between humans, poultry and their shared environment- a potential public health risk. One Heal. Outlook 2023, 5, 2. [Google Scholar] [CrossRef]
- Almagor, J.; Temkin, E.; Benenson, I.; Fallach, N.; Carmeli, Y. The impact of antibiotic use on transmission of resistant bacteria in hospitals: Insights from an agent-based model. PLoS ONE 2018, 13, e0197111. [Google Scholar] [CrossRef] [Green Version]
- Mwansa, M.; Mukuma, M.; Mulilo, E.; Kwenda, G.; Mainda, G.; Yamba, K.; Bumbangi, F.N.; Muligisa-Muonga, E.; Phiri, N.; Silwamba, I.; et al. Determination of antimicrobial resistance patterns of Escherichia coli isolates from farm workers in broiler poultry production and assessment of antibiotic resistance awareness levels among poultry farmers in Lusaka, Zambia. Front. Public Health 2023, 10, 998860. [Google Scholar] [CrossRef]
- Öztürk, R.; Tazegul, G. Bacteria Causing Community-Acquired Urinary Tract Infections and Their Antibiotic Susceptibility Patterns in Outpatients Attending at a State Hospital in Turkey. Cureus 2021, 13, e17753. [Google Scholar] [CrossRef]
- Abraham, R.; Allison, H.S.; Lee, T.; Pavic, A.; Chia, R.; Hewson, K.; Lee, Z.Z.; Hampson, D.J.; Jordan, D.; Abraham, S. A national study confirms that Escherichia coli from Australian commercial layer hens remain susceptible to critically important antimicrobials. PLoS ONE 2023, 18, e0281848. [Google Scholar] [CrossRef]
- Schuts, E.C.; Boyd, A.; Muller, A.E.; Mouton, J.W.; Prins, J.M. The effect of antibiotic restriction programs on prevalence of antimicrobial resistance: A systematic review and meta-analysis. Open Forum Infect. Dis. 2021, 8, ofab070. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet. Health 2017, 1, e316–e327. [Google Scholar] [CrossRef]
- Bhatnagar, K.; Wong, A. The mutational landscape of quinolone resistance in Escherichia coli. PLoS ONE 2019, 14, e0224650. [Google Scholar] [CrossRef] [Green Version]
- Röderova, M.; Halova, D.; Papousek, I.; Dolejska, M.; Masarikova, M.; Hanulik, V.; Pudova, V.; Broz, P.; Htoutou-Sedlakova, M.; Sauer, P.; et al. Characteristics of quinolone resistance in Escherichia coli isolates from humans, animals, and the environment in the Czech Republic. Front. Microbiol. 2017, 7, 2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slettemeås, J.S.; Sunde, M.; Ulstad, C.R.; Norström, M.; Wester, A.L.; Urdahl, A.M. Occurrence and characterization of quinolone resistant Escherichia coli from Norwegian Turkey meat and complete sequence of an IncX1 plasmid encoding qnrS1. PLoS ONE 2019, 14, e0212936. [Google Scholar] [CrossRef] [PubMed]
- Dirar, M.H.; Bilal, N.E.; Ibrahim, M.E.; Hamid, M.E. Prevalence of extended-spectrum β-lactamase (Esbl) and molecular detection of bla TEM, bla SHV and bla CTX-M genotypes among enterobacteriaceae isolates from patients in khartoum, sudan. Pan Afr. Med. J. 2020, 37, 213. [Google Scholar] [CrossRef]
- Odongo, I.; Ssemambo, R.; Kungu, J.M. Prevalence of Escherichia Coli and Its Antimicrobial Susceptibility Profiles among Patients with UTI at Mulago Hospital, Kampala, Uganda. Interdiscip. Perspect. Infect. Dis. 2020, 2020, 8042540. [Google Scholar] [CrossRef] [Green Version]
- Bhowmik, A.; Shah, S.T.; Goswami, S.; Sirajee, A.S.; Ahsan, S. Predominance of Multidrug-Resistant Escherichia coli of Environmental Phylotype in Different Environments of Dhaka, Bangladesh. Trop. Med. Infect. Dis. 2023, 8, 226. [Google Scholar] [CrossRef]
- Gottesman, B.S.; Carmeli, Y.; Shitrit, P.; Chowers, M. Impact of quinolone restriction on resistance patterns of Escherichia coli isolated from urine by culture in a community setting. Clin. Infect. Dis. 2009, 49, 869–875. [Google Scholar] [CrossRef] [Green Version]
- Malema, M.S.; Abia, A.L.K.; Tandlich, R.; Zuma, B.; Kahinda, J.M.M.; Ubomba-Jaswa, E. Antibiotic-resistant pathogenic escherichia coli isolated from rooftop rainwater-harvesting tanks in the Eastern Cape, South Africa. Int. J. Environ. Res. Public Health 2018, 15, 892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalil, M.B.; Al Atbee, M.Y.N. The prevalence of multiple drug resistance Escherichia coli and Klebsiella pneumoniae isolated from patients with urinary tract infections. J. Clin. Lab. Anal. 2022, 36, e24619. [Google Scholar] [CrossRef] [PubMed]
- Gelaw, L.Y.; Bitew, A.A.; Gashey, E.M.; Ademe, M.N. Ceftriaxone resistance among patients at GAMBY teaching general hospital. Sci. Rep. 2022, 12, 12000. [Google Scholar] [CrossRef]
- Chilawa, S.; Mudenda, S.; Daka, V.; Chileshe, M.; Matafwali, S.; Chabalenge, B.; Mpundu, P.; Mufwambi, W.; Mohamed, S.; Mfune, R.L.; et al. Knowledge, Attitudes, and Practices of Poultry Farmers on Antimicrobial Use and Resistance in Kitwe, Zambia: Implications on Antimicrobial Stewardship. Open J. Anim. Sci. 2023, 13, 60–81. [Google Scholar] [CrossRef]
- Joya, M.; Aalemi, A.K.; Baryali, A.T. Prevalence and Antibiotic Susceptibility of the Common Bacterial Uropathogen Among UTI Patients in French Medical Institute for Children. Infect. Drug Resist. 2022, 15, 4291–4297. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, D.R.; Dodd, C.E.R.; Stekel, D.J.; Meshioye, R.T.; Diggle, M.; Lister, M.; Hobman, J.L. Multidrug-Resistant ESBL-Producing E. coli in Clinical Samples from the UK. Antibiotics 2023, 12, 169. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, A.K.; Ali, M.R.; Chander, Y. Antimicrobial Susceptibility Profile of Extended Spectrum β-Lactamase (ESBL) Producing Escherichia coli from Various Clinical Samples. Infect. Dis. Res. Treat. 2014, 7, IDRT-S13820. [Google Scholar] [CrossRef] [Green Version]
- Odonkor, S.T.; Addo, K.K. Prevalence of Multidrug-Resistant Escherichia coli Isolated from Drinking Water Sources. Int. J. Microbiol. 2018, 2018, 7204013. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Castillo, F.Y.; Moreno-Flores, A.C.; Avelar-González, F.J.; Márquez-Díaz, F.; Harel, J.; Guerrero-Barrera, A.L. An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: Cross-sectional study. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 34. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, V.D.; Meirelles-Pereira, F.; Cataldo, M.; Fonseca, B.D.O.; Nogueira, B.A.; Olivella, J.G.B.; Esteves, F.D.A.; Mattos-Guaraldi, A.L.; de Andrade, A.F.B.; Bello, A.R.; et al. Detection of multidrug-resistant Enterobacteria isolated from river waters flowing to Guanabara Bay (Rio de Janeiro, Brazil) and from clinical samples of hospital origin. Biomedica 2019, 39, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Paniagua-Contreras, G.L.; Monroy-Pérez, E.; Rodríguez-Moctezuma, J.R.; Domínguez-Trejo, P.; Vaca-Paniagua, F.; Vaca, S. Virulence factors, antibiotic resistance phenotypes and O-serogroups of Escherichia coli strains isolated from community-acquired urinary tract infection patients in Mexico. J. Microbiol. Immunol. Infect. 2017, 50, 478–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, P.; Bepari, A.K.; Sen, P.K.; Rafe, T.; Imtiaz, R.; Hossain, M.; Reza, H.M. High prevalence of multiple antibiotic resistance in clinical E. coli isolates from Bangladesh and prediction of molecular resistance determinants using WGS of an XDR isolate. Sci. Rep. 2021, 11, 22859. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Rafaque, Z.; Ahmed, S.; Malik, S.; Dasti, J.I. Prevalence of multi-drug resistant uropathogenic Escherichia coli in Potohar region of Pakistan. Asian Pac. J. Trop. Biomed. 2016, 6, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Fani, R.; Dioli, C.; Pappa, O.; Siatravani, E.; Bratakou, S.; Tatsiopoulos, A.; Giakkoupi, P.; Miriagou, V.; Beloukas, A. Molecular Characterization and Prevalence of Antimicrobial-Resistant Escherichia coli Isolates Derived from Clinical Specimens and Environmental Habitats. Microorganisms 2023, 11, 1399. [Google Scholar] [CrossRef]
- Shaikh, S.; Fatima, J.; Shakil, S.; Rizvi, S.M.D.; Kamal, M.A. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J. Biol. Sci. 2015, 22, 90–101. [Google Scholar] [CrossRef]
- Brolund, A. Overview of ESBL-producing Enterobacteriaceae from a Nordic perspective. Infect. Ecol. Epidemiol. 2014, 4, 24555. [Google Scholar] [CrossRef] [Green Version]
- Erb, S.; D’Mello-Guyett, L.; Malebo, H.M.; Njee, R.M.; Matwewe, F.; Ensink, J.; Hinic, V.; Widmer, A.; Frei, R. High prevalence of ESBL-Producing E. coli in private and shared latrines in an informal urban settlement in Dar es Salaam, Tanzania. Antimicrob. Resist. Infect. Control 2018, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Peirano, G.; Pitout, J.D.D. Molecular epidemiology of Escherichia coli producing CTX-M β-lactamases: The worldwide emergence of clone ST131 O25:H4. Int. J. Antimicrob. Agents 2010, 35, 316–321. [Google Scholar] [CrossRef]
- Quan, J.; Dai, H.; Liao, W.; Zhao, D.; Shi, Q.; Zhang, L.; Shi, K.; Akova, M.; Yu, Y. Etiology and prevalence of ESBLs in adult community-onset urinary tract infections in East China: A prospective multicenter study. J. Infect. 2021, 83, 175–181. [Google Scholar] [CrossRef]
- Yadav, K.K.; Adhikari, N.; Khadka, R.; Pant, A.D.; Shah, B. Multidrug-resistant Enterobacteriaceae and extended spectrum β-lactamase producing Escherichia coli: A cross-sectional study in National Kidney Center, Nepal. Antimicrob. Resist. Infect. Control 2015, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, M.; Basu, S.; MuKherjee, S.K.M.; Majumder, M. Multidrug-resistance and extended spectrum beta-lactamase production in uropathogenic E. coli which were isolated from hospitalized patients in Kolkata, India. J. Clin. Diagn. Res. 2013, 7, 449–453. [Google Scholar] [CrossRef]
- Tian, G.B.; Wang, H.N.; Zhang, A.Y.; Zhang, Y.; Fan, W.Q.; Xu, C.W.; Zeng, B.; Guan, Z.B.; Zou, L.K. Detection of clinically important β-lactamases in commensal Escherichia coli of human and swine origin in western China. J. Med. Microbiol. 2012, 61, 233–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serwecińska, L. Antimicrobials and antibiotic-resistant bacteria: A risk to the environment and to public health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- Tigabie, M.; Biset, S.; Belachew, T.; Amare, A.; Moges, F. Multidrug-resistant and extended-spectrum beta-lactamase-producing Enterobacteriaceae isolated from chicken droppings in poultry farms at Gondar City, Northwest Ethiopia. PLoS ONE 2023, 18, e0287043. [Google Scholar] [CrossRef]
- Ludden, C.; Coll, F.; Gouliouris, T.; Restif, O.; Blane, B.; Blackwell, G.A.; Kumar, N.; Naydenova, P.; Crawley, C.; Brown, N.M.; et al. Defining nosocomial transmission of Escherichia coli and antimicrobial resistance genes: A genomic surveillance study. Lancet Microbe 2021, 2, e472–e480. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Zhu, Y.; Li, X.; Kudinha, T.; Yang, Y.; Zhang, G.; Zhang, J.; Xu, Y.; Yang, Q. High Prevalence of Extended-Spectrum Beta-Lactamases in Escherichia coli Strains Collected From Strictly Defined Community-Acquired Urinary Tract Infections in Adults in China: A Multicenter Prospective Clinical Microbiological and Molecular Study. Front. Microbiol. 2021, 12, 663033. [Google Scholar] [CrossRef]
- Siriphap, A.; Kitti, T.; Khuekankaew, A.; Boonlao, C.; Thephinlap, C.; Thepmalee, C.; Suwannasom, N.; Khoothiam, K. High prevalence of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates: A 5-year retrospective study at a Tertiary Hospital in Northern Thailand. Front. Cell. Infect. Microbiol. 2022, 12, 955774. [Google Scholar] [CrossRef]
- Al-Jamei, S.A.; Albsoul, A.Y.; Bakri, F.G.; Al-Bakri, A.G. Extended-spectrum β-lactamase producing E. coli in urinary tract infections: A two-center, cross-sectional study of prevalence, genotypes and risk factors in Amman, Jordan. J. Infect. Public Health 2019, 12, 21–25. [Google Scholar] [CrossRef]
- Hays, J.P.; Safain, K.S.; Almogbel, M.S.; Habib, I.; Khan, M.A. Extended Spectrum- and Carbapenemase-Based β-Lactam Resistance in the Arabian Peninsula—A Descriptive Review of Recent Years. Antibiotics 2022, 11, 1354. [Google Scholar] [CrossRef]
- Ranjan Dash, N.; Albataineh, M.T.; Alhourani, N.; Khoudeir, A.M.; Ghanim, M.; Wasim, M.; Mahmoud, I. Community-acquired urinary tract infections due to extended-spectrum β-lactamase-producing organisms in United Arab Emirates. Travel Med. Infect. Dis. 2018, 22, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Ikram, R.; Psutka, R.; Carter, A.; Priest, P. An outbreak of multi-drug resistant Escherichia coli urinary tract infection in an elderly population: A case-control study of risk factors. BMC Infect. Dis. 2015, 15, 224. [Google Scholar] [CrossRef] [Green Version]
- Aabed, K.; Moubayed, N.; Alzahrani, S. Antimicrobial resistance patterns among different Escherichia coli isolates in the Kingdom of Saudi Arabia. Saudi J. Biol. Sci. 2021, 28, 3776–3782. [Google Scholar] [CrossRef]
- Shrestha, A.; Shrestha, R.; Koju, P.; Tamrakar, S.; Rai, A.; Shrestha, P.; Madhup, S.K.; Katuwal, N.; Shrestha, A.; Shrestha, A.; et al. The Resistance Patterns in E. coli Isolates among Apparently Healthy Adults and Local Drivers of Antimicrobial Resistance: A Mixed-Methods Study in a Suburban Area of Nepal. Trop. Med. Infect. Dis. 2022, 7, 133. [Google Scholar] [CrossRef]
- Sahuquillo-Arce, J.M.; Selva, M.; Perpiñán, H.; Gobernado, M.; Armero, C.; López-Quílez, A.; González, F.; Vanaclocha, H. Antimicrobial resistance in more than 100,000 Escherichia coli isolates according to culture site and patient age, gender, and location. Antimicrob. Agents Chemother. 2011, 55, 1222–1228. [Google Scholar] [CrossRef] [Green Version]
- Pariyar, M.; Adhikari, S.; Regmi, R.S.; Dhungel, B.; Banjara, M.R.; Rijal, B.P.; Rijal, K.R.; Ghimire, P. Beta-Lactamase-Producing Gram-Negative Bacterial Isolates Among the Patients Attending a Tertiary Care Hospital, Kathmandu, Nepal. Microbiol. Insights 2023, 16, 117863612211507. [Google Scholar] [CrossRef]
- Bora, A.; Sanjana, R.; Jha, B.K.; Narayan Mahaseth, S.; Pokharel, K. Incidence of metallo-beta-lactamase producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in central Nepal. BMC Res. Notes 2014, 7, 557. [Google Scholar] [CrossRef] [Green Version]
- Bao, D.; Xu, X.; Wang, Y.; Zhu, F. Emergence of a Multidrug-Resistant Escherichia coli Co-Carrying a New mcr-1.33 Variant and blaNDM-5 Genes Recovered from a Urinary Tract Infection. Infect. Drug Resist. 2022, 15, 1499–1503. [Google Scholar] [CrossRef]
- Niranjan, V.; Malini, A. Antimicrobial resistance pattern in Escherichia coli causing urinary tract infection among inpatients. Indian J. Med. Res. 2014, 139, 945–948. [Google Scholar]
- Kourtis, A.P.; Sheriff, E.A.; Weiner-Lastinger, L.M.; Elmore, K.; Preston, L.E.; Dudeck, M.; McDonald, L.C. Antibiotic Multidrug Resistance of Escherichia coli Causing Device- and Procedure-related Infections in the United States Reported to the National Healthcare Safety Network, 2013–2017. Clin. Infect. Dis. 2021, 73, E4552–E4559. [Google Scholar] [CrossRef]
- Mutters, N.T.; Mampel, A.; Kropidlowski, R.; Biehler, K.; Günther, F.; Bălu, I.; Malek, V.; Frank, U. Treating urinary tract infections due to MDR E. coli with Isothiocyanates—A phytotherapeutic alternative to antibiotics? Fitoterapia 2018, 129, 237–240. [Google Scholar] [CrossRef]
- Kaye, K.S.; Gupta, V.; Mulgirigama, A.; Joshi, A.V.; Scangarella-Oman, N.E.; Yu, K.; Ye, G.; Mitrani-Gold, F.S. Antimicrobial Resistance Trends in Urine Escherichia coli Isolates From Adult and Adolescent Females in the United States From 2011 to 2019: Rising ESBL Strains and Impact on Patient Management. Clin. Infect. Dis. 2021, 73, 1992–1999. [Google Scholar] [CrossRef]
- Reaver, K.M.; Levy, J.; Nyambe, I.; Hay, M.C.; Mutiti, S.; Chandipo, R.; Meiman, J. Drinking Water Quality and Provision in Six Low-Income, Peri-Urban Communities of Lusaka, Zambia. GeoHealth 2021, 5, e2020GH000283. [Google Scholar] [CrossRef] [PubMed]
- Seguni, N.Z.; Kimera, Z.I.; Msafiri, F.; Mgaya, F.X.; Joachim, A.; Mwingwa, A.; Matee, M.I. Multidrug-resistant Escherichia coli and Klebsiella pneumoniae isolated from hospital sewage flowing through community sewage system and discharging into the Indian Ocean. Bull. Natl. Res. Cent. 2023, 47, 66. [Google Scholar] [CrossRef]
- Farrell, M.L.; Chueiri, A.; O’Connor, L.; Duane, S.; Maguire, M.; Miliotis, G.; Cormican, M.; Hooban, B.; Leonard, A.; Gaze, W.H.; et al. Assessing the impact of recreational water use on carriage of antimicrobial resistant organisms. Sci. Total Environ. 2023, 888, 164201. [Google Scholar] [CrossRef]
- Leonard, A.F.C.; Zhang, L.; Balfour, A.J.; Garside, R.; Hawkey, P.M.; Murray, A.K.; Ukoumunne, O.C.; Gaze, W.H. Exposure to and colonisation by antibiotic-resistant E. coli in UK coastal water users: Environmental surveillance, exposure assessment, and epidemiological study (Beach Bum Survey). Environ. Int. 2018, 114, 326–333. [Google Scholar] [CrossRef]
- Lyimo, B.; Buza, J.; Subbiah, M.; Smith, W.; Call, D.R. Comparison of antibiotic-resistant Escherichia coli obtained from drinking water sources in northern Tanzania: A cross-sectional study. BMC Microbiol. 2016, 16, 254. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Yu, D.; He, S.; Ye, H.; Zhang, L.; Wen, Y.; Zhang, W.; Shu, L.; Chen, S. Prevalence of antibiotic-resistant Escherichia coli in drinking water sources in Hangzhou City. Front. Microbiol. 2017, 8, 267763. [Google Scholar] [CrossRef] [Green Version]
- Kalakonda, S.P.; Parameswarreddy, G.; Skariah, E.N.; George, B.; Suchithra, T.V.; Sindhu, T.K. Treatment of Escherichia coli contaminated water with different pulse-powered NTP configurations and analysis for post treatment efficacy. Sci. Rep. 2022, 12, 20380. [Google Scholar] [CrossRef]
Variables | Frequency (n) | Percentages (%) |
---|---|---|
Sex | ||
Female | 195 | 58.7 |
Male | 137 | 41.3 |
Age (years) | ||
0–14 | 69 | 20.8 |
15–24 | 54 | 16.3 |
25–34 | 74 | 22.3 |
35–44 | 34 | 10.2 |
45–54 | 34 | 10.2 |
55 and above | 67 | 20.2 |
Specimen Type | ||
Blood | 12 | 3.6 |
Cerebrospinal fluid (CSF) | 11 | 3.3 |
Pus | 60 | 18.1 |
Stool | 2 | 0.6 |
Urine | 247 | 74.4 |
Origin of the sample (hospital department) | ||
Admission | 8 | 2.4 |
General adult | 52 | 15.7 |
Intensive care unit (ICU) | 21 | 6.3 |
Obstetrics and Gynaecology | 38 | 11.4 |
Outpatient Department (OPD) | 118 | 35.5 |
Paediatrics and Neonatology | 45 | 13.6 |
Surgery | 50 | 15.1 |
Environmental Samples | Frequency (n) | Percentages (%) |
---|---|---|
Chicken and eggs | 9 | 3.0 |
Fish | 29 | 9.7 |
Water | 35 | 11.7 |
Meat | 56 | 18.7 |
Fruits and Vegetables | 65 | 21.7 |
Medical Equipment | 106 | 35.3 |
Antibiotic Categories | Antibiotics | n (%) | ||
---|---|---|---|---|
Susceptible | Intermediate | Resistant | ||
Aminoglycosides | ||||
CN | 281 (84.6%) | 7 (2.1%) | 44 (13.3%) | |
Carbapenems | ETP | 326 (98.2%) | 4 (1.2%) | 2 (0.6%) |
IPM | 328 (98.8%) | 2 (0.6%) | 2 (0.6%) | |
Cephalosporins | KZ | 113 (34%) | 4 (1.2%) | 215 (64.8%) |
CXM | 117 (35.2%) | 8 (2.4%) | 207 (62.4%) | |
CAZ | 157 (47.3%) | 9 (2.7%) | 166 (50%) | |
CRO | 123 (37%) | - | 209 (63%) | |
FEP | 159 (47.9%) | - | 173 (52.1%) | |
Penicillin-derivatives | AMP | 55 (16.6%) | - | 277 (83.4%) |
AMC | 118 (35.5%) | 98 (29.6%) | 116 (34.9%) | |
Sulphonamides | SXT | 87 (26.2%) | - | 245 (73.8%) |
Furans | NIT | 298 (89.8%) | 18 (5.4%) | 16 (4.8%) |
Fluoroquinolones | CIP | 113 (34%) | 1 (0.3%) | 218 (65.7%) |
LEV | 119 (35.8%) | - | 213 (64.2%) |
Antibiotic Categories | Antibiotics | n (%) | ||
---|---|---|---|---|
Susceptible | Intermediate | Resistant | ||
Penicillin | AMP | 241 (80.3%) | - | 59 (19.7%) |
AMC | 238 (79.3%) | 9 (3%) | 53 (17.7%) | |
Cephalosporins | KZ | 215 (71.7%) | - | 85 (28.3%) |
CXM | 235 (78.3%) | 4 (1.3%) | 61 (20.4%) | |
CAZ | 243 (81%) | - | 57 (19%) | |
CRO | 241 (80.3%) | - | 59 (19.7%) | |
FEP | 246 (82%) | - | 54 (18%) | |
Carbapenems | ETP | 300 (100%) | - | - |
IPM | 300 (100%) | - | - | |
Aminoglycosides | CN | 244 (81.3%) | 2 (0.7%) | 54 (18%) |
Fluoroquinolones | CIP | 225 (75%) | - | 75 (25%) |
LEV | 200 (66.7%) | 8 (2.7%) | 92 (30.6%) | |
Furans | NIT | 237 (79%) | 4 (1.3%) | 59 (19.7%) |
Sulphonamides | SXT | - | - | 300 (100%) |
Variables | ESBL Positive | Total (n) | ||||
---|---|---|---|---|---|---|
Negative n (%) | Positive n (%) | OR | 95%CI | p-Value | ||
Clinical Samples | ||||||
Age (Years) | ||||||
0–14 | 33 (17.3%) | 36 (25.5%) | 69 | - | - | - |
15–24 | 35 (18.3%) | 19 (13.5%) | 54 | 0.498 | 0.239–1.034 | 0.0615 |
25–34 | 41 (21.5%) | 33 (23.4%) | 74 | 0.738 | 0.382–1.425 | 0.3652 |
35–44 | 20 (10.5%) | 14 (9.9%) | 34 | 0.642 | 0.280–1.472 | 0.2950 |
45–54 | 22 (11.5%) | 12 (8.5%) | 34 | 0.500 | 0.214–1.167 | 0.1088 |
55 and above | 40 (20.9%) | 27 (19.1%) | 67 | 0.619 | 0.314–1.220 | 0.1660 |
Sex | ||||||
Female | 118 (61.8%) | 77 (54.6%) | 195 | - | - | - |
Male | 73 (38.2%) | 64 (45.4%) | 137 | 0.744 | 0.479–1.158 | 0.1901 |
Specimen Type | ||||||
Blood | 2 (1%) | 10 (7.1%) | 12 | - | - | - |
Cerebrospinal fluid (CSF) | 8 (4.2%) | 3 (2.1%) | 11 | 0.075 | 0.010–0.563 | 0.0118 |
Pus | 12 (6.3%) | 48 (34%) | 60 | 0.800 | 0.154–4.144 | 0.7904 |
Urine | 169 (88.5%) | 80 (56.7%) | 249 | 0.095 | 0.021–0.448 | 0.0027 |
Origin of the sample (hospital department) | ||||||
Admission/Adult | 40 (20.9%) | 20 (14.2%) | 60 | - | - | - |
Intensive care unit (ICU) | 9 (4.7%) | 12 (8.5%) | 21 | 2.667 | 0.964–7.375 | 0.0588 |
Obstetrics and Gynecology | 22 (11.5%) | 16 (11.3%) | 38 | 0.987 | 0.510–1.910 | 0.9698 |
Outpatient Department (OPD) | 79 (41.4%) | 39 (27.7%) | 118 | 1.454 | 0.629–3.364 | 0.3811 |
Paediatrics and Neonatology | 23 (12%) | 22 (15.6%) | 45 | 1.913 | 0.865–4.230 | 0.1091 |
Surgery | 18 (9.4%) | 32 (22.7%) | 50 | 3.555 | 1.616–7.821 | 0.0061 |
Environmental Samples | ||||||
Fish | 23 (8.1%) | 6 (8.7%) | 29 | - | - | - |
Water | 22 (7.7%) | 13 (18.8%) | 35 | 2.265 | 0.732–7.014 | 0.156 |
Meat | 62 (21.8%) | 3 (4.3%) | 65 | 0.185 | 0.043–0.804 | 0.024 |
Fruits and Vegetables | 48 (16.8%) | 17 (24.6%) | 65 | 1.358 | 0.473–3.900 | 0.570 |
Medical Equipment | 130 (45.6%) | 30 (43.5%) | 160 | 0.885 | 0.331–2.362 | 0.807 |
Variables | B (SE) | p-Value | AOR | 95% CI for AOR | ||
---|---|---|---|---|---|---|
Lower | Upper | |||||
Sex | Male | −0.6270 (0.5805) | 0.280 | 0.534 | 0.171 | 1.666 |
Age | 15–24 | −0.4757 (0.7081) | 0.5017 | 0.621 | 0.155 | 2.489 |
25–35 | 1.2354 (0.7572) | 0.1028 | 3.440 | 0.780 | 15.173 | |
35–44 | 0.2458 (0.7653) | 0.7481 | 1.279 | 0.285 | 5.730 | |
45–54 | −1.7412 (0.6694) | 0.0093 | 0.175 | 0.047 | 0.651 | |
>55 | −0.9926 (0.5248) | 0.0586 | 0.371 | 0.132 | 1.037 | |
Sample | CSF | −2.9888 (1.0846) | 0.0059 | 0.050 | 0.005 | 0.363 |
Pus | −0.0740 (0.880) | 0.9336 | 0.929 | 0.123 | 0.4631 | |
Urine | −2.3720 (0.8148) | 0.0036 | 0.093 | 0.014 | 0.388 |
Variables | Total (n) | MDR | ||||
---|---|---|---|---|---|---|
Negative n (%) | MDR n (%) | XDR n (%) | Chi-Square | p-Value | ||
Clinical Samples | ||||||
Age (Years) | 22.900 | 0.004 | ||||
0–14 | 69 (20.3%) | 17 (14.9%) | 51 (24.9%) | 1 (7.7%) | ||
15–24 | 54 (16.3%) | 25 (21.9%) | 26 (12.7%) | 3 (23.1%) | ||
25–34 | 74 (22.3%) | 26 (22.8%) | 47 (22.9%) | 1 (7.7%) | ||
35–44 | 34 (10.2%) | 17 (14.9%) | 14 (6.8%) | 3 (23.1%) | ||
45–54 | 34 (10.2%) | 14 (12.3%) | 18 (8.8%) | 2 (15.4%) | ||
55 and above | 67 (20.2%) | 15 (13.2%) | 49 (23.9%) | 3 (23.1%) | ||
Sex | 11.083 | 0.004 | ||||
Female | 137 (41.3%) | 33 (28.9%) | 97 (47.3%) | 7 (53.8%) | ||
Male | 195 (58.7%) | 81 (71.1%) | 108 (52.7%) | 6 (46.2%) | ||
Specimen Type | 41.905 | <0.001 | ||||
Blood | 12 (3.6%) | 0 (0.0%) | 10 (4.9%) | 2 (15.4%) | ||
Cerebrospinal fluid (CSF) | 11 (3.3%) | 0 (0.0%) | 10 (4.9%) | 1 (7.7%) | ||
Pus | 60 (18.1%) | 8 (7.0%) | 49 (23.9%) | 3 (23.1%) | ||
Stool | 2 (0.6%) | 2 (1.8%) | 0 (0.0%) | 0 (0.0%) | ||
Urine | 247 (74.4%) | 104 (91.2%) | 136 (66.3%) | 7 (53.8%) | ||
Hospital Department | 25.464 | 0.005 | ||||
Admission | 8 (2.4%) | 6 (5.3%) | 2 (1.0%) | 0 (0.0%) | ||
General adult | 52 (15.7%) | 13 (11.4%) | 35 (17.1%) | 4 (30.8%) | ||
Intensive care unit (ICU) | 21 (6.3%) | 3 (2.6%) | 18 (8.8%) | 0 (0.0%) | ||
Obstetrics and Gynecology | 38 (11.4%) | 15 (13.2%) | 22 (10.7%) | 1 (7.7%) | ||
Outpatient Department (OPD) | 118 (35.5%) | 54 (47.4%) | 60 (29.3%) | 4 (30.8%) | ||
Paediatrics and Neonatology | 45 (13.6%) | 12 (10.5%) | 32 (15.6%) | 1 (7.7%) | ||
Surgery | 50 (15.1%) | 11 (9.6%) | 36 (17.6%) | 3 (23.1%) | ||
Environmental Samples | ||||||
Fish | 18 (8.8%) | 7 (5.7%) | 4 (14.8%) | 29 (8.2%) | 18.037 | 0.001 |
Water | 12 (5.9%) | 17 (13.9%) | 6 (22.2%) | 35 (9.9%) | ||
Meat | 46 (22.4%) | 16 (13.1%) | 3 (11.1%) | 65 (18.4%) | ||
Fruits and Vegetables | 37 (18.0%) | 16 (13.1%) | 12 (44.4%) | 65 (18.4%) | ||
Medical Equipment | 92 (44.9%) | 66 (54.1%) | 2 (7.4%) | 160 (45.2%) |
Variables | p-Value | AOR | 95% CI for AOR | |
---|---|---|---|---|
Lower | Upper | |||
Clinical | ||||
Pus | 0.001 | 4.6 | 1.9 | 11.3 |
Male sex | 0.010 | 2.1 | 1.2 | 3.9 |
Environment | ||||
Water | 0.019 | 2.6 | 1.2 | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasanga, M.; Kwenda, G.; Wu, J.; Kasanga, M.; Mwikisa, M.J.; Chanda, R.; Mupila, Z.; Yankonde, B.; Sikazwe, M.; Mwila, E.; et al. Antimicrobial Resistance Patterns and Risk Factors Associated with ESBL-Producing and MDR Escherichia coli in Hospital and Environmental Settings in Lusaka, Zambia: Implications for One Health, Antimicrobial Stewardship and Surveillance Systems. Microorganisms 2023, 11, 1951. https://doi.org/10.3390/microorganisms11081951
Kasanga M, Kwenda G, Wu J, Kasanga M, Mwikisa MJ, Chanda R, Mupila Z, Yankonde B, Sikazwe M, Mwila E, et al. Antimicrobial Resistance Patterns and Risk Factors Associated with ESBL-Producing and MDR Escherichia coli in Hospital and Environmental Settings in Lusaka, Zambia: Implications for One Health, Antimicrobial Stewardship and Surveillance Systems. Microorganisms. 2023; 11(8):1951. https://doi.org/10.3390/microorganisms11081951
Chicago/Turabian StyleKasanga, Maisa, Geoffrey Kwenda, Jian Wu, Maika Kasanga, Mark J. Mwikisa, Raphael Chanda, Zachariah Mupila, Baron Yankonde, Mutemwa Sikazwe, Enock Mwila, and et al. 2023. "Antimicrobial Resistance Patterns and Risk Factors Associated with ESBL-Producing and MDR Escherichia coli in Hospital and Environmental Settings in Lusaka, Zambia: Implications for One Health, Antimicrobial Stewardship and Surveillance Systems" Microorganisms 11, no. 8: 1951. https://doi.org/10.3390/microorganisms11081951
APA StyleKasanga, M., Kwenda, G., Wu, J., Kasanga, M., Mwikisa, M. J., Chanda, R., Mupila, Z., Yankonde, B., Sikazwe, M., Mwila, E., Shempela, D. M., Solochi, B. B., Phiri, C., Mudenda, S., & Chanda, D. (2023). Antimicrobial Resistance Patterns and Risk Factors Associated with ESBL-Producing and MDR Escherichia coli in Hospital and Environmental Settings in Lusaka, Zambia: Implications for One Health, Antimicrobial Stewardship and Surveillance Systems. Microorganisms, 11(8), 1951. https://doi.org/10.3390/microorganisms11081951