Plasmodium falciparum Development from Gametocyte to Oocyst: Insight from Functional Studies
Abstract
:1. Introduction
2. Plasmodium Genome Organization and General Mechanism for Gene Expression Regulation
2.1. Plasmodium Genome Organization
2.2. Epigenetic Regulation of Gene Expression
2.3. Transcriptional Regulation of Gene Expression
3. Gametocyte Development
Mechanisms Underlying Sexual Conversion: from Asexual Forms to Gametocyte Stages | References | Studied Species |
---|---|---|
1. Triggers | ||
Environmental, metabolic, host, and parasite factors | ||
● Lysophosphatidylcholine | Brancucci N.M.B et al., 2017 [98]; Abdi A. et al., 2023 [99] | P.f |
● Host immune response | Bruce M.C. et al., 1990 [100]; Nixon C.P. et al., 2018 [101]; | P.f |
● Drugs | Barkakaty B.N. et al., 1988 [97]; Buckling A. et al., 1999 [96] | P.f |
● Parasite factors | Ayanful-Torgby R. et al., 2016 [102]; Chawla J. et al., 2023 [103] | P.f |
2. Genome organization | ||
| Bunnik J.L. et al., 2018 [29] | P.f |
3. Transcriptional regulation | ||
| Sinha A. et al., 2014 [24]; Josling G.A. et al., 2020 [104] | P.f and P.b |
| Li Z. et al., 2021 [109] | P.y |
4. Epigenetic regulation | ||
❖ Before commitment | ||
| Jiang L. et al., 2013 [51]; von Gruning H. et al., 2022 [105] | P.f |
| Coleman B.I. et al., 2014 [56] | P.f |
| Flueck C. et al., 2009 [61]; Shang X. et al., 2021 [107]; von Gruning H. et al., 2022 [105]; | P.f |
| Filarsky M. et al., 2018 [106] | P.f |
❖ Early-stage gametocytes (stage 1 to stage 4) | ||
| Hirota T. et al., 2005 [65] | - |
| von Gruning H. et al., 2022 [105]; | P.f |
| Miao J. et al., 2010 [66]; Miao J. et al., 2021 [67] | P.f |
| Filarsky M. et al., 2018 [106] | P.f |
GAPS: | ||
| ||
| ||
|
4. Gamete Development
4.1. Gene Expression Regulation Controlling Gametogenesis
4.2. Signaling Cascade Controlling Gametogenesis
Mechanisms Underlying the Differentiation from Mature Stage V Gametocytes to Gametes | References | Studied Species |
---|---|---|
1. Gene expression characteristics | ||
| Ngwa C.J. et al., 2013 [114] | P.f |
| Invergo B.M. et al., 2017 [119] | P.b |
2. Triggers | ||
| Billker O. et al., 1997 [124]; | P.b |
| Garcia G.E. et al., 1998 [125] | P.f and P.g |
3. Signaling pathway | ||
| Mc Robert L. et al., 2008 [127]; Brochet M. et al., 2021 [128] | P.f, P.b, P.y |
| Wang P.P. et al., 2022 [132] | P.b |
4. Female gametogenesis | ||
| Mair G.R. et al., 2010 [116]; Tarique M. et al., 2013 [118]; Guerreiro A. et al., 2014 [117]; | P.b and P.f |
| Sebastian S. et al., 2012 [138] | P.b |
| Invergo B.M. et al., 2017 [119] | P.b |
5. Male gametogenesis | ||
| Billker O. et al., 2004 [120]; Invergo B.M. et al., 2017 [119] | P.b |
| Invergo B.M. et al., 2017 [119]; Kumar S. et al., 2021 [140] | P.b and P.f |
| Guttery D.C. et al., 2012 [141]; Invergo B.M. et al., 2017 [119]; Wall R.J. et al., 2018 [142] | P.b |
| Dorin D. et al., 2001 [150]; Lye Y.M. et al., 2006 [151]; Straschil U. et al., 2010 [145]; Deligianni E. et al., 2011 [144]; Marques S.R. et al., 2015 [146]; Invergo B.M. et al., 2017 [119] | P.f and P.b |
| Guttery D.C. et al., 2014 [123] | P.b |
| Invergo B.M. et al., 2017 [119] | P.b |
GAPS: | ||
| ||
| ||
|
5. Zygote to Ookinete Development
5.1. Gamete Fusion and Zygote Formation
Mechanisms Underlying Fertilization | References | Studied Species |
---|---|---|
1. Characteristics | ||
Gamete fusion is mediated by stage- and sex-specific proteins synthesized in the respective gametes before the fusion event | ||
2. Proteins mediating fusion | ||
| Rener J. et al., 1983 [157]; van Dijk, M.R. et al., 2001 [158]; Williamson K.C. et al., 2003 [156] | P.f. and P.b. |
| Lui Y. et al., 2008 [161] | P.b. |
GAPS: | ||
| ||
|
5.2. Molecular and Genetic Mechanisms of Fertilization
5.3. Formation and Maturation of Ookinete
Mechanisms Underlying Zygote to Ookinete Formation | References | Studied Species |
---|---|---|
1. Characteristics | ||
Zygote development and differentiation into ookinete require the transcriptional activation of several maternal silenced mRNAs in the zygote | Akinosoglou K.A. et al., 2015 [18]; Ukegbu C.V. et al., 2015 [168] | P.b. |
2. Gene expression mechanisms | ||
| Akinosoglou K.A. et al., 2015 [18] | P.b. |
| Janse C.J. et al., 1986 [175] | P.b. |
3. Transcriptional activation of maternal mRNAs control zygote morphological changes | ||
| Kono M. et al., 2012 [4]; Volkmann K. et al., 2012 [170]; Poulin B. et al., 2013 [170] | P.b. |
| Frenal K. et al., 2013 [165]; Kaneko I. et al., 2015 [77] | P.b. |
| Kono M. et al., 2012 [4]; Volkmann K. et al., 2012 [169]; Poulin B. et al., 2013 [170] | P.b. |
| ||
| Dorin-Semblat D. et al., 2008 [171]; Tewari R. et al., 2010 [147] | P.f. and P.b. |
| Tewari R. et al., 2010 [147] | P.b. |
| Guttery D.S. et al., 2012 [173] | P.b. |
| Wetzel J. et al., 2015 [172]; Santos J.M. et al., 2015 [164] | P.f. and P.b. |
4. Regulation of zygote-specific gene expression | ||
| Yuda M. et al., 2009 [174]; Kaneko I. et al., 2015 [77] | P.b. |
5. Meiosis and cell cycle progression regulators | ||
| Reininger L. et al., 2005 [153]; Reininger L. et al., 2009 [152] | P.f. and P.b. |
6. Ookinete maturation | ||
| Ishino T. et al., 2006 [181]; Moon R.W. et al., 2009 [180]; | P.b. |
| Dessens J.T et al., 1999 [183]; Vinetz J.M. et al., 2000 [188]; Yuda M. et al., 2001 [186]; Dessens J.T. et al., 2003 [185]; Kadota K. et al., 2004 [184]; Kariu t. et al., 2006 [187]; Viswanath V.K. et al. 2021 [189] | P.b., P.g |
7. Ookinete differentiation | ||
| Kaslow D.C. et al., 1994 [193] | - |
| P.b., P.g | |
GAPS: | ||
| ||
| ||
| ||
|
6. Ookinete to Oocyst Development
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. World Malaria Report 2022; 9789240064898; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Alonso, P.L.; Brown, G.; Arevalo-Herrera, M.; Binka, F.; Chitnis, C.; Collins, F.; Doumbo, O.K.; Greenwood, B.; Hall, B.F.; Levine, M.M.; et al. A research agenda to underpin malaria eradication. PLoS Med. 2011, 8, e1000406. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, T.; Paton, D.G.; Catteruccia, F.; Reece, S.E. Targeting malaria parasites inside mosquitoes: Ecoevolutionary consequences. Trends Parasitol. 2022, 38, 1031–1040. [Google Scholar] [CrossRef] [PubMed]
- Aingaran, M.; Zhang, R.; Law, S.K.; Peng, Z.; Undisz, A.; Meyer, E.; Diez-Silva, M.; Burke, T.A.; Spielmann, T.; Lim, C.T.; et al. Host cell deformability is linked to transmission in the human malaria parasite Plasmodium falciparum. Cell. Microbiol. 2012, 14, 983–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kono, M.; Herrmann, S.; Loughran, N.B.; Cabrera, A.; Engelberg, K.; Lehmann, C.; Sinha, D.; Prinz, B.; Ruch, U.; Heussler, V.; et al. Evolution and architecture of the inner membrane complex in asexual and sexual stages of the malaria parasite. Mol. Biol. Evol. 2012, 29, 2113–2132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aikawa, M. Plasmodium: The fine structure of malarial parasites. Exp. Parasitol. 1971, 30, 284–320. [Google Scholar] [CrossRef]
- Beri, D.; Balan, B.; Tatu, U. Commit, hide and escape: The story of Plasmodium gametocytes. Parasitology 2018, 145, 1772–1782. [Google Scholar] [CrossRef]
- Lasonder, E.; Rijpma, S.R.; van Schaijk, B.C.; Hoeijmakers, W.A.; Kensche, P.R.; Gresnigt, M.S.; Italiaander, A.; Vos, M.W.; Woestenenk, R.; Bousema, T.; et al. Integrated transcriptomic and proteomic analyses of P. falciparum gametocytes: Molecular insight into sex-specific processes and translational repression. Nucleic Acids Res. 2016, 44, 6087–6101. [Google Scholar] [CrossRef] [Green Version]
- Silvestrini, F.; Bozdech, Z.; Lanfrancotti, A.; Di Giulio, E.; Bultrini, E.; Picci, L.; Derisi, J.L.; Pizzi, E.; Alano, P. Genome-wide identification of genes upregulated at the onset of gametocytogenesis in Plasmodium falciparum. Mol. Biochem. Parasitol. 2005, 143, 100–110. [Google Scholar] [CrossRef] [Green Version]
- Yahiya, S.; Jordan, S.; Smith, H.X.; Gaboriau, D.C.A.; Famodimu, M.T.; Dahalan, F.A.; Churchyard, A.; Ashdown, G.W.; Baum, J. Live-cell fluorescence imaging of microgametogenesis in the human malaria parasite Plasmodium falciparum. PLoS Pathog. 2022, 18, e1010276. [Google Scholar] [CrossRef]
- Bannister, L.H.; Sinden, R.E. New knowledge of parasite morphology. Br. Med. Bull. 1982, 38, 141–145. [Google Scholar] [CrossRef]
- Sinden, R.E.; Strong, K. An ultrastructural study of the sporogonic development of Plasmodium falciparum in Anopheles gambiae. Trans. R. Soc. Trop. Med. Hyg. 1978, 72, 477–491. [Google Scholar] [CrossRef]
- Vlachou, D.; Zimmermann, T.; Cantera, R.; Janse, C.J.; Waters, A.P.; Kafatos, F.C. Real-time, in vivo analysis of malaria ookinete locomotion and mosquito midgut invasion. Cell. Microbiol. 2004, 6, 671–685. [Google Scholar] [CrossRef]
- Yoshikawa, Y.; Kimura, S.; Soga, A.; Sugiyama, M.; Ueno, A.; Kondo, H.; Zhu, Z.; Ochiai, K.; Nakayama, K.; Hakozaki, J.; et al. Plasmodium berghei Brca2 is required for normal development and differentiation in mice and mosquitoes. Parasites Vectors 2022, 15, 244. [Google Scholar] [CrossRef]
- Howick, V.M.; Russell, A.J.C.; Andrews, T.; Heaton, H.; Reid, A.J.; Natarajan, K.; Butungi, H.; Metcalf, T.; Verzier, L.H.; Rayner, J.C.; et al. The Malaria Cell Atlas: Single parasite transcriptomes across the complete Plasmodium life cycle. Science 2019, 365, eaaw2619. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.M.; Batugedara, G.; Lee, M.; Prudhomme, J.; Bunnik, E.M.; Le Roch, K.G. Nascent RNA sequencing reveals mechanisms of gene regulation in the human malaria parasite Plasmodium falciparum. Nucleic Acids Res. 2017, 45, 7825–7840. [Google Scholar] [CrossRef] [Green Version]
- Bozdech, Z.; Llinás, M.; Pulliam, B.L.; Wong, E.D.; Zhu, J.; DeRisi, J.L. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 2003, 1, E5. [Google Scholar] [CrossRef] [Green Version]
- Walzer, K.A.; Kubicki, D.M.; Tang, X.; Chi, J.T. Single-cell analysis reveals distinct gene expression and heterogeneity in male and female Plasmodium falciparum gametocytes. mSphere 2018, 3, e00130-18. [Google Scholar] [CrossRef] [Green Version]
- Akinosoglou, K.A.; Bushell, E.S.; Ukegbu, C.V.; Schlegelmilch, T.; Cho, J.S.; Redmond, S.; Sala, K.; Christophides, G.K.; Vlachou, D. Characterization of Plasmodium developmental transcriptomes in Anopheles gambiae midgut reveals novel regulators of malaria transmission. Cell. Microbiol. 2015, 17, 254–268. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, J.; Zhu, L.; Nayak, S.; Stoklasa, M.; Bozdech, Z. Stochastic expression of invasion genes in Plasmodium falciparum schizonts. Nat. Commun. 2022, 13, 3004. [Google Scholar] [CrossRef]
- Miao, J.; Chen, Z.; Wang, Z.; Shrestha, S.; Li, X.; Li, R.; Cui, L. Sex-Specific Biology of the Human Malaria Parasite Revealed from the Proteomes of Mature Male and Female Gametocytes. Mol. Cell. Proteom. 2017, 16, 537–551. [Google Scholar] [CrossRef] [Green Version]
- Johnson, N.; Philip, N. Beyond phosphorylation: Putative roles of post-translational modifications in Plasmodium sexual stages. Mol. Biochem. Parasitol. 2021, 245, 111406. [Google Scholar] [CrossRef] [PubMed]
- Real, E.; Howick, V.M.; Dahalan, F.A.; Witmer, K.; Cudini, J.; Andradi-Brown, C.; Blight, J.; Davidson, M.S.; Dogga, S.K.; Reid, A.J.; et al. A single-cell atlas of Plasmodium falciparum transmission through the mosquito. Nat. Commun. 2021, 12, 3196. [Google Scholar] [CrossRef] [PubMed]
- Kafsack, B.F.; Rovira-Graells, N.; Clark, T.G.; Bancells, C.; Crowley, V.M.; Campino, S.G.; Williams, A.E.; Drought, L.G.; Kwiatkowski, D.P.; Baker, D.A.; et al. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 2014, 507, 248–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, A.; Hughes, K.R.; Modrzynska, K.K.; Otto, T.D.; Pfander, C.; Dickens, N.J.; Religa, A.A.; Bushell, E.; Graham, A.L.; Cameron, R.; et al. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature 2014, 507, 253–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, M.J.; Hall, N.; Fung, E.; White, O.; Berriman, M.; Hyman, R.W.; Carlton, J.M.; Pain, A.; Nelson, K.E.; Bowman, S.; et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 2002, 419, 498–511. [Google Scholar] [CrossRef] [Green Version]
- Hall, N.; Karras, M.; Raine, J.D.; Carlton, J.M.; Kooij, T.W.A.; Berriman, M.; Florens, L.; Janssen, C.S.; Pain, A.; Christophides, G.K.; et al. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 2005, 307, 82–86. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Liang, J.; Wang, L.; Qin, N.; Zhao, Y.; Zhao, G. In-depth comparative analysis of malaria parasite genomes reveals protein-coding genes linked to human disease in Plasmodium falciparum genome. BMC Genom. 2018, 19, 312. [Google Scholar] [CrossRef] [Green Version]
- Escalante, A.A.; Cepeda, A.S.; Pacheco, M.A. Why Plasmodium vivax and Plasmodium falciparum are so different? A tale of two clades and their species diversities. Malar. J. 2022, 21, 139. [Google Scholar] [CrossRef]
- Bunnik, E.M.; Venkat, A.; Shao, J.; McGovern, K.E.; Batugedara, G.; Worth, D.; Prudhomme, J.; Lapp, S.A.; Andolina, C.; Ross, L.S.; et al. Comparative 3D genome organization in apicomplexan parasites. Proc. Natl. Acad. Sci. USA 2019, 116, 3183–3192. [Google Scholar] [CrossRef] [Green Version]
- Oresegun, D.R.; Thorpe, P.; Benavente, E.D.; Campino, S.; Muh, F.; Moon, R.W.; Clark, T.G.; Cox-Singh, J. De novo assembly of Plasmodium knowlesi genomes from clinical samples explains the counterintuitive intrachromosomal organization of variant SICAvar and kir multiple gene family members. Front. Genet. 2022, 13, 855052. [Google Scholar] [CrossRef]
- Batugedara, G.; Le Roch, K.G. Unraveling the 3D genome of human malaria parasites. Semin. Cell. Dev. Biol. 2019, 90, 144–153. [Google Scholar] [CrossRef]
- Swearingen, K.E.; Lindner, S.E. Plasmodium parasites viewed through proteomics. Trends Parasitol. 2018, 34, 945–960. [Google Scholar] [CrossRef]
- Lee, H.J.; Georgiadou, A.; Otto, T.D.; Levin, M.; Coin, L.J.; Conway, D.J.; Cunnington, A.J. Transcriptomic Studies of Malaria: A Paradigm for Investigation of Systemic Host-Pathogen Interactions. Microbiol. Mol. Biol. Rev. 2018, 82, e00071-17. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Fan, Y.; He, X.; Wei, G.; Wen, Y.; Zhao, Y.; Shi, M.; Wei, J.; Chen, H.; Han, J.; et al. The cryptic unstable transcripts are associated with developmentally regulated gene expression in blood-stage Plasmodium falciparum. RNA Biol. 2020, 17, 828–842. [Google Scholar] [CrossRef]
- Liu, Z.; Miao, J.; Cui, L. Gametocytogenesis in malaria parasite: Commitment, development and regulation. Future Microbiol. 2011, 6, 1351–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinden, R.E. Malaria, sexual development and transmission: Retrospect and prospect. Parasitology 2009, 136, 1427–1434. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Suryanshu; Kanika; Singh, G.; Dubey, A.; Chaitanya, R.K. Plasmodium’s journey through the Anopheles mosquito: A comprehensive review. Biochimie 2021, 181, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Usui, M.; Williamson, K.C. Stressed out about Plasmodium falciparum gametocytogenesis. Front. Cell. Infect. Microbiol. 2021, 11, 790067. [Google Scholar] [CrossRef]
- Kensche, P.R.; Hoeijmakers, W.A.; Toenhake, C.G.; Bras, M.; Chappell, L.; Berriman, M.; Bartfai, R. The nucleosome landscape of Plasmodium falciparum reveals chromatin architecture and dynamics of regulatory sequences. Nucleic Acids Res. 2016, 44, 2110–2124. [Google Scholar] [CrossRef] [Green Version]
- Silberhorn, E.; Schwartz, U.; Loffler, P.; Schmitz, S.; Symelka, A.; de Koning-Ward, T.; Merkl, R.; Langst, G. Plasmodium falciparum nucleosomes exhibit reduced stability and lost sequence dependent nucleosome positioning. PLoS Pathog. 2016, 12, e1006080. [Google Scholar] [CrossRef] [Green Version]
- Lanzer, M.; Wertheimer, S.P.; de Bruin, D.; Ravetch, J.V. Chromatin structure determines the sites of chromosome breakages in Plasmodium falciparum. Nucleic Acids Res. 1994, 22, 3099–3103. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, J.L.; Tena, J.J.; Bancells, C.; Cortes, A.; Gomez-Skarmeta, J.L.; Gomez-Diaz, E. Characterization of the accessible genome in the human malaria parasite Plasmodium falciparum. Nucleic Acids Res. 2018, 46, 9414–9431. [Google Scholar] [CrossRef] [Green Version]
- Bunnik, E.M.; Cook, K.B.; Varoquaux, N.; Batugedara, G.; Prudhomme, J.; Cort, A.; Shi, L.; Andolina, C.; Ross, L.S.; Brady, D.; et al. Changes in genome organization of parasite-specific gene families during the Plasmodium transmission stages. Nat. Commun. 2018, 9, 1910. [Google Scholar] [CrossRef] [Green Version]
- Connacher, J.; von Gruning, H.; Birkholtz, L. Histone Modification Landscapes as a Roadmap for Malaria Parasite Development. Front. Cell. Dev. Biol. 2022, 10, 848797. [Google Scholar] [CrossRef]
- Coetzee, N.; Sidoli, S.; van Biljon, R.; Painter, H.; Llinas, M.; Garcia, B.A.; Birkholtz, L.M. Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasites. Sci. Rep. 2017, 7, 607. [Google Scholar] [CrossRef] [Green Version]
- Witmer, K.; Fraschka, S.A.; Vlachou, D.; Bartfai, R.; Christophides, G.K. An epigenetic map of malaria parasite development from host to vector. Sci. Rep. 2020, 10, 6354. [Google Scholar] [CrossRef] [Green Version]
- Toenhake, C.G.; Fraschka, S.A.; Vijayabaskar, M.S.; Westhead, D.R.; van Heeringen, S.J.; Bartfai, R. Chromatin Accessibility-Based Characterization of the Gene Regulatory Network Underlying Plasmodium falciparum Blood-Stage Development. Cell Host Microbe 2018, 23, 557–569. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Chisholm, S.A.; Yeoh, L.M.; Gilson, P.R.; Papenfuss, A.T.; Day, K.P.; Petter, M.; Duffy, M.F. Histone modifications associated with gene expression and genome accessibility are dynamically enriched at Plasmodium falciparum regulatory sequences. Epigenet. Chromatin 2020, 13, 50. [Google Scholar] [CrossRef]
- Gupta, A.P.; Chin, W.H.; Zhu, L.; Mok, S.; Luah, Y.H.; Lim, E.H.; Bozdech, Z. Dynamic epigenetic regulation of gene expression during the life cycle of malaria parasite Plasmodium falciparum. PLoS Pathog. 2013, 9, e1003170. [Google Scholar] [CrossRef]
- Lopez-Rubio, J.J.; Mancio-Silva, L.; Scherf, A. Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host Microbe 2009, 5, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Mu, J.; Zhang, Q.; Ni, T.; Srinivasan, P.; Rayavara, K.; Yang, W.; Turner, L.; Lavstsen, T.; Theander, T.G.; et al. PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum. Nature 2013, 499, 223–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salcedo-Amaya, A.M.; van Driel, M.A.; Alako, B.T.; Trelle, M.B.; van den Elzen, A.M.G.; Cohen, A.M.; Janssen-Megens, E.M.; van de Vegte-Bolmer, M.; Selzer, R.R.; Iniguez, A.L.; et al. Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 2009, 106, 9655–9660. [Google Scholar] [CrossRef] [PubMed]
- Fraschka, S.A.; Filarsky, M.; Hoo, R.; Niederwieser, I.; Yam, X.Y.; Brancucci, N.M.B.; Mohring, F.; Mushunje, A.T.; Huang, X.; Christensen, P.R.; et al. Comparative Heterochromatin Profiling Reveals Conserved and Unique Epigenome Signatures Linked to Adaptation and Development of Malaria Parasites. Cell Host Microbe 2018, 23, 407–420.e408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanyal, A.; Rawat, M.; Gurung, P.; Choubey, D.; Anamika, K.; Karmodiya, K. Genome-wide survey and phylogenetic analysis of histone acetyltransferases and histone deacetylases of Plasmodium falciparum. FEBS J. 2018, 285, 1767–1782. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Fan, Q.; Cui, L.; Miao, J. Histone lysine methyltransferases and demethylases in Plasmodium falciparum. Int. J. Parasitol. 2008, 38, 1083–1097. [Google Scholar] [CrossRef] [Green Version]
- Coleman, B.I.; Skillman, K.M.; Jiang, R.H.Y.; Childs, L.M.; Altenhofen, L.M.; Ganter, M.; Leung, Y.; Goldowitz, I.; Kafsack, B.F.C.; Marti, M.; et al. A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. Cell Host Microbe 2014, 16, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Tonkin, C.J.; Carret, C.K.; Duraisingh, M.T.; Voss, T.S.; Ralph, S.A.; Hommel, M.; Duffy, M.F.; Silva, L.M.; Scherf, A.; Ivens, A.; et al. Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum. PLoS Biol. 2009, 7, e84. [Google Scholar] [CrossRef] [Green Version]
- Volz, J.C.; Bartfai, R.; Petter, M.; Langer, C.; Josling, G.A.; Tsuboi, T.; Schwach, F.; Baum, J.; Rayner, J.C.; Stunnenberg, H.G.; et al. PfSET10, a Plasmodium falciparum methyltransferase, maintains the active var gene in a poised state during parasite division. Cell Host Microbe 2012, 11, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Rubio, J.P.; Thompson, J.K.; Cowman, A.F. The var genes of Plasmodium falciparum are located in the subtelomeric region of most chromosomes. EMBO J. 1996, 15, 4069–4077. [Google Scholar] [CrossRef]
- Su, X.Z.; Heatwole, V.M.; Wertheimer, S.P.; Guinet, F.; Herrfeldt, J.A.; Peterson, D.S.; Ravetch, J.A.; Wellems, T.E. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 1995, 82, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Flueck, C.; Bartfai, R.; Volz, J.; Niederwieser, I.; Salcedo-Amaya, A.M.; Alako, B.T.; Ehlgen, F.; Ralph, S.A.; Cowman, A.F.; Bozdech, Z.; et al. Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors. PLoS Pathog. 2009, 5, e1000569. [Google Scholar] [CrossRef] [Green Version]
- Perez-Toledo, K.; Rojas-Meza, A.P.; Mancio-Silva, L.; Hernandez-Cuevas, N.A.; Delgadillo, D.M.; Vargas, M.; Martinez-Calvillo, S.; Scherf, A.; Hernandez-Rivas, R. Plasmodium falciparum heterochromatin protein 1 binds to tri-methylated histone 3 lysine 9 and is linked to mutually exclusive expression of var genes. Nucleic Acids Res. 2009, 37, 2596–2606. [Google Scholar] [CrossRef]
- Josling, G.A.; Petter, M.; Oehring, S.C.; Gupta, A.P.; Dietz, O.; Wilson, D.W.; Schubert, T.; Langst, G.; Gilson, P.R.; Crabb, B.S.; et al. A Plasmodium falciparum Bromodomain Protein Regulates Invasion Gene Expression. Cell Host Microbe 2015, 17, 741–751. [Google Scholar] [CrossRef] [Green Version]
- Quinn, J.E.; Jeninga, M.D.; Limm, K.; Pareek, K.; Meissgeier, T.; Bachmann, A.; Duffy, M.F.; Petter, M. The Putative Bromodomain Protein PfBDP7 of the Human Malaria Parasite Plasmodium falciparum Cooperates with PfBDP1 in the Silencing of Variant Surface Antigen Expression. Front. Cell. Dev. Biol. 2022, 10, 816558. [Google Scholar] [CrossRef]
- Hirota, T.; Lipp, J.J.; Toh, B.H.; Peters, J.M. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 2005, 438, 1176–1180. [Google Scholar] [CrossRef]
- Miao, J.; Fan, Q.; Cui, L.; Li, X.; Wang, H.; Ning, G.; Reese, J.C.; Cui, L. The MYST family histone acetyltransferase regulates gene expression and cell cycle in malaria parasite Plasmodium falciparum. Mol. Microbiol. 2010, 78, 883–902. [Google Scholar] [CrossRef] [Green Version]
- Miao, J.; Wang, C.; Lucky, A.B.; Liang, X.; Min, H.; Adapa, S.R.; Jiang, R.; Kim, K.; Cui, L. A unique GCN5 histone acetyltransferase complex controls erythrocyte invasion and virulence in the malaria parasite Plasmodium falciparum. PLoS Pathog. 2021, 17, e1009351. [Google Scholar] [CrossRef]
- Coetzee, N.; von Gruning, H.; Opperman, D.; van der Watt, M.; Reader, J.; Birkholtz, L.M. Epigenetic inhibitors target multiple stages of Plasmodium falciparum parasites. Sci. Rep. 2020, 10, 2355. [Google Scholar] [CrossRef] [Green Version]
- Brogi, S.; Ramalho, T.C.; Kuca, K.; Medina-Franco, J.L.; Valko, M. In silico Methods for Drug Design and Discovery. Front. Chem. 2020, 8, 612. [Google Scholar] [CrossRef]
- Callebaut, I.; Prat, K.; Meurice, E.; Mornon, J.P.; Tomavo, S. Prediction of the general transcription factors associated with RNA polymerase II in Plasmodium falciparum: Conserved features and differences relative to other eukaryotes. BMC Genom. 2005, 6, 100. [Google Scholar] [CrossRef] [Green Version]
- Coulson, R.M.; Hall, N.; Ouzounis, C.A. Comparative genomics of transcriptional control in the human malaria parasite Plasmodium falciparum. Genome Res. 2004, 14, 1548–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balaji, S.; Babu, M.M.; Iyer, L.M.; Aravind, L. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Res. 2005, 33, 3994–4006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Li, Z.; Cui, H.; Jiang, Y.; Yang, Z.; Wang, X.; Gao, H.; Liu, C.; Zhang, S.; Su, X.Z.; et al. Systematic CRISPR-Cas9-mediated modifications of Plasmodium yoelii ApiAP2 genes reveal functional insights into parasite development. MBio 2017, 8, e01986-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, T.L.; De Silva, E.K.; Olszewski, K.L.; Elemento, O.; Llinas, M. Identification and genome-wide prediction of DNA binding specificities for the ApiAP2 family of regulators from the malaria parasite. PLoS Pathog. 2010, 6, e1001165. [Google Scholar] [CrossRef]
- Helm, S.; Lehmann, C.; Nagel, A.; Stanway, R.R.; Horstmann, S.; Llinas, M.; Heussler, V.T. Identification and characterization of a liver stage-specific promoter region of the malaria parasite Plasmodium. PLoS ONE 2010, 5, e13653. [Google Scholar] [CrossRef] [Green Version]
- Modrzynska, K.; Pfander, C.; Chappell, L.; Yu, L.; Suarez, C.; Dundas, K.; Gomes, A.R.; Goulding, D.; Rayner, J.C.; Choudhary, J.; et al. A Knockout Screen of ApiAP2 Genes Reveals Networks of Interacting Transcriptional Regulators Controlling the Plasmodium Life Cycle. Cell Host Microbe 2017, 21, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, I.; Iwanaga, S.; Kato, T.; Kobayashi, I.; Yuda, M. Genome-Wide Identification of the Target Genes of AP2-O, a Plasmodium AP2-Family Transcription Factor. PLoS Pathog. 2015, 11, e1004905. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.M.; Josling, G.; Ross, P.; Joshi, P.; Orchard, L.; Campbell, T.; Schieler, A.; Cristea, I.M.; Llinas, M. Red Blood Cell Invasion by the Malaria Parasite is Coordinated by the PfAP2-I Transcription Factor. Cell Host Microbe 2017, 21, 731–741.e710. [Google Scholar] [CrossRef] [Green Version]
- Martins, R.M.; Macpherson, C.R.; Claes, A.; Scheidig-Benatar, C.; Sakamoto, H.; Yam, X.Y.; Preiser, P.; Goel, S.; Wahlgren, M.; Sismeiro, O.; et al. An ApiAP2 member regulates expression of clonally variant genes of the human malaria parasite Plasmodium falciparum. Sci. Rep. 2017, 7, 14042. [Google Scholar] [CrossRef] [Green Version]
- Sierra-Miranda, M.; Vembar, S.S.; Delgadillo, D.M.; Avila-Lopez, P.A.; Herrera-Solorio, A.M.; Lozano Amado, D.; Vargas, M.; Hernandez-Rivas, R. PfAP2Tel, harbouring a non-canonical DNA-binding AP2 domain, binds to Plasmodium falciparum telomeres. Cell. Microbiol. 2017, 19, e12742. [Google Scholar] [CrossRef] [Green Version]
- Flueck, C.; Bartfai, R.; Niederwieser, I.; Witmer, K.; Alako, B.T.; Moes, S.; Bozdech, Z.; Jenoe, P.; Stunnenberg, H.G.; Voss, T.S. A major role for the Plasmodium falciparum ApiAP2 protein PfSIP2 in chromosome end biology. PLoS Pathog. 2010, 6, e1000784. [Google Scholar] [CrossRef] [Green Version]
- Gissot, M.; Briquet, S.; Refour, P.; Boschet, C.; Vaquero, C. PfMyb1, a Plasmodium falciparum transcription factor, is required for intra-erythrocytic growth and controls key genes for cell cycle regulation. J. Mol. Biol. 2005, 346, 29–42. [Google Scholar] [CrossRef]
- Komaki-Yasuda, K.; Okuwaki, M.; Nagata, K.; Kawazu, S.; Kano, S. Identification of a novel and unique transcription factor in the intraerythrocytic stage of Plasmodium falciparum. PLoS ONE 2013, 8, e74701. [Google Scholar] [CrossRef]
- Lima, W.R.; Martins, D.C.; Parreira, K.S.; Scarpelli, P.; Santos de Moraes, M.; Topalis, P.; Hashimoto, R.F.; Garcia, C.R.S. Genome-wide analysis of the human malaria parasite Plasmodium falciparum transcription factor PfNF-YB shows interaction with a CCAAT motif. Oncotarget 2017, 8, 113987–114001. [Google Scholar] [CrossRef]
- Lima, W.R.; Moraes, M.; Alves, E.; Azevedo, M.F.; Passos, D.O.; Garcia, C.R. The PfNF-YB transcription factor is a downstream target of melatonin and cAMP signalling in the human malaria parasite Plasmodium falciparum. J. Pineal. Res. 2013, 54, 145–153. [Google Scholar] [CrossRef]
- Shang, X.; Wang, C.; Fan, Y.; Guo, G.; Wang, F.; Zhao, Y.; Sheng, F.; Tang, J.; He, X.; Yu, X.; et al. Genome-wide landscape of ApiAP2 transcription factors reveals a heterochromatin-associated regulatory network during Plasmodium falciparum blood-stage development. Nucleic Acids Res. 2022, 50, 3413–3431. [Google Scholar] [CrossRef]
- Carrington, E.; Cooijmans, R.H.M.; Keller, D.; Toenhake, C.G.; Bartfai, R.; Voss, T.S. The ApiAP2 factor PfAP2-HC is an integral component of heterochromatin in the malaria parasite Plasmodium falciparum. iScience 2021, 24, 102444. [Google Scholar] [CrossRef]
- Russell, T.J.; De Silva, E.K.; Crowley, V.M.; Shaw-Saliba, K.; Dube, N.; Josling, G.; Pasaje, C.F.A.; Kouskoumvekaki, I.; Panagiotou, G.; Niles, J.C.; et al. Inhibitors of ApiAP2 protein DNA binding exhibit multistage activity against Plasmodium parasites. PLoS Pathog. 2022, 18, e1010887. [Google Scholar] [CrossRef]
- Elsheikha, H.M.; Marra, C.M.; Zhu, X.Q. Epidemiology, Pathophysiology, Diagnosis, and Management of Cerebral Toxoplasmosis. Clin. Microbiol. Rev. 2021, 34, e01986-17. [Google Scholar] [CrossRef]
- Gerace, E.; Lo Presti, V.D.M.; Biondo, C. Cryptosporidium Infection: Epidemiology, Pathogenesis, and Differential Diagnosis. Eur. J. Microbiol. Immunol. 2019, 9, 119–123. [Google Scholar] [CrossRef]
- Behnke, M.S.; Wootton, J.C.; Lehmann, M.M.; Radke, J.B.; Lucas, O.; Nawas, J.; Sibley, L.D.; White, M.W. Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma Gondii. PLoS ONE 2010, 5, e12354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joice, R.; Nilsson, S.K.; Montgomery, J.; Dankwa, S.; Egan, E.; Morahan, B.; Seydel, K.B.; Bertuccini, L.; Alano, P.; Williamson, K.C.; et al. Plasmodium falciparum transmission stages accumulate in the human bone marrow. Sci. Transl. Med. 2014, 6, 244re245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Josling, G.A.; Llinas, M. Sexual development in Plasmodium parasites: Knowing when it’s time to commit. Nat. Rev. Microbiol. 2015, 13, 573–587. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, S.K.; Childs, L.M.; Buckee, C.; Marti, M. Targeting Human Transmission Biology for Malaria Elimination. PLoS Pathog. 2015, 11, e1004871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meibalan, E.; Marti, M. Biology of Malaria Transmission. Cold Spring Harb. Perspect. Med. 2017, 7, a025452. [Google Scholar] [CrossRef] [Green Version]
- Buckling, A.; Ranford-Cartwright, L.C.; Miles, A.; Read, A.F. Chloroquine increases Plasmodium falciparum gametocytogenesis in vitro. Parasitology 1999, 118, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Barkakaty, B.N.; Sharma, G.K.; Chakravorty, N.K. Studies on efficacy of treatment with sulfamethoxazole + trimethoprim and sulfalene + pyrimethamine combinations in Plasmodium falciparum malaria of known and unknown resistant status. J. Commun. Dis. 1988, 20, 165–174. [Google Scholar]
- Brancucci, N.M.B.; Gerdt, J.P.; Wang, C.; De Niz, M.; Philip, N.; Adapa, S.R.; Zhang, M.; Hitz, E.; Niederwieser, I.; Boltryk, S.D.; et al. Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum. Cell 2017, 171, 1532–1544.e15. [Google Scholar] [CrossRef] [Green Version]
- Abdi, A.I.; Achcar, F.; Sollelis, L.; Silva-Filho, J.L.; Mwikali, K.; Muthui, M.; Mwangi, S.; Kimingi, H.W.; Orindi, B.; Andisi Kivisi, C.; et al. Plasmodium falciparum adapts its investment into replication versus transmission according to the host environment. Elife 2023, 12, e85140. [Google Scholar] [CrossRef]
- Bruce, M.C.; Alano, P.; Duthie, S.; Carter, R. Commitment of the malaria parasite Plasmodium falciparum to sexual and asexual development. Parasitology 1990, 100 Pt 2, 191–200. [Google Scholar] [CrossRef]
- Nixon, C.P.; Nixon, C.E.; Michelow, I.C.; Silva-Viera, R.A.; Colantuono, B.; Obeidallah, A.S.; Jha, A.; Dockery, D.; Raj, D.; Park, S.; et al. Antibodies to PfsEGXP, an Early Gametocyte-Enriched Phosphoprotein, Predict Decreased Plasmodium falciparum Gametocyte Density in Humans. J. Infect. Dis. 2018, 218, 1792–1801. [Google Scholar] [CrossRef]
- Ayanful-Torgby, R.; Oppong, A.; Abankwa, J.; Acquah, F.; Williamson, K.C.; Amoah, L.E. Plasmodium falciparum genotype and gametocyte prevalence in children with uncomplicated malaria in coastal Ghana. Malar. J. 2016, 15, 592. [Google Scholar] [CrossRef] [Green Version]
- Chawla, J.; Goldowitz, I.; Oberstaller, J.; Zhang, M.; Pires, C.V.; Navarro, F.; Sollelis, L.; Wang, C.C.Q.; Seyfang, A.; Dvorin, J.; et al. Phenotypic Screens Identify Genetic Factors Associated with Gametocyte Development in the Human Malaria Parasite Plasmodium falciparum. Microbiol. Spectr. 2023, 11, e0416422. [Google Scholar] [CrossRef]
- Josling, G.A.; Russell, T.J.; Venezia, J.; Orchard, L.; van Biljon, R.; Painter, H.J.; Llinas, M. Dissecting the role of PfAP2-G in malaria gametocytogenesis. Nat. Commun. 2020, 11, 1503. [Google Scholar] [CrossRef] [Green Version]
- von Gruning, H.; Coradin, M.; Mendoza, M.R.; Reader, J.; Sidoli, S.; Garcia, B.A.; Birkholtz, L.M. A Dynamic and Combinatorial Histone Code Drives Malaria Parasite Asexual and Sexual Development. Mol. Cell. Proteom. 2022, 21, 100199. [Google Scholar] [CrossRef]
- Filarsky, M.; Fraschka, S.A.; Niederwieser, I.; Brancucci, N.M.B.; Carrington, E.; Carrio, E.; Moes, S.; Jenoe, P.; Bartfai, R.; Voss, T.S. GDV1 induces sexual commitment of malaria parasites by antagonizing HP1-dependent gene silencing. Science 2018, 359, 1259–1263. [Google Scholar] [CrossRef] [Green Version]
- Shang, X.; Shen, S.; Tang, J.; He, X.; Zhao, Y.; Wang, C.; He, X.; Guo, G.; Liu, M.; Wang, L.; et al. A cascade of transcriptional repression determines sexual commitment and development in Plasmodium falciparum. Nucleic Acids Res. 2021, 49, 9264–9279. [Google Scholar] [CrossRef]
- Bancells, C.; Llora-Batlle, O.; Poran, A.; Notzel, C.; Rovira-Graells, N.; Elemento, O.; Kafsack, B.F.C.; Cortes, A. Revisiting the initial steps of sexual development in the malaria parasite Plasmodium falciparum. Nat. Microbiol. 2019, 4, 144–154. [Google Scholar] [CrossRef]
- Li, Z.; Cui, H.; Guan, J.; Liu, C.; Yang, Z.; Yuan, J. Plasmodium transcription repressor AP2-O3 regulates sex-specific identity of gene expression in female gametocytes. EMBO Rep. 2021, 22, e51660. [Google Scholar] [CrossRef]
- Stenzel, K.; Chua, M.J.; Duffy, S.; Antonova-Koch, Y.; Meister, S.; Hamacher, A.; Kassack, M.U.; Winzeler, E.; Avery, V.M.; Kurz, T.; et al. Design and synthesis of terephthalic acid-based histone deacetylase inhibitors with dual-stage anti-Plasmodium activity. Chem. Med. Chem. 2017, 12, 1627–1636. [Google Scholar] [CrossRef]
- Vaughan, J.A.; Noden, B.H.; Beier, J.C. Sporogonic development of cultured Plasmodium falciparum in six species of laboratory-reared Anopheles mosquitoes. Am. J. Trop. Med. Hyg. 1994, 51, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Sauerwein, R.W.; Bousema, T. Transmission blocking malaria vaccines: Assays and candidates in clinical development. Vaccine 2015, 33, 7476–7482. [Google Scholar] [CrossRef] [Green Version]
- Wirth, C.C.; Pradel, G. Molecular mechanisms of host cell egress by malaria parasites. Int. J. Med. Microbiol. 2012, 302, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Ngwa, C.J.; Scheuermayer, M.; Mair, G.R.; Kern, S.; Brügl, T.; Wirth, C.C.; Aminake, M.N.; Wiesner, J.; Fischer, R.; Vilcinskas, A.; et al. Changes in the transcriptome of the malaria parasite Plasmodium falciparum during the initial phase of transmission from the human to the mosquito. BMC Genom. 2013, 14, 256. [Google Scholar] [CrossRef] [PubMed]
- Mair, G.R.; Braks, J.A.M.; Garver, L.S.; Wiegant, J.C.A.G.; Hall, N.; Dirks, R.W.; Khan, S.M.; Dimopoulos, G.; Janse, C.J.; Waters, A.P. Regulation of sexual development of Plasmodium by translational repression. Science 2006, 313, 667–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mair, G.R.; Lasonder, E.; Garver, L.S.; Franke-Fayard, B.M.; Carret, C.K.; Wiegant, J.C.; Dirks, R.W.; Dimopoulos, G.; Janse, C.J.; Waters, A.P. Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development. PLoS Pathog. 2010, 6, e1000767. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, A.; Deligianni, E.; Santos, J.M.; Silva, P.A.G.C.; Louis, C.; Pain, A.; Janse, C.J.; Franke-Fayard, B.; Carret, C.K.; Siden-Kiamos, I.; et al. Genome-wide RIP-Chip analysis of translational repressor-bound mRNAs in the Plasmodium gametocyte. Genome Biol. 2014, 15, 493. [Google Scholar] [CrossRef] [Green Version]
- Tarique, M.; Ahmad, M.; Ansari, A.; Tuteja, R. Plasmodium falciparum DOZI, an RNA helicase interacts with eIF4E. Gene 2013, 522, 46–59. [Google Scholar] [CrossRef]
- Invergo, B.M.; Brochet, M.; Yu, L.; Choudhary, J.; Beltrao, P.; Billker, O. sub-minute phosphoregulation of cell cycle systems during Plasmodium gamete formation. Cell. Rep. 2017, 21, 2017–2029. [Google Scholar] [CrossRef] [Green Version]
- Billker, O.; Dechamps, S.; Tewari, R.; Wenig, G.; Franke-Fayard, B.; Brinkmann, V. Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell 2004, 117, 503–514. [Google Scholar] [CrossRef] [Green Version]
- Garcia, C.H.S.; Depoix, D.; Queiroz, R.M.L.; Souza, J.M.F.; Fontes, W.; de Sousa, M.V.; Santos, M.D.M.; Carvalho, P.C.; Grellier, P.; Charneau, S. Dynamic molecular events associated to Plasmodium berghei gametogenesis through proteomic approach. J. Proteom. 2018, 180, 88–98. [Google Scholar] [CrossRef]
- Alonso-Morales, A.; Gonzalez-Lopez, L.; Cazares-Raga, F.E.; Cortes-Martinez, L.; Torres-Monzon, J.A.; Gallegos-Perez, J.L.; Rodriguez, M.H.; James, A.A.; Hernandez-Hernandez Fde, L. Protein phosphorylation during Plasmodium berghei gametogenesis. Exp. Parasitol. 2015, 156, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Guttery, D.S.; Poulin, B.; Ramaprasad, A.; Wall, R.J.; Ferguson, D.J.; Brady, D.; Patzewitz, E.M.; Whipple, S.; Straschil, U.; Wright, M.H.; et al. Genome-wide functional analysis of Plasmodium protein phosphatases reveals key regulators of parasite development and differentiation. Cell Host Microbe 2014, 16, 128–140. [Google Scholar] [CrossRef] [Green Version]
- Billker, O.; Shaw, M.K.; Margos, G.; Sinden, R.E. The roles of temperature, pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro. Parasitology 1997, 115 Pt 1, 1–7. [Google Scholar] [CrossRef]
- Garcia, G.E.; Wirtz, R.A.; Barr, J.R.; Woolfitt, A.; Rosenberg, R. Xanthurenic acid induces gametogenesis in Plasmodium, the malaria parasite. J. Biol. Chem. 1998, 273, 12003–12005. [Google Scholar] [CrossRef] [Green Version]
- Kawamoto, F.; Alejo-Blanco, R.; Fleck, S.L.; Sinden, R.E. Plasmodium berghei: Ionic regulation and the induction of gametogenesis. Exp. Parasitol. 1991, 72, 33–42. [Google Scholar] [CrossRef]
- McRobert, L.; Taylor, C.J.; Deng, W.; Fivelman, Q.L.; Cummings, R.M.; Polley, S.D.; Billker, O.; Baker, D.A. Gametogenesis in malaria parasites is mediated by the cGMP-dependent protein kinase. PLoS Biol. 2008, 6, e139. [Google Scholar] [CrossRef] [Green Version]
- Brochet, M.; Balestra, A.C.; Brusini, L. cGMP homeostasis in malaria parasites-The key to perceiving and integrating environmental changes during transmission to the mosquito. Mol. Microbiol. 2021, 115, 829–838. [Google Scholar] [CrossRef]
- Muhia, D.K.; Swales, C.A.; Deng, W.; Kelly, J.M.; Baker, D.A. The gametocyte-activating factor xanthurenic acid stimulates an increase in membrane-associated guanylyl cyclase activity in the human malaria parasite Plasmodium falciparum. Mol. Microbiol. 2001, 42, 553–560. [Google Scholar] [CrossRef]
- Brochet, M.; Collins, M.O.; Smith, T.K.; Thompson, E.; Sebastian, S.; Volkmann, K.; Schwach, F.; Chappell, L.; Gomes, A.R.; Berriman, M.; et al. Phosphoinositide metabolism links cGMP-dependent protein kinase G to essential Ca2+ signals at key decision points in the life cycle of malaria parasites. PLoS Biol. 2014, 12, e1001806. [Google Scholar] [CrossRef] [Green Version]
- Carucci, D.J.; Witney, A.A.; Muhia, D.K.; Warhurst, D.C.; Schaap, P.; Meima, M.; Li, J.L.; Taylor, M.C.; Kelly, J.M.; Baker, D.A. Guanylyl cyclase activity associated with putative bifunctional integral membrane proteins in Plasmodium falciparum. J. Biol. Chem. 2000, 275, 22147–22156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.P.; Jiang, X.; Zhu, L.; Zhou, D.; Hong, M.; He, L.; Chen, L.; Yao, S.; Zhao, Y.; Chen, G.; et al. A G-Protein-coupled receptor modulates gametogenesis via PKG-mediated signaling cascade in Plasmodium berghei. Microbiol. Spectr. 2022, 10, e0015022. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.J.; McRobert, L.; Baker, D.A. Disruption of a Plasmodium falciparum cyclic nucleotide phosphodiesterase gene causes aberrant gametogenesis. Mol. Microbiol. 2008, 69, 110–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennink, S.; Kiesow, M.J.; Pradel, G. The development of malaria parasites in the mosquito midgut. Cell. Microbiol. 2016, 18, 905–918. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.K.; Jett, M.; Schneider, I. Correlation of phosphoinositide hydrolysis with exflagellation in the malaria microgametocyte. J. Parasitol. 1994, 80, 371–378. [Google Scholar] [CrossRef]
- Alves, E.; Nakaya, H.; Guimarães, E.; Garcia, C.R.S. Combining IP3 affinity chromatography and bioinformatics reveals a novel protein-IP3 binding site on Plasmodium falciparum MDR1 transporter. Curr. Res. Microb. Sci. 2022, 4, 100179. [Google Scholar] [CrossRef]
- Holder, A.A.; Mohd Ridzuan, M.A.; Green, J.L. Calcium dependent protein kinase 1 and calcium fluxes in the malaria parasite. Microbes Infect. 2012, 14, 825–830. [Google Scholar] [CrossRef]
- Sebastian, S.; Brochet, M.; Collins, M.O.; Schwach, F.; Jones, M.L.; Goulding, D.; Rayner, J.C.; Choudhary, J.S.; Billker, O. A Plasmodium calcium-dependent protein kinase controls zygote development and transmission by translationally activating repressed mRNAs. Cell Host Microbe 2012, 12, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Bansal, A.; Molina-Cruz, A.; Brzostowski, J.; Liu, P.; Luo, Y.; Gunalan, K.; Li, Y.; Ribeiro, J.M.C.; Miller, L.H. PfCDPK1 is critical for malaria parasite gametogenesis and mosquito infection. Proc. Natl. Acad. Sci. USA 2018, 115, 774–779. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Haile, M.T.; Hoopmann, M.R.; Tran, L.T.; Michaels, S.A.; Morrone, S.R.; Ojo, K.K.; Reynolds, L.M.; Kusebauch, U.; Vaughan, A.M.; et al. Plasmodium falciparum Calcium-Dependent Protein Kinase 4 is Critical for Male Gametogenesis and Transmission to the Mosquito Vector. mBio 2021, 12, e0257521. [Google Scholar] [CrossRef]
- Guttery, D.S.; Ferguson, D.J.; Poulin, B.; Xu, Z.; Straschil, U.; Klop, O.; Solyakov, L.; Sandrini, S.M.; Brady, D.; Nieduszynski, C.A.; et al. A putative homologue of CDC20/CDH1 in the malaria parasite is essential for male gamete development. PLoS Pathog. 2012, 8, e1002554. [Google Scholar] [CrossRef]
- Wall, R.J.; Ferguson, D.J.P.; Freville, A.; Franke-Fayard, B.; Brady, D.; Zeeshan, M.; Bottrill, A.R.; Wheatley, S.; Fry, A.M.; Janse, C.J.; et al. Plasmodium APC3 mediates chromosome condensation and cytokinesis during atypical mitosis in male gametogenesis. Sci. Rep. 2018, 8, 5610. [Google Scholar] [CrossRef] [Green Version]
- Laurentino, E.C.; Taylor, S.; Mair, G.R.; Lasonder, E.; Bartfai, R.; Stunnenberg, H.G.; Kroeze, H.; Ramesar, J.; Franke-Fayard, B.; Khan, S.M.; et al. Experimentally controlled downregulation of the histone chaperone FACT in Plasmodium berghei reveals that it is critical to male gamete fertility. Cell Microbiol. 2011, 13, 1956–1974. [Google Scholar] [CrossRef] [Green Version]
- Deligianni, E.; Morgan, R.N.; Bertuccini, L.; Kooij, T.W.; Laforge, A.; Nahar, C.; Poulakakis, N.; Schuler, H.; Louis, C.; Matuschewski, K.; et al. Critical role for a stage-specific actin in male exflagellation of the malaria parasite. Cell. Microbiol. 2011, 13, 1714–1730. [Google Scholar] [CrossRef]
- Straschil, U.; Talman, A.M.; Ferguson, D.J.; Bunting, K.A.; Xu, Z.; Bailes, E.; Sinden, R.E.; Holder, A.A.; Smith, E.F.; Coates, J.C.; et al. The Armadillo repeat protein PF16 is essential for flagellar structure and function in Plasmodium male gametes. PLoS ONE 2010, 5, e12901. [Google Scholar] [CrossRef] [Green Version]
- Marques, S.R.; Ramakrishnan, C.; Carzaniga, R.; Blagborough, A.M.; Delves, M.J.; Talman, A.M.; Sinden, R.E. An essential role of the basal body protein SAS-6 in Plasmodium male gamete development and malaria transmission. Cell Microbiol. 2015, 17, 191–206. [Google Scholar] [CrossRef] [Green Version]
- Tewari, R.; Straschil, U.; Bateman, A.; Bohme, U.; Cherevach, I.; Gong, P.; Pain, A.; Billker, O. The systematic functional analysis of Plasmodium protein kinases identifies essential regulators of mosquito transmission. Cell Host Microbe 2010, 8, 377–387. [Google Scholar] [CrossRef]
- Rangarajan, R.; Bei, A.K.; Jethwaney, D.; Maldonado, P.; Dorin, D.; Sultan, A.A.; Doerig, C. A mitogen-activated protein kinase regulates male gametogenesis and transmission of the malaria parasite Plasmodium berghei. EMBO Rep. 2005, 6, 464–469. [Google Scholar] [CrossRef] [Green Version]
- Tewari, R.; Dorin, D.; Moon, R.; Doerig, C.; Billker, O. An atypical mitogen-activated protein kinase controls cytokinesis and flagellar motility during male gamete formation in a malaria parasite. Mol. Microbiol. 2005, 58, 1253–1263. [Google Scholar] [CrossRef]
- Dorin, D.; Le Roch, K.; Sallicandro, P.; Alano, P.; Parzy, D.; Poullet, P.; Meijer, L.; Doerig, C. Pfnek-1, a NIMA-related kinase from the human malaria parasite Plasmodium falciparum. Eur. J. Biochem. 2001, 268, 2600–2608. [Google Scholar] [CrossRef] [Green Version]
- Lye, Y.M.; Chan, M.; Sim, T.S. Pfnek3: An atypical activator of a MAP kinase in Plasmodium falciparum. FEBS Lett. 2006, 580, 6083–6092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reininger, L.; Tewari, R.; Fennell, C.; Holland, Z.; Goldring, D.; Ranford-Cartwright, L.; Billker, O.; Doerig, C. An essential role for the Plasmodium Nek-2 Nima-related protein kinase in the sexual development of malaria parasites. J. Biol. Chem. 2009, 284, 20858–20868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reininger, L.; Billker, O.; Tewari, R.; Mukhopadhyay, A.; Fennell, C.; Dorin-Semblat, D.; Doerig, C.; Goldring, D.; Harmse, L.; Ranford-Cartwright, L.; et al. A NIMA-related protein kinase is essential for completion of the sexual cycle of malaria parasites. J. Biol. Chem. 2005, 280, 31957–31964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penzo, M.; de Las Heras-Duena, L.; Mata-Cantero, L.; Diaz-Hernandez, B.; Vazquez-Muniz, M.J.; Ghidelli-Disse, S.; Drewes, G.; Fernandez-Alvaro, E.; Baker, D.A. High-throughput screening of the Plasmodium falciparum cGMP-dependent protein kinase identified a thiazole scaffold which kills erythrocytic and sexual stage parasites. Sci. Rep. 2019, 9, 7005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, X.; Liu, F.; Bai, J.; Zhang, Y.; Cui, L.; Cao, Y.; Luo, E. Phosphatase inhibitors BVT-948 and alexidine dihydrochloride inhibit sexual development of the malaria parasite Plasmodium berghei. Int. J. Parasitol. Drugs Drug Resist. 2022, 19, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Williamson, K.C. Pfs230: From malaria transmission-blocking vaccine candidate toward function. Parasite Immunol. 2003, 25, 351–359. [Google Scholar] [CrossRef]
- Rener, J.; Graves, P.M.; Carter, R.; Williams, J.L.; Burkot, T.R. Target antigens of transmission-blocking immunity on gametes of Plasmodium falciparum. J. Exp. Med. 1983, 158, 976–981. [Google Scholar] [CrossRef]
- van Dijk, M.R.; Janse, C.J.; Thompson, J.; Waters, A.P.; Braks, J.A.; Dodemont, H.J.; Stunnenberg, H.G.; van Gemert, G.J.; Sauerwein, R.W.; Eling, W. A central role for P48/45 in malaria parasite male gamete fertility. Cell 2001, 104, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Ko, K.T.; Lennartz, F.; Mekhaiel, D.; Guloglu, B.; Marini, A.; Deuker, D.J.; Long, C.A.; Jore, M.M.; Miura, K.; Biswas, S.; et al. Structure of the malaria vaccine candidate Pfs48/45 and its recognition by transmission blocking antibodies. Nat. Commun. 2022, 13, 5603. [Google Scholar] [CrossRef]
- van Schaijk, B.C.; van Dijk, M.R.; van de Vegte-Bolmer, M.; van Gemert, G.J.; van Dooren, M.W.; Eksi, S.; Roeffen, W.F.; Janse, C.J.; Waters, A.P.; Sauerwein, R.W. Pfs47, paralog of the male fertility factor Pfs48/45, is a female specific surface protein in Plasmodium falciparum. Mol. Biochem. Parasitol. 2006, 149, 216–222. [Google Scholar] [CrossRef]
- Liu, Y.; Tewari, R.; Ning, J.; Blagborough, A.M.; Garbom, S.; Pei, J.; Grishin, N.V.; Steele, R.E.; Sinden, R.E.; Snell, W.J.; et al. The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes. Genes Dev. 2008, 22, 1051–1068. [Google Scholar] [CrossRef] [Green Version]
- Patil, H.; Hughes, K.R.; Lemgruber, L.; Philip, N.; Dickens, N.; Starnes, G.L.; Waters, A.P. Zygote morphogenesis but not the establishment of cell polarity in Plasmodium berghei is controlled by the small GTPase, RAB11A. PLoS Pathog. 2020, 16, e1008091. [Google Scholar] [CrossRef]
- Tremp, A.Z.; Al-Khattaf, F.S.; Dessens, J.T. Palmitoylation of Plasmodium alveolins promotes cytoskeletal function. Mol. Biochem. Parasitol. 2017, 213, 16–21. [Google Scholar] [CrossRef]
- Santos, J.M.; Kehrer, J.; Franke-Fayard, B.; Frischknecht, F.; Janse, C.J.; Mair, G.R. The Plasmodium palmitoyl-S-acyl-transferase DHHC2 is essential for ookinete morphogenesis and malaria transmission. Sci. Rep. 2015, 5, 16034. [Google Scholar] [CrossRef] [Green Version]
- Frenal, K.; Tay, C.L.; Mueller, C.; Bushell, E.S.; Jia, Y.; Graindorge, A.; Billker, O.; Rayner, J.C.; Soldati-Favre, D. Global analysis of apicomplexan protein S-acyl transferases reveals an enzyme essential for invasion. Traffic 2013, 14, 895–911. [Google Scholar] [CrossRef]
- Tay, C.L.; Jones, M.L.; Hodson, N.; Theron, M.; Choudhary, J.S.; Rayner, J.C. Study of Plasmodium falciparum DHHC palmitoyl transferases identifies a role for PfDHHC9 in gametocytogenesis. Cell. Microbiol. 2016, 18, 1596–1610. [Google Scholar] [CrossRef] [Green Version]
- Yadav, P.; Ayana, R.; Garg, S.; Jain, R.; Sah, R.; Joshi, N.; Pati, S.; Singh, S. Plasmodium palmitoylation machinery engineered in E. coli for high-throughput screening of palmitoyl acyl-transferase inhibitors. FEBS Open Bio 2019, 9, 248–264. [Google Scholar] [CrossRef] [Green Version]
- Ukegbu, C.V.; Cho, J.-S.; Christophides, G.K.; Vlachou, D. Transcriptional silencing and activation of paternal DNA during Plasmodium berghei zygotic development and transformation to oocyst. Cell. Microbiol. 2015, 17, 1230–1240. [Google Scholar] [CrossRef] [Green Version]
- Volkmann, K.; Pfander, C.; Burstroem, C.; Ahras, M.; Goulding, D.; Rayner, J.C.; Frischknecht, F.; Billker, O.; Brochet, M. The alveolin IMC1h is required for normal ookinete and sporozoite motility behaviour and host colonisation in Plasmodium berghei. PLoS ONE 2012, 7, e41409. [Google Scholar] [CrossRef]
- Poulin, B.; Patzewitz, E.M.; Brady, D.; Silvie, O.; Wright, M.H.; Ferguson, D.J.; Wall, R.J.; Whipple, S.; Guttery, D.S.; Tate, E.W.; et al. Unique apicomplexan IMC sub-compartment proteins are early markers for apical polarity in the malaria parasite. Biol. Open 2013, 2, 1160–1170. [Google Scholar] [CrossRef] [Green Version]
- Dorin-Semblat, D.; Sicard, A.; Doerig, C.; Ranford-Cartwright, L.; Doerig, C. Disruption of the PfPK7 gene impairs schizogony and sporogony in the human malaria parasite Plasmodium falciparum. Eukaryot. Cell 2008, 7, 279–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wetzel, J.; Herrmann, S.; Swapna, L.S.; Prusty, D.; John Peter, A.T.; Kono, M.; Saini, S.; Nellimarla, S.; Wong, T.W.; Wilcke, L.; et al. The role of palmitoylation for protein recruitment to the inner membrane complex of the malaria parasite. J. Biol. Chem. 2015, 290, 1712–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guttery, D.S.; Poulin, B.; Ferguson, D.J.; Szoor, B.; Wickstead, B.; Carroll, P.L.; Ramakrishnan, C.; Brady, D.; Patzewitz, E.M.; Straschil, U.; et al. A unique protein phosphatase with kelch-like domains (PPKL) in Plasmodium modulates ookinete differentiation, motility and invasion. PLoS Pathog. 2012, 8, e1002948. [Google Scholar] [CrossRef] [PubMed]
- Yuda, M.; Iwanaga, S.; Shigenobu, S.; Mair, G.R.; Janse, C.J.; Waters, A.P.; Kato, T.; Kaneko, I. Identification of a transcription factor in the mosquito-invasive stage of malaria parasites. Mol. Microbiol. 2009, 71, 1402–1414. [Google Scholar] [CrossRef]
- Janse, C.J.; Van der Klooster, P.F.; Van der Kaay, H.J.; Van der Ploeg, M.; Overdulve, J.P. Rapid repeated DNA replication during microgametogenesis and DNA synthesis in young zygotes of Plasmodium berghei. Trans. R. Soc. Trop. Med. Hyg. 1986, 80, 154–157. [Google Scholar] [CrossRef]
- Janse, C.J.; van der Klooster, P.F.; van der Kaay, H.J.; van der Ploeg, M.; Overdulve, J.P. DNA synthesis in Plasmodium berghei during asexual and sexual development. Mol. Biochem. Parasitol. 1986, 20, 173–182. [Google Scholar] [CrossRef]
- Zhang, V.M.; Chavchich, M.; Waters, N.C. Targeting protein kinases in the malaria parasite: Update of an antimalarial drug target. Curr. Top. Med. Chem. 2012, 12, 456–472. [Google Scholar] [CrossRef]
- Moolman, C.; Sluis, R.V.; Beteck, R.M.; Legoabe, L.J. An Update on Development of Small-Molecule Plasmodial Kinase Inhibitors. Molecules 2020, 25, 5182. [Google Scholar] [CrossRef]
- Baton, L.A.; Ranford-Cartwright, L.C. How do malaria ookinetes cross the mosquito midgut wall? Trends Parasitol. 2005, 21, 22–28. [Google Scholar] [CrossRef]
- Moon, R.W.; Taylor, C.J.; Bex, C.; Schepers, R.; Goulding, D.; Janse, C.J.; Waters, A.P.; Baker, D.A.; Billker, O. A cyclic GMP signalling module that regulates gliding motility in a malaria parasite. PLoS Pathog. 2009, 5, e1000599. [Google Scholar] [CrossRef] [Green Version]
- Ishino, T.; Orito, Y.; Chinzei, Y.; Yuda, M. A calcium-dependent protein kinase regulates Plasmodium ookinete access to the midgut epithelial cell. Mol. Microbiol. 2006, 59, 1175–1184. [Google Scholar] [CrossRef]
- Lal, K.; Prieto, J.H.; Bromley, E.; Sanderson, S.J.; Yates, J.R., 3rd; Wastling, J.M.; Tomley, F.M.; Sinden, R.E. Characterisation of Plasmodium invasive organelles; an ookinete microneme proteome. Proteomics 2009, 9, 1142–1151. [Google Scholar] [CrossRef] [Green Version]
- Dessens, J.T.; Beetsma, A.L.; Dimopoulos, G.; Wengelnik, K.; Crisanti, A.; Kafatos, F.C.; SINDEN, R.E. CTRP is essential for mosquito infection by malaria ookinetes. EMBO J. 1999, 18, 6221–6227. [Google Scholar] [CrossRef] [Green Version]
- Kadota, K.; Ishino, T.; Matsuyama, T.; Chinzei, Y.; Yuda, M. Essential role of membrane-attack protein in malarial transmission to mosquito host. Proc. Natl. Acad. Sci. USA 2004, 101, 16310–16315. [Google Scholar] [CrossRef]
- Dessens, J.T.; Siden-Kiamos, I.; Mendoza, J.; Mahairaki, V.; Khater, E.; Vlachou, D.; Xu, X.J.; Kafatos, F.C.; Louis, C.; Dimopoulos, G.; et al. SOAP, a novel malaria ookinete protein involved in mosquito midgut invasion and oocyst development. Mol. Microbiol. 2003, 49, 319–329. [Google Scholar] [CrossRef]
- Yuda, M.; Yano, K.; Tsuboi, T.; Torii, M.; Chinzei, Y. von Willebrand Factor A domain-related protein, a novel microneme protein of the malaria ookinete highly conserved throughout Plasmodium parasites. Mol. Biochem. Parasitol. 2001, 116, 65–72. [Google Scholar] [CrossRef]
- Kariu, T.; Ishino, T.; Yano, K.; Chinzei, Y.; Yuda, M. CelTOS, a novel malarial protein that mediates transmission to mosquito and vertebrate hosts. Mol. Microbiol. 2006, 59, 1369–1379. [Google Scholar] [CrossRef]
- Vinetz, J.M.; Valenzuela, J.G.; Specht, C.A.; Aravind, L.; Langer, R.C.; Ribeiro, J.M.; Kaslow, D.C. Chitinases of the avian malaria parasite Plasmodium gallinaceum, a class of enzymes necessary for parasite invasion of the mosquito midgut. J. Biol. Chem. 2000, 275, 10331–10341. [Google Scholar] [CrossRef] [Green Version]
- Viswanath, V.K.; Gore, S.T.; Valiyaparambil, A.; Mukherjee, S.; Lakshminarasimhan, A. Plasmodium chitinases: Revisiting a target of transmission-blockade against malaria. Protein. Sci. 2021, 30, 1493–1501. [Google Scholar] [CrossRef]
- Hoermann, A.; Habtewold, T.; Selvaraj, P.; Del Corsano, G.; Capriotti, P.; Inghilterra, M.G.; Kebede, T.M.; Christophides, G.K.; Windbichler, N. Gene drive mosquitoes can aid malaria elimination by retarding Plasmodium sporogonic development. Sci. Adv. 2022, 8, eabo1733. [Google Scholar] [CrossRef]
- Burrows, J.N.; Duparc, S.; Gutteridge, W.E.; Hooft van Huijsduijnen, R.; Kaszubska, W.; Macintyre, F.; Mazzuri, S.; Mohrle, J.J.; Wells, T.N.C. New developments in anti-malarial target candidate and product profiles. Malar. J. 2017, 16, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinglasan, R.R.; Kalume, D.E.; Kanzok, S.M.; Ghosh, A.K.; Muratova, O.; Pandey, A.; Jacobs-Lorena, M. Disruption of Plasmodium falciparum development by antibodies against a conserved mosquito midgut antigen. Proc. Natl. Acad. Sci. USA 2007, 104, 13461–13466. [Google Scholar] [CrossRef] [PubMed]
- Kaslow, D.C.; Nussenzweig, V.; Miller, L. Meeting on Parasites and the invertebrate vector. John D and Catherine T MacArthur Foundation, 18–21 November, 1993. Mem. Inst. Oswaldo. Cruz. 1994, 89, 279–295. [Google Scholar] [CrossRef]
- López-Barragán, M.J.; Lemieux, J.; Quiñones, M.; Williamson, K.C.; Molina-Cruz, A.; Cui, K.; Barillas-Mury, C.; Zhao, K.; Su, X.-Z. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC Genom. 2011, 12, 587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouologuem, D.T.; Dara, A.; Kone, A.; Ouattara, A.; Djimde, A.A. Plasmodium falciparum Development from Gametocyte to Oocyst: Insight from Functional Studies. Microorganisms 2023, 11, 1966. https://doi.org/10.3390/microorganisms11081966
Ouologuem DT, Dara A, Kone A, Ouattara A, Djimde AA. Plasmodium falciparum Development from Gametocyte to Oocyst: Insight from Functional Studies. Microorganisms. 2023; 11(8):1966. https://doi.org/10.3390/microorganisms11081966
Chicago/Turabian StyleOuologuem, Dinkorma T., Antoine Dara, Aminatou Kone, Amed Ouattara, and Abdoulaye A. Djimde. 2023. "Plasmodium falciparum Development from Gametocyte to Oocyst: Insight from Functional Studies" Microorganisms 11, no. 8: 1966. https://doi.org/10.3390/microorganisms11081966
APA StyleOuologuem, D. T., Dara, A., Kone, A., Ouattara, A., & Djimde, A. A. (2023). Plasmodium falciparum Development from Gametocyte to Oocyst: Insight from Functional Studies. Microorganisms, 11(8), 1966. https://doi.org/10.3390/microorganisms11081966