Rapid Identification of Nontuberculous Mycobacterium Species from Respiratory Specimens Using Nucleotide MALDI-TOF MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Collection
2.3. Acid-Fast Staining, MGIT 960 Culture, MPT64 Antigen Assay, and MeltPro Myco Assay
2.4. Nucleotide MALDI-TOF MS Procedures
2.5. Statistical Analysis
2.6. Ethical Approval
3. Results
3.1. Study Design and Characteristics of Enrolled Cases
3.2. Diagnostic Performance of NTM Identification by Nucleotide MALDI-TOF MS
3.3. Identification of NTM Species by Nucleotide MALDI-TOF MS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brode, S.K.; Daley, C.L.; Marras, T.K. The Epidemiologic Relationship between Tuberculosis and Non-Tuberculous Mycobacterial Disease: A Systematic Review. Int. J. Tuberc. Lung Dis. 2014, 18, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Marras, T.K.; Mendelson, D.; Marchand-Austin, A.; May, K.; Jamieson, F.B. Pulmonary Nontuberculous Mycobacterial Disease, Ontario, Canada, 1998–2010. Emerg. Infect. Dis. 2013, 19, 1889–1891. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Liu, P.; Liu, G.; Zhao, L.; Hu, Y.; Wei, G.; Luo, J.; Huang, H. The Prevalence of Non-Tuberculous Mycobacterial Infections in Mainland China: Systematic Review and Meta-Analysis. J. Infect. 2016, 73, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-F.; Song, Y.-M.; He, W.-C.; Liu, D.-X.; He, P.; Bao, J.-J.; Wang, X.-Y.; Li, Y.-M.; Zhao, Y.-L. Nontuberculous Mycobacteria in China: Incidence and Antimicrobial Resistance Spectrum from a Nationwide Survey. Infect. Dis. Poverty 2021, 10, 59. [Google Scholar] [CrossRef]
- Tan, Y.; Deng, Y.; Yan, X.; Liu, F.; Tan, Y.; Wang, Q.; Bao, X.; Pan, J.; Luo, X.; Yu, Y.; et al. Nontuberculous Mycobacterial Pulmonary Disease and Associated Risk Factors in China: A Prospective Surveillance Study. J. Infect. 2021, 83, 46–53. [Google Scholar] [CrossRef]
- Chae, H.; Han, S.J.; Kim, S.-Y.; Ki, C.-S.; Huh, H.J.; Yong, D.; Koh, W.-J.; Shin, S.J. Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species. J. Clin. Microbiol. 2017, 55, 2736–2751. [Google Scholar] [CrossRef] [Green Version]
- Huh, H.J.; Kim, S.-Y.; Jhun, B.W.; Shin, S.J.; Koh, W.-J. Recent Advances in Molecular Diagnostics and Understanding Mechanisms of Drug Resistance in Nontuberculous Mycobacterial Diseases. Infect. Genet. Evol. 2019, 72, 169–182. [Google Scholar] [CrossRef]
- Hou, T.-Y.; Chiang-Ni, C.; Teng, S.-H. Current Status of MALDI-TOF Mass Spectrometry in Clinical Microbiology. J. Food Drug Anal. 2019, 27, 404–414. [Google Scholar] [CrossRef]
- Dao, T.L.; Hoang, V.T.; Ly, T.D.A.; Lagier, J.C.; Baron, S.A.; Raoult, D.; Parola, P.; Courjon, J.; Marty, P.; Chaudet, H.; et al. Sputum Proteomic Analysis for Distinguishing between Pulmonary Tuberculosis and Non-Tuberculosis Using Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS): Preliminary Results. Clin. Microbiol. Infect. 2021, 27, 1694.e1–1694.e6. [Google Scholar] [CrossRef]
- Li, W.; Sun, E.; Wang, Y.; Pan, H.; Zhang, Y.; Li, Y.; Zhang, X.; Li, C.; Du, L.; Wang, C. Rapid Identification and Antimicrobial Susceptibility Testing for Urinary Tract Pathogens by Direct Analysis of Urine Samples Using a MALDI-TOF MS-Based Combined Protocol. Front. Microbiol. 2019, 10, 1182. [Google Scholar] [CrossRef]
- İlki, A.A.; Özsoy, S.; Gelmez, G.; Aksu, B.; Söyletir, G. An Alternative for Urine Cultures: Direct Identification of Uropathogens from Urine by MALDI-TOF MS. Acta Microbiol. Immunol. Hung. 2020, 67, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Holland, R.D.; Wilkes, J.G.; Rafii, F.; Sutherland, J.B.; Persons, C.C.; Voorhees, K.J.; Lay, J.O. Rapid Identification of Intact Whole Bacteria Based on Spectral Patterns Using Matrix-Assisted Laser Desorption/Ionization with Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 1227–1232. [Google Scholar] [CrossRef]
- Bishop, B.; Geffen, Y.; Plaut, A.; Kassis, O.; Bitterman, R.; Paul, M.; Neuberger, A. The Use of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry for Rapid Bacterial Identification in Patients with Smear-Positive Bacterial Meningitis. Clin. Microbiol. Infect. 2018, 24, 171–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, K.-Y.; Chen, H.-Y.; Li, K.-C.; Kuo, M.-L.; Yang, J.C.-H.; Chan, W.-K.; Ho, B.-C.; Chang, G.-C.; Shih, J.-Y.; Yu, S.-L.; et al. Pretreatment Epidermal Growth Factor Receptor (EGFR) T790M Mutation Predicts Shorter EGFR Tyrosine Kinase Inhibitor Response Duration in Patients With Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2012, 30, 433–440. [Google Scholar] [CrossRef] [Green Version]
- Su, K.-Y.; Kao, J.-T.; Ho, B.-C.; Chen, H.-Y.; Chang, G.-C.; Ho, C.-C.; Yu, S.-L. Implementation and Quality Control of Lung Cancer EGFR Genetic Testing by MALDI-TOF Mass Spectrometry in Taiwan Clinical Practice. Sci. Rep. 2016, 6, 30944. [Google Scholar] [CrossRef]
- Su, K.Y.; Yan, B.S.; Chiu, H.C.; Yu, C.J.; Chang, S.Y.; Jou, R.; Liu, J.L.; Hsueh, P.R.; Yu, S.L. Rapid Sputum Multiplex Detection of the M. Tuberculosis Complex (MTBC) and Resistance Mutations for Eight Antibiotics by Nucleotide MALDI-TOF MS. Sci. Rep. 2017, 7, 41486. [Google Scholar] [CrossRef] [Green Version]
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J.; Andrejak, C.; Böttger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Clin. Infect. Dis. 2020, 71, 905–913. [Google Scholar] [CrossRef]
- Chinese Medical Association Tuberculosis Branch. Guideline for Diagnosis and Treatment of Nontuberculous mycobacteria Disease (2020 Edition). Chin. J. Tuberc. Respir. Dis. 2020, 43, 918–946. [Google Scholar] [CrossRef]
- Forbes, B.A.; Hall, G.S.; Miller, M.B.; Novak, S.M.; Rowlinson, M.C.; Salfinger, M.; Somoskövi, A.; Warshauer, D.M.; Wilson, M.L. Practical Guidance for Clinical Microbiology Laboratories: Mycobacteria. Clin. Microbiol. Rev. 2018, 31, e00038-17. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Liang, B.; Du, C.; Tian, X.; Cai, X.; Hou, Y.; Li, H.; Zheng, R.; Li, J.; Liu, Y.; et al. Rapid Identification of Clinically Relevant Mycobacterium Species by Multicolor Melting Curve Analysis. J. Clin. Microbiol. 2019, 57, e01096-18. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Tan, G.; Yang, J.; Guo, Y.; Huang, C.; Sha, W.; Yu, F. Prediction of Mycobacterium Tuberculosis Drug Resistance by Nucleotide MALDI-TOF-MS. Int. J. Infect. Dis. 2022, 121, 47–54. [Google Scholar] [CrossRef]
- Haworth, C.S.; Banks, J.; Capstick, T.; Fisher, A.J.; Gorsuch, T.; Laurenson, I.F.; Leitch, A.; Loebinger, M.R.; Milburn, H.J.; Nightingale, M.; et al. British Thoracic Society Guidelines for the Management of Non-Tuberculous Mycobacterial Pulmonary Disease (NTM-PD). Thorax 2017, 72, ii1–ii64. [Google Scholar] [CrossRef] [Green Version]
- Buchan, B.W.; Riebe, K.M.; Timke, M.; Kostrzewa, M.; Ledeboer, N.A. Comparison of MALDI-TOF MS With HPLC and Nucleic Acid Sequencing for the Identification of Mycobacterium Species in Cultures Using Solid Medium and Broth. Am. J. Clin. Pathol. 2014, 141, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Leyer, C.; Gregorowicz, G.; Mougari, F.; Raskine, L.; Cambau, E.; de Briel, D. Comparison of Saramis 4.12 and IVD 3.0 Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry for Identification of Mycobacteria from Solid and Liquid Culture Media. J. Clin. Microbiol. 2017, 55, 2045–2054. [Google Scholar] [CrossRef] [Green Version]
- Naito, K.; Noguchi, S.; Yatera, K.; Kawanami, T.; Yamasaki, K.; Fukuda, K.; Ikegami, H.; Akata, K.; Kido, T.; Sakamoto, N.; et al. Coinfection with Multiple Nontuberculous Mycobacteria as a Possible Exacerbating Factor in Pulmonary Nontuberculous Mycobacteriosis: Clone Library Analysis Using the 16S Ribosomal RNA Gene. Chest 2020, 158, 2304–2313. [Google Scholar] [CrossRef]
- Kehinde Aderemi, O.; Dada-Adegbola, H. Epidemiology of Smear—Negative Tuberculosis in Ibadan, Nigeria. Afr. J. Infect. Dis. 2013, 7, 14–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuta, K.; Ito, A.; Ishida, T.; Ito, Y.; Sone, N.; Takaiwa, T.; Yokoyama, T.; Tachibana, H.; Arita, M.; Hashimoto, T. 18 Cases of Pulmonary Mycobacterium Abscessus: Clinical Difference Depending on the Presence or Absence of Mycobacterium Avium Complex. J. Infect. Chemother. 2016, 22, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Porvaznik, I.; Solovič, I.; Mokrý, J. Non-Tuberculous Mycobacteria: Classification, Diagnostics, and Therapy. Adv. Exp. Med. Biol. 2016, 944, 19–25. [Google Scholar]
- Datta, S.; Shah, L.; Gilman, R.H.; Evans, C.A. Comparison of Sputum Collection Methods for Tuberculosis Diagnosis: A Systematic Review and Pairwise and Network Meta-Analysis. Lancet Glob. Health 2017, 5, e760–e771. [Google Scholar] [CrossRef] [Green Version]
NTM Pulmonary Disease Group (N = 108) | Control Group (N = 67) | p Value | |
---|---|---|---|
Age in years, median (range) | 65 (24, 67) | 59 (33, 68) | 0.914 |
Male, n (%) | 45 (41.7%) | 30 (44.8%) | 0.686 |
Major symptoms, n (%) | |||
Cough | 85 (78.7%) | 50 (74.6%) | 0.523 |
Fever | 11 (10.2%) | 9 (13.4%) | 0.512 |
Hemoptysis | 23 (21.3%) | 14 (20.9%) | 0.950 |
Chest CT results, n (%) | |||
Nodule | 93 (86.1%) | 47 (70.1%) | 0.010 |
Cavity | 54 (50%) | 33 (49.3%) | 0.924 |
Bronchiectasis | 85 (78.7%) | 42 (62.7%) | 0.021 |
Samples, n (%) | |||
Sputum | 56 (51.9%) | 49 (73.1%) | 0.005 |
Method | NTM Result | Clinical Diagnosis | Sensitivity, % (95% CI) | Specificity, % (95% CI) | PPV, % (95% CI) | NPV, % (95% CI) | Accuracy, % (95% CI) | Kappa (95% CI) | AUC (95% CI) | |
---|---|---|---|---|---|---|---|---|---|---|
NTM-PD (108) | Control (67) | |||||||||
AFB microscopy | + | 51 | 13 | 47.2 (37.6–57.0) | 80.6 (68.8–88.9) | 79.7 (67.4–88.3) | 48.7 (39.1–58.3) | 60.0 (52.3–67.2) | 0.25 (0.12–0.37) | 0.639 (0.556–0.722) |
− | 57 | 54 | ||||||||
Culture + MPT64 | + | 81 | 3 | 75.0 (65.6–82.6) a | 95.5 (86.6–98.8) b | 96.4 (89.2–99.1) | 70.3 (59.7–79.2) | 82.9 (76.3–88.0) | 0.66 (0.55–0.77) | 0.853 (0.794–0.911) |
− | 27 | 64 | ||||||||
Nucleotide MALDI-TOF-MS | + | 84 | 5 | 77.8 (68.6–85.0) a | 92.5 (82.8–97.2) b | 94.4 (86.8–97.9) | 72.1 (61.2–81.0) | 83.4 (76.9–88.5) | 0.67 (0.56–0.77) | 0.852 (0.792–0.911) |
− | 24 | 62 |
Diagnostic Method | Smear-Positive | Smear-Negative |
---|---|---|
Culture + MPT64 antigen | ||
% (n/n) | 92.2 (47/51) | 59.7 (34/57) |
95% CI | 80.3, 97.5 | 45.8, 72.2 |
Nucl. MALDI-TOF MS | ||
% (n/n) | 92.2 (47/51) | 64.9 (37/57) |
95% CI | 80.3, 97.5 | 51.1, 76.8 |
p value | 1 | 0.097 |
Culture + MeltPro Myco Assay | Nucleotide MALDI-TOF MS | |
---|---|---|
Inconsistent NTM species (n = 5, 6.2%) | M. avium × 2 | M. abscessus × 2 |
M. intracellulare × 3 | Mycobacterium × 3 | |
Culture + MeltPro Myco assay positive with Nucleotide MALDI-TOF MS negative (n = 13, 16.0%) | M. intracellulare × 4 | negative |
M. gordonae × 2 | ||
M. abscessus complex × 2 | ||
M. avium × 2 | ||
M. avium + M. intracellulare | ||
M. lentiflavum | ||
Mycobacterium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, L.; Gui, X.; Wu, X.; Yang, J.; Fang, Y.; Sun, Q.; Gu, J.; Sha, W. Rapid Identification of Nontuberculous Mycobacterium Species from Respiratory Specimens Using Nucleotide MALDI-TOF MS. Microorganisms 2023, 11, 1975. https://doi.org/10.3390/microorganisms11081975
Yao L, Gui X, Wu X, Yang J, Fang Y, Sun Q, Gu J, Sha W. Rapid Identification of Nontuberculous Mycobacterium Species from Respiratory Specimens Using Nucleotide MALDI-TOF MS. Microorganisms. 2023; 11(8):1975. https://doi.org/10.3390/microorganisms11081975
Chicago/Turabian StyleYao, Lan, Xuwei Gui, Xiaocui Wu, Jinghui Yang, Yong Fang, Qin Sun, Jin Gu, and Wei Sha. 2023. "Rapid Identification of Nontuberculous Mycobacterium Species from Respiratory Specimens Using Nucleotide MALDI-TOF MS" Microorganisms 11, no. 8: 1975. https://doi.org/10.3390/microorganisms11081975
APA StyleYao, L., Gui, X., Wu, X., Yang, J., Fang, Y., Sun, Q., Gu, J., & Sha, W. (2023). Rapid Identification of Nontuberculous Mycobacterium Species from Respiratory Specimens Using Nucleotide MALDI-TOF MS. Microorganisms, 11(8), 1975. https://doi.org/10.3390/microorganisms11081975