The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Biosorbents
2.3. Biosorption Experiments
2.4. Biosorbent Analysis
3. Results and Discussion
3.1. The Effect of Experimental Parameters on Dysprosium Ion Removal
3.2. Experimental Data Evaluation
3.3. Mechanisms of the Dysprosium Biosorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alcaraz, L.; Escudero, M.E.; Alguacil, F.J.; Llorente, I.; Urbieta, A.; Fernández, P.; López, F.A. Dysprosium Removal from Water Using Active Carbons Obtained from Spent Coffee Ground. Nanomaterials 2019, 9, 1372. [Google Scholar] [CrossRef] [Green Version]
- Brião, G.V.; da Silva, M.G.C.; Vieira, M.G.A. Dysprosium Adsorption on Expanded Vermiculite: Kinetics, Selectivity and Desorption. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127616. [Google Scholar] [CrossRef]
- Devi, A.P.; Mishra, P.M. Biosorption of Dysprosium (III) Using Raw and Surface-Modified Bark Powder of Mangifera Indica: Isotherm, Kinetic and Thermodynamic Studies. Environ. Sci. Pollut. Res. Int. 2019, 26, 6545–6556. [Google Scholar] [CrossRef] [PubMed]
- Kishida, M.; Kakita, K. Dysprosium Absorption of Aluminum Tolerant- and Absorbing-Yeast. Appl. Sci. 2022, 12, 4352. [Google Scholar] [CrossRef]
- Awual, M.R.; Alharthi, N.H.; Okamoto, Y.; Karim, M.R.; Halim, M.E.; Hasan, M.M.; Rahman, M.M.; Islam, M.M.; Khaleque, M.A.; Sheikh, M.C. Ligand Field Effect for Dysprosium(III) and Lutetium(III) Adsorption and EXAFS Coordination with Novel Composite Nanomaterials. Chem. Eng. J. 2017, 320, 427–435. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, E.; Zhang, F.; Yan, Y.; Pan, J. Efficient Adsorption and Separation of Dysprosium from NdFeB Magnets in an Acidic System by Ion Imprinted Mesoporous Silica Sealed in a Dialysis Bag. Green Chem. 2016, 18, 5031–5040. [Google Scholar] [CrossRef]
- Rim, K.T.; Koo, K.H.; Park, J.S. Toxicological Evaluations of Rare Earths and Their Health Impacts to Workers: A Literature Review. Saf. Health Work 2013, 4, 12–26. [Google Scholar] [CrossRef] [Green Version]
- Haley, T.J.; Koste, L.; Komesu, N.; Efros, M.; Upham, H.C. Pharmacology and Toxicology of Dysprosium, Holmium, and Erbium Chlorides. Toxicol. Appl. Pharmacol. 1966, 8, 37–43. [Google Scholar] [CrossRef]
- Vukov, O.; Smith, D.S.; McGeer, J.C. Acute Dysprosium Toxicity to Daphnia Pulex and Hyalella Azteca and Development of the Biotic Ligand Approach. Aquat. Toxicol. 2016, 170, 142–151. [Google Scholar] [CrossRef]
- Paul, J.; Campbell, G. Rare Earth Element Mine Development in EPA Region 8 and Potential Environmental Impacts. Available online: https://nepis.epa.gov/Exe/ZyNET.exe/P100FHSY.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2011+Thru+2015&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C11thru15%5CTxt%5C00000006%5CP100FHSY.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL (accessed on 22 June 2023).
- Sarfo, P.; Frasz, T.; Das, A.; Young, C. Hydrometallurgical Recovery and Process Optimization of Rare Earth Fluorides from Recycled Magnets. Minerals 2020, 10, 340. [Google Scholar] [CrossRef] [Green Version]
- Yoon, H.S.; Kim, C.J.; Chung, K.W.; Kim, S.D.; Kumar, J.R. Process Development for Recovery of Dysprosium from Permanent Magnet Scraps Leach Liquor by Hydrometallurgical Techniques. Can. Met. Q. 2016, 54, 318–327. [Google Scholar] [CrossRef]
- Yoon, H.S.; Kim, C.J.; Chung, K.W.; Kim, S.D.; Lee, J.Y.; Kumar, J.R. Solvent Extraction, Separation and Recovery of Dysprosium (Dy) and Neodymium (Nd) from Aqueous Solutions: Waste Recycling Strategies for Permanent Magnet Processing. Hydrometallurgy 2016, 165, 27–43. [Google Scholar] [CrossRef]
- Kubra, K.T.; Hasan, M.M.; Hasan, M.N.; Salman, M.S.; Khaleque, M.A.; Sheikh, M.C.; Rehan, A.I.; Rasee, A.I.; Waliullah, R.M.; Awual, M.E.; et al. The Heavy Lanthanide of Thulium(III) Separation and Recovery Using Specific Ligand-Based Facial Composite Adsorbent. Colloids Surf. A Physicochem. Eng. Asp. 2023, 667, 131415. [Google Scholar] [CrossRef]
- Awual, M.R.; Hasan, M.N.; Hasan, M.M.; Salman, M.S.; Sheikh, M.C.; Kubra, K.T.; Islam, M.S.; Marwani, H.M.; Islam, A.; Khaleque, M.A.; et al. Green and Robust Adsorption and Recovery of Europium(III) with a Mechanism Using Hybrid Donor Conjugate Materials. Sep. Purif. Technol. 2023, 319, 124088. [Google Scholar] [CrossRef]
- Acharya, J.; Kumar, U.; Meikap, B.C. Thermodynamic Spectral and Kinetic Analysis of the Removal of Cu(II) from Aqueous Solution by Sodium Carbonate Treated Rice Husk. J. Environ. Sci. Health A Tox Hazard. Subst. Environ. Eng. 2019, 54, 801–809. [Google Scholar] [CrossRef]
- Kumar Kalita, P.; Kanwar, R.; Ordóñez, J.I.; Cortés, S.; Maluenda, P.; Soto, I. Biosorption of Heavy Metals with Algae: Critical Review of Its Application in Real Effluents. Sustainability 2023, 15, 5521. [Google Scholar] [CrossRef]
- Heilmann, M.; Breiter, R.; Becker, A.M. Towards Rare Earth Element Recovery from Wastewaters: Biosorption Using Phototrophic Organisms. Appl. Microbiol. Biotechnol. 2021, 105, 5229–5239. [Google Scholar] [CrossRef] [PubMed]
- Paper, M.; Koch, M.; Jung, P.; Lakatos, M.; Nilges, T.; Brück, T.B. Rare Earths Stick to Rare Cyanobacteria: Future Potential for Bioremediation and Recovery of Rare Earth Elements. Front. Bioeng. Biotechnol. 2023, 11, 1130939. [Google Scholar] [CrossRef]
- Das, N.; Das, D. Recovery of Rare Earth Metals through Biosorption: An Overview. J. Rare Earths 2013, 31, 933–943. [Google Scholar] [CrossRef]
- Viana, T.; Henriques, B.; Ferreira, N.; Lopes, C.; Tavares, D.; Fabre, E.; Carvalho, L.; Pinheiro-Torres, J.; Pereira, E. Sustainable Recovery of Neodymium and Dysprosium from Waters through Seaweeds: Influence of Operational Parameters. Chemosphere 2021, 280, 130600. [Google Scholar] [CrossRef]
- Lewis, A.; Guéguen, C. Using Chemometric Models to Predict the Biosorption of Low Levels of Dysprosium by Euglena Gracilis. Environ. Sci. Pollut. Res. Int. 2022, 29, 58936–58949. [Google Scholar] [CrossRef] [PubMed]
- Yushin, N.; Zinicovscaia, I.; Cepoi, L.; Chiriac, T.; Rudi, L.; Grozdov, D. Biosorption and Bioaccumulation Capacity of Arthrospira Platensis toward Yttrium Ions. Metals 2022, 12, 1465. [Google Scholar] [CrossRef]
- Ghorbani, E.; Nowruzi, B.; Nezhadali, M.; Hekmat, A. Metal removal capability of two cyanobacterial species in autotrophic and mixotrophic mode of nutrition. BMC Microbiol. 2022, 22, 58. [Google Scholar] [CrossRef] [PubMed]
- Qing, S.H.U.; Liao, C.F.; Zou, W.Q.; Xu, B.Q.; Tan, Y.H. hui Recovery of Rare Earth Element Ytterbium(III) by Dried Powdered Biomass of Spirulina: Adsorption Isotherm, Kinetic and Thermodynamic Study. Trans. Nonferrous Met. Soc. China 2021, 31, 1127–1139. [Google Scholar] [CrossRef]
- Kihara, M.; Ojima, Y.; Azuma, M. Adsorption of Rare Earth Ions from Synthetic Seawater and Hot Spring Water Using Phosphorylated Yeast. Environ. Technol. Innov. 2023, 30, 103093. [Google Scholar] [CrossRef]
- MacHado, M.D.; Janssens, S.; Soares, H.M.V.M.; Soares, E.V. Removal of Heavy Metals Using a Brewer’s Yeast Strain of Saccharomyces Cerevisiae: Advantages of Using Dead Biomass. J. Appl. Microbiol. 2009, 106, 1792–1804. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Grozdov, D.; Yushin, N.; Abdusamadzoda, D.; Gundorina, S.; Rodlovskaya, E.; Kristavchuk, O. Metal Removal from Chromium Containing Synthetic Effluents by Saccharomyces Cerevisiae. Desalination Water Treat. 2020, 178, 254–270. [Google Scholar] [CrossRef]
- Di Caprio, F.; Altimari, P.; Zanni, E.; Uccelletti, D.; Toro, L.; Pagnanelli, F. Lanthanum Biosorption by Different Saccharomyces Cerevisiae Strains. Chem. Eng. Trans. 2016, 49, 37–42. [Google Scholar] [CrossRef]
- Ojima, Y.; Kosako, S.; Kihara, M.; Miyoshi, N.; Igarashi, K.; Azuma, M. Recovering Metals from Aqueous Solutions by Biosorption onto Phosphorylated Dry Baker’s Yeast. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lima, É.C.; Pinto, D.; Schadeck Netto, M.; Dos Reis, G.S.; Silva, L.F.O.; Dotto, G.L. Biosorption of Neodymium (Nd) from Aqueous Solutions Using Spirulina Platensis Sp. Strains. Polymers 2022, 14, 4585. [Google Scholar] [CrossRef]
- Sadovsky, D.; Brenner, A.; Astrachan, B.; Asaf, B.; Gonen, R. Biosorption Potential of Cerium Ions Using Spirulina Biomass. J. Rare Earths 2016, 34, 644–652. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Yushin, N.; Grozdov, D.; Vergel, K.; Nekhoroshkov, P.; Rodlovskaya, E. Treatment of Rhenium-Containing Effluents Using Environmentally Friendly Sorbent, Saccharomyces Cerevisiae Biomass. Materials 2021, 14, 4763. [Google Scholar] [CrossRef]
- Siva Kumar, N.; Woo, H.S.; Min, K. Equilibrium and Kinetic Studies on Biosorption of 2,4,6-Trichlorophenol from Aqueous Solutions by Acacia Leucocephala Bark. Colloids Surf. B Biointerfaces 2012, 94, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Zinicovscaia, I.; Yushin, N.; Abdusamadzoda, D.; Grozdov, D.; Shvetsova, M. Efficient Removal of Metals from Synthetic and Real Galvanic Zinc-Containing Effluents by Brewer’s Yeast Saccharomyces Cerevisiae. Materials 2020, 13, 3624. [Google Scholar] [CrossRef] [PubMed]
- Qadeer, R.; Hanif, J. Adsorption of Dysprosium Ions on Activated Charcoal from Aqueous Solutions. Carbon. N. Y. 1995, 33, 215–220. [Google Scholar] [CrossRef]
- Alzahrani, O.M.; Abo-Amer, A.E.; Mohamed, R.M. Improvement of Zn (II) and Cd (II) Biosorption by Priestia Megaterium PRJNA526404 Isolated from Agricultural Waste Water. Microorganisms 2022, 10, 2510. [Google Scholar] [CrossRef]
- Ponou, J.; Wang, L.P.; Dodbiba, G.; Matuo, S.; Okaya, K.; Fujit, T. Recovery of Dysprosium Ions by Biosorption-Desorption OntoOrganic Plants Wastes. Int. J. Soc. Mater. Eng. Resour. 2014, 20, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, M.; Suresh, S.; Garg, A. Tea Waste Derived Activated Carbon for the Adsorption of Sodium Diclofenac from Wastewater: Adsorbent Characteristics, Adsorption Isotherms, Kinetics, and Thermodynamics. Environ. Sci. Pollut. Res. Int. 2018, 25, 32210–32220. [Google Scholar] [CrossRef]
- Oves, M.; Khan, M.S.; Zaidi, A. Biosorption of Heavy Metals by Bacillus Thuringiensis Strain OSM29 Originating from Industrial Effluent Contaminated North Indian Soil. Saudi J. Biol. Sci. 2013, 20, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Chen, S.; Li, Y.; He, Z.; Geng, L.; Liao, L. Aqueous Cu( Ii ) Ion Adsorption by Amino-Functionalized Mesoporous Silica KIT-6. RSC Adv. 2020, 10, 20504–20514. [Google Scholar] [CrossRef]
- Asuquo, E.; Martin, A.; Nzerem, P.; Siperstein, F.; Fan, X. Adsorption of Cd(II) and Pb(II) Ions from Aqueous Solutions Using Mesoporous Activated Carbon Adsorbent: Equilibrium, Kinetics and Characterisation Studies. J. Environ. Chem. Eng. 2017, 5, 679–698. [Google Scholar] [CrossRef] [Green Version]
- Zinicovscaia, I.; Cepoi, L.; Chiriac, T.; Mitina, T.; Grozdov, D.; Yushin, N.; Culicov, O. Application of Arthrospira (Spirulina) Platensis Biomass for Silver Removal from Aqueous Solutions. Int. J. Phytoremediation 2017, 19, 1053–1058. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Yushin, N.; Grozdov, D.; Rodlovskaya, E.; Khiem, L.H. Yeast—As Bioremediator of Silver-Containing Synthetic Effluents. Bioengineering 2023, 10, 398. [Google Scholar] [CrossRef] [PubMed]
- El-Maghrabi, H.H.; Younes, A.A.; Salem, A.R.; Rabie, K.; El-shereafy, E. sayed Magnetically Modified Hydroxyapatite Nanoparticles for the Removal of Uranium (VI): Preparation, Characterization and Adsorption Optimization. J. Hazard. Mater. 2019, 378, 120703. [Google Scholar] [CrossRef] [PubMed]
- Yushin, N.; Zinicovscaia, I.; Cepoi, L.; Chiriac, T.; Rudi, L.; Grozdov, D. Biosorption and Bioaccumulation Capacity of Arthospira platensis toward Europium Ions. Water 2022, 14, 2128. [Google Scholar] [CrossRef]
- Yushin, N.; Zinicovscaia, I.; Cepoi, L.; Chiriac, T.; Rudi, L.; Grozdov, D. Application of Cyanobacteria Arthospira platensis for Bioremediation of Erbium-Contaminated Wastewater. Materials 2022, 15, 6101. [Google Scholar] [CrossRef]
- Samadi, N.; Hasanzadeh, R.; Rasad, M. Adsorption Isotherms, Kinetic, and Desorption Studies on Removal of Toxic Metal Ions from Aqueous Solutions by Polymeric Adsorbent. J. Appl. Polym. Sci. 2015, 132, 132. [Google Scholar] [CrossRef]
- Kalam, S.; Abu-Khamsin, S.A.; Kamal, M.S.; Patil, S. Surfactant Adsorption Isotherms: A Review. ACS Omega 2021, 6, 32342–32348. [Google Scholar] [CrossRef]
- Mustapha, S.; Shuaib, D.T.; Ndamitso, M.M.; Etsuyankpa, M.B.; Sumaila, A.; Mohammed, U.M.; Nasirudeen, M.B. Adsorption Isotherm, Kinetic and Thermodynamic Studies for the Removal of Pb(II), Cd(II), Zn(II) and Cu(II) Ions from Aqueous Solutions Using Albizia Lebbeck Pods. Appl. Water Sci. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Masry, B.A.; Abu Elgoud, E.M.; Rizk, S.E. Modeling and Equilibrium Studies on the Recovery of Praseodymium (III), Dysprosium (III) and Yttrium (III) Using Acidic Cation Exchange Resin. BMC Chem. 2022, 16, 1–12. [Google Scholar] [CrossRef]
- Wu, F.C.; Tseng, R.L.; Juang, R.S. Characteristics of Elovich Equation Used for the Analysis of Adsorption Kinetics in Dye-Chitosan Systems. Chem. Eng. J. 2009, 150, 366–373. [Google Scholar] [CrossRef]
- Adeogun, A.I.; Idowu, M.A.; Ofudje, A.E.; Kareem, S.O.; Ahmed, S.A. Comparative Biosorption of Mn(II) and Pb(II) Ions on Raw and Oxalic Acid Modified Maize Husk: Kinetic, Thermodynamic and Isothermal Studies. Appl. Water Sci. 2013, 3, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Mo, S.; Li, R.; Li, J.; Tian, C.; Liu, W.; Wang, Y. Effective Removal of the Rare Earth Element Dysprosium from Wastewater with Polyurethane Sponge-Supported Graphene Oxide–Titanium Phosphate. Environ. Chem. Lett. 2021, 19, 719–728. [Google Scholar] [CrossRef]
Isotherms | ||||||
---|---|---|---|---|---|---|
Biosorbent | Langmuir | Freundlich | ||||
qm | b | R2 | KF | n | R2 | |
Spirulina platensis | 3.24 ± 0.42 | 0.03 ± 0.01 | 0.95 | 0.37 ± 0.16 | 2.36 ± 0.61 | 0.89 |
Saccharomyces cerevisiae | 5.84 ± 0.68 | 0.017 ± 0.004 | 0.98 | 0.29 ± 0.07 | 1.78 ± 0.18 | 0.97 |
Sorbent | pH | q, mg/g | Reference |
---|---|---|---|
Spirulina platensis | 3.0 | 3.24 | Present work |
Saccharomyces cerevisiae | 3.0 | 5.84 | Present work |
AC-CA | 4.0 | 28.11 | [1] |
Imprinted mesoporous silica | 2.0 | 27.24 | [6] |
AC-PA | 4.0 | 29.05 | [1] |
Mangifera indica | 3.0 | 92 | [3] |
Dowex 50WX8 | 3.0 | 50 | [51] |
Euglena gracilis | 3.0 | 0.027 | [22] |
Hybrid donor functionalized alumina-silica-based nanomaterial | 4.0 | 125.44 | [5] |
Kinetics | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sorbent | Pseudo-First Order | Pseudo-Second Order | Elovich | ||||||
qe | k1 | R2 | qe | k2 | R2 | α | β | R2 | |
Spirulina platensis | 0.61 ± 0.01 | 0.17 ± 0.03 | 0.97 | 0.66 ± 0.01 | 0.38 ± 0.06 | 0.99 | 1.91 ± 1.64 | 11.6 ± 1.7 | 0.98 |
Saccharomyces cerevisiae | 0.79 ± 0.02 | 0.29 ± 0.05 | 0.98 | 0.83 ± 0.01 | 0.64 ± 0.13 | 0.99 | 91.50 ± 8.82 | 13.8 ± 1.3 | 0.99 |
Sorbent | Temperature, K | ΔG°, kJ/mol | ΔH°, kJ/mol | ΔS°, J/mol·K |
---|---|---|---|---|
Spirulina platensis | 293 | −9.8 | 89 | 34 |
303 | −10.2 | |||
313 | −10.6 | |||
323 | −11.0 | |||
Saccharomyces cerevisiae | 293 | −10.3 | −91 | 35 |
303 | −10.6 | |||
313 | −11 | |||
323 | −11.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinicovscaia, I.; Yushin, N.; Grozdov, D.; Peshkova, A.; Vergel, K.; Rodlovskaya, E. The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae. Microorganisms 2023, 11, 2009. https://doi.org/10.3390/microorganisms11082009
Zinicovscaia I, Yushin N, Grozdov D, Peshkova A, Vergel K, Rodlovskaya E. The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae. Microorganisms. 2023; 11(8):2009. https://doi.org/10.3390/microorganisms11082009
Chicago/Turabian StyleZinicovscaia, Inga, Nikita Yushin, Dmitrii Grozdov, Alexandra Peshkova, Konstantin Vergel, and Elena Rodlovskaya. 2023. "The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae" Microorganisms 11, no. 8: 2009. https://doi.org/10.3390/microorganisms11082009
APA StyleZinicovscaia, I., Yushin, N., Grozdov, D., Peshkova, A., Vergel, K., & Rodlovskaya, E. (2023). The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae. Microorganisms, 11(8), 2009. https://doi.org/10.3390/microorganisms11082009