The Unicellular, Parasitic Fungi, Sanchytriomycota, Possess a DNA Sequence Possibly Encoding a Long Tubulin Polymerization Promoting Protein (TPPP) but Not a Fungal-Type One
Abstract
:1. Introduction
2. Methods
2.1. Database Homology Search
2.2. Phylogenetic Analysis
2.3. Prediction of Unstructured Regions
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- James, T.Y.; Kauff, F.; Schoch, C.L.; Matheny, P.B.; Hofstetter, V.; Cox, C.J.; Celio, G.; Gueidan, C.; Fraker, E.; Miadlikowska, J.; et al. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 2006, 443, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Hodson, M.C.; Hall, B.D. Loss of the flagellum happened only once in the fungal lineage: Phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes. BMC Evol. Biol. 2006, 6, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galindo, L.J.; López-García, P.; Torruella, G.; Karpov, S.; Moreira, D. Phylogenomics of a new fungal phylum reveals multiple waves of reductive evolution across Holomycota. Nat. Commun. 2021, 12, 4973. [Google Scholar] [CrossRef] [PubMed]
- Ustinova, I.; Krienitz, L.; Huss, V.A. Hyaloraphidium curvatum is not a green alga, but a lower fungus; Amoebidium parasiticum is not a fungus, but a member of the DRIPs. Protist 2000, 151, 253–262. [Google Scholar] [CrossRef] [PubMed]
- James, T.Y.; Letcher, P.M.; Longcore, J.E.; Mozley-Standridge, S.E.; Porter, D.; Powell, M.J.; Griffith, G.W.; Vilgalys, R. A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia 2006, 98, 860–871. [Google Scholar] [CrossRef]
- Hibbett, D.S.; Binder, M.; Bischoff, J.F.; Blackwell, M.; Cannon, P.F.; Eriksson, O.E.; Huhndorf, S.; James, T.; Kirk, P.M.; Lücking, R.; et al. A higher-level phylogenetic classification of the Fungi. Mycol. Res. 2007, 111, 509–547. [Google Scholar] [CrossRef]
- Jones, M.D.; Forn, I.; Gadelha, C.; Egan, M.J.; Bass, D.; Massana, R.; Richards, T.A. Discovery of novel intermediate forms redefines the fungal tree of life. Nature 2011, 474, 200–203. [Google Scholar] [CrossRef]
- Tedersoo, L.; Sánchez-Ramírez, S.; Kõljalg, U.; Bahram, M.; Döring, M.; Schigel, D.; May, T.; Ryberg, M.; Abarenkov, K. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers. 2018, 90, 135–159. [Google Scholar] [CrossRef] [Green Version]
- James, T.Y.; Pelin, A.; Bonen, L.; Ahrendt, S.; Sain, D.; Corradi, N.; Stajich, J.E. Shared signatures of parasitism and phylogenomics unite Cryptomycota and microsporidia. Curr. Biol. 2013, 23, 1548–1553. [Google Scholar] [CrossRef] [Green Version]
- Karpov, S.A.; Mikhailov, K.V.; Mirzaeva, G.S.; Mirabdullaev, I.M.; Mamkaeva, K.A.; Titova, N.N.; Aleoshin, V.V. Obligately phagotrophic aphelids turned out to branch with the earliest-diverging fungi. Protist 2013, 164, 195–205. [Google Scholar] [CrossRef]
- Galindo, L.J.; Torruella, G.; López-García, P.; Ciobanu, M.; Gutiérrez-Preciado, A.; Karpov, S.A.; Moreira, D. Phylogenomics supports the monophyly of Aphelids and Fungi and identifies new molecular synapomorphies. Syst. Biol. 2023, 72, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Orosz, F. On the TPPP-like proteins of flagellated Fungi. Fungal Biol. 2021, 125, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Mikhailov, K.V.; Karpov, S.A.; Letcher, P.M.; Lee, P.A.; Logacheva, M.D.; Penin, A.A.; Nesterenko, M.A.; Pozdnyakov, I.R.; Potapenko, E.V.; Sherbakov Panchin, Y.V.; et al. Genomic analysis reveals cryptic diversity in aphelids and sheds light on the emergence of Fungi. Curr. Biol. 2022, 32, 4607–4619. [Google Scholar] [CrossRef] [PubMed]
- Morrissette, N.S.; Abbaali, I.; Ramakrishnan, C.; Hehl, A.B. The tubulin superfamily in apicomplexan parasites. Microorganisms 2023, 11, 706. [Google Scholar] [CrossRef]
- Avidor-Reiss, T.; Maer, A.M.; Koundakjian, E.; Polyanovsky, A.; Keil, T.; Subramaniam, S.; Zuker, C.S. Decoding cilia function: Defining specialized genes required for compartmentalized cilia biogenesis. Cell 2004, 117, 527–539. [Google Scholar] [CrossRef] [Green Version]
- Orosz, F.; Ovádi, J. TPPP orthologs are ciliary proteins. FEBS Lett. 2008, 582, 3757–3764. [Google Scholar] [CrossRef] [Green Version]
- Orosz, F. A new protein superfamily: TPPP-like proteins. PLoS ONE 2012, 7, e49276. [Google Scholar] [CrossRef] [Green Version]
- Ikadai, H.; Shaw Saliba, K.; Kanzok, S.M.; McLean, K.J.; Tanaka, T.Q.; Cao, J.; Williamson, K.C.; Jacobs-Lorena, M. Transposon mutagenesis identifies genes essential for Plasmodium falciparum gametocytogenesis. Proc. Natl. Acad. Sci. USA 2013, 110, E1676–E1684. [Google Scholar] [CrossRef]
- Tammana, D.; Tammana, T.V.S. Chlamydomonas FAP265 is a tubulin polymerization promoting protein, essential for flagellar reassembly and hatching of daughter cells from the sporangium. PLoS ONE 2017, 12, e0185108. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, D.; Meng, Z.; Zhou, J.; Min, Z.; Deng, S.; Shen, J.; Liu, M. Pyp25α is required for male gametocyte exflagellation. Pathog. Dis. 2022, 80, ftac043. [Google Scholar] [CrossRef]
- Orosz, F. Apicortin, a unique protein, with a putative cytoskeletal role, shared only by apicomplexan parasites and the placozoan Trichoplax adhaerens. Infect. Genet. Evol. 2009, 9, 1275–1286. [Google Scholar] [CrossRef]
- Orosz, F. Tubulin Polymerization Promoting Proteins (TPPPs) of Aphelidiomycota: Correlation between the incidence of p25alpha domain and the eukaryotic flagellum. J. Fungi 2023, 9, 376. [Google Scholar] [CrossRef] [PubMed]
- Orosz, F. On the TPPP protein of the enigmatic fungus, Olpidium—Correlation between the incidence of p25alpha domain and that of the eukaryotic flagellum. Int. J. Mol. Sci. 2022, 23, 13927. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixture models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whelan, S.; Goldman, N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 2001, 18, 691–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdős, G.; Pajkos, M.; Dosztányi, Z. IUPred3: Prediction of protein disorder enhanced with unambiguous experimental annotation and visualization of evolutionary conservation. Nucleic Acids Res. 2021, 49, W297–W303. [Google Scholar] [CrossRef] [PubMed]
- Karpov, S.A.; Mamanazarova, K.S.; Popova, O.V.; Aleoshin, V.V.; James, T.Y.; Mamkaeva, M.A.; Tcvetkova, V.S.; Vishnyakov, A.E.; Longcore, J.E. Monoblepharidomycetes diversity includes new parasitic and saprotrophic species with highly intronized rDNA. Fungal Biol. 2017, 121, 729–741. [Google Scholar] [CrossRef]
- Karpov, S.A.; López-García, P.; Mamkaeva, M.A.; Klimov, V.I.; Vishnyakov, A.E.; Tcvetkova, V.S.; Moreira, D. The chytrid-like parasites of algae Amoeboradix gromovi gen. et sp. nov. and Sanchytrium tribonematis belong to a new fungal lineage. Protist 2018, 169, 122–140. [Google Scholar] [CrossRef]
- Karpov, S.A.; Vishnyakov, A.E.; Moreira, D.; López-García, P. The ultrastructure of Sanchytrium tribonematis (Sanchytriaceae, Fungi incertae sedis) confirms its close relationship to amoeboradix. J. Eukaryot. Microbiol. 2019, 66, 892–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherffel, A. Endophytische Phycomyceten-Parasiten der Bacillareaceen und einige neue Monadinen. Ein Beitrag zur Phylogenieder Oomyceten (Schroter). Arch. Protistenkd. 1925, 52, 1–141. [Google Scholar]
- Karpov, S.A.; Tcvetkova, V.S.; Mamkaeva, M.A.; Torruella, G.; Timpano, H.; Moreira, D.; Mamanazarova, K.S.; López-García, P. Morphological and genetic diversity of Opisthosporidia: New aphelid Paraphelidium tribonemae gen. et sp. nov. J. Eukaryot. Microbiol. 2017, 64, 204–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letcher, P.-M.; Powell, M.J. A taxonomic summary of Aphelidiaceae. IMA Fungus 2019, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- Torruella, G.; Grau-Bové, X.; Moreira, D.; Karpov, S.A.; Burns, J.A.; Sebé-Pedrós, A.; Völcker, E.; López-García, P. Global transcriptome analysis of the aphelid Paraphelidium tribonematis supports the phagotrophic origin of fungi. Commun. Biol. 2018, 1, 231. [Google Scholar] [CrossRef] [Green Version]
- Letcher, P.M.; Powell, M.J.; Lopez, S.; Lee, P.A.; McBride, R.C. A new isolate of Amoeboaphelidium protococcarum, and Amoeboaphelidium occidentale, a new species in phylum Aphelida (Opisthosporidia). Mycologia 2015, 107, 522–531. [Google Scholar] [CrossRef]
- Hlavanda, E.; Klement, E.; Kókai, E.; Kovács, J.; Vincze, O.; Tökési, N.; Orosz, F.; Medzihradszky, K.F.; Dombrádi, V.; Ovádi, J. Phosphorylation blocks the activity of tubulin polymerization-promoting protein (TPPP): Identification of sites targeted by different kinases. J. Biol. Chem. 2007, 282, 29531–29539. [Google Scholar] [CrossRef] [Green Version]
- Tőkési, N.; Oláh, J.; Hlavanda, E.; Szunyogh, S.; Szabó, A.; Babos, F.; Magyar, A.; Lehotzky, A.; Vass, E.; Ovádi, J. Identification of motives mediating alternative functions of the neomorphic moonlighting TPPP/p25. Biochim. Biophys. Acta 2014, 1842, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Oláh, J.; Szénási, T.; Szabó, A.; Kovács, K.; Lőw, P.; Štifanić, M.; Orosz, F. Tubulin binding and polymerization promoting properties of Tubulin Polymerization Promoting Proteins are evolutionarily conserved. Biochemistry 2017, 56, 1017–1024. [Google Scholar] [CrossRef]
- Romero, P.; Obradovic, Z.; Li, X.; Garner, E.C.; Brown, C.J.; Dunker, A.K. Proteins. Sequence complexity of disordered protein. Proteins 2001, 42, 38–48. [Google Scholar] [CrossRef]
- Tompa, P. Intrinsically unstructured proteins. Trends Biochem. Sci. 2002, 27, 527–533. [Google Scholar] [CrossRef]
- Youssef, N.H.; Couger, M.B.; Struchtemeyer, C.G.; Liggenstoffer, A.S.; Prade, R.A.; Najar, F.Z.; Atiyeh, H.K.; Wilkins, M.R.; Elshahed, M.S. The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl. Environ. Microbiol. 2013, 79, 4620–4634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonnhammer, E.L.; Koonin, E.V. Orthology, paralogy and proposed classification for paralog subtypes. Trends Genet. 2002, 18, 619–620. [Google Scholar] [CrossRef] [PubMed]
- Mill, P.; Christensen, S.T.; Pedersen, L.B. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat. Rev. Genet. 2023, 24, 421–441. [Google Scholar] [CrossRef]
- May-Simera, H.; Nagel-Wolfrum, K.; Wolfrum, U. Cilia—The sensory antennae in the eye. Prog. Retin. Eye Res. 2017, 60, 144–180. [Google Scholar] [CrossRef]
- Chen, H.Y.; Kelley, R.A.; Li, T.; Swaroop, A. Primary cilia biogenesis and associated retinal ciliopathies. Semin. Cell Dev. Biol. 2021, 110, 70–88. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tan, G.; Levenkova, N.; Li, T.; Pugh, E.N., Jr.; Rux, J.J.; Speicher, D.W.; Pierce, E.A. The proteome of the mouse photoreceptor sensory cilium complex. Mol. Cell. Proteom. 2007, 6, 1299–1317. [Google Scholar] [CrossRef] [Green Version]
Scientific Name 1 | Accession No. | Phylum | E-Value 2 | Query Cover | Identity | Length 3 |
---|---|---|---|---|---|---|
Suberites domuncula | ADX30619 | Porifera | 2 × 10−39 | 96% | 47.43% | 180 |
Hydra vulgaris | XP_047138925 | Cnidaria | 2 × 10−36 | 87% | 49.06% | 167 |
Amphimedon queenslandica | XP_003384590 | Porifera | 2 × 10−35 | 90% | 47.56% | 183 |
Chytridiales sp. JEL 0842 | KAJ3407993 | Chytridiomycota | 3 × 10−34 | 93% | 45.35% | 507 |
Lytechinus variegatus | XP_041483006 | Echinodermata | 3 × 10−34 | 91% | 44.58% | 171 |
Strongylocentrotus purpuratus | XP_782492 | Echinodermata | 7 × 10−34 | 90% | 46.34% | 171 |
Acanthaster planci | XP_022082363 | Echinodermata | 1 × 10−33 | 91% | 45.51% | 172 |
Xenia sp. Carnegie-2017 | XP_046842992 | Cnidaria | 1 × 10−33 | 90% | 44.24% | 171 |
Paraphysoderma sedebokerense | KAI9140125 | Blastocladiomycota | 2 × 10−33 | 92% | 44.13% | 330 |
Stylophora pistillata | XP_022794224 | Cnidaria | 2 × 10−33 | 91% | 45.78% | 172 |
Exaiptasia diaphana | XP_020906468 | Cnidaria | 4 × 10−33 | 91% | 45.18% | 172 |
Amoeboaphelidium protococcarum | KAI3639621 | Aphelidiomycota | 8 × 10−33 | 97% | 42.94% | 190 |
A. protococcarum | KAI3650757 | Aphelidiomycota | 3 × 10−32 | 97% | 42.94% | 190 |
Orbicella faveolata | XP_020610915 | Cnidaria | 3 × 10−32 | 91% | 45.51% | 172 |
A. protococcarum | KAI3631655 4 | Aphelidiomycota | 4 × 10−32 | 97% | 42.94% | 190 |
Batrachochytrium dendrobatidis | OAJ42615 | Chytridiomycota | 6 × 10−32 | 98% | 41.58% | 258 |
B. dendrobatidis | XP_006680205 4 | Chytridiomycota | 2 × 10−31 | 92% | 43.50% | 289 |
B. dendrobatidis | OAJ42613 | Chytridiomycota | 2 × 10−31 | 92% | 43.50% | 299 |
Acropora millepora | XP_029200582 | Cnidaria | 2 × 10−31 | 91% | 44.58% | 172 |
Acropora digitifera | XP_015755004 | Cnidaria | 4 × 10−31 | 91% | 44.58% | 172 |
A. protococcarum | KAI3652328 | Aphelidiomycota | 5 × 10−31 | 97% | 42.37% | 190 |
Anneissia japonica | XP_033097468 | Echinodermata | 1 × 10−30 | 91% | 43.37% | 171 |
Dendronephthya gigantea | XP_028409959 | Cnidaria | 1 × 10−30 | 90% | 46.95% | 205 |
Paramuricea clavata | CAB4022691 | Cnidaria | 2 × 10−30 | 90% | 46.67% | 171 |
Lamellibrachia satsuma | KAI0228059 | Annelida | 9 × 10−30 | 90% | 42.59% | 160 |
Scientific Name 1 | Accession No. | Phylum | E-Value 2 | Query Cover | Identity | Length 3 |
---|---|---|---|---|---|---|
Hydra vulgaris | XP_047138925 | Cnidaria | 9 × 10−41 | 88% | 53.25% | 167 |
Suberites domuncula | ADX30619 | Porifera | 7 × 10−39 | 95% | 48.21% | 180 |
Amphimedon queenslandica | XP_003384590 | Porifera | 6 × 10−38 | 87% | 50.66% | 183 |
Lamellibrachia satsuma | KAI0228059 | Annelida | 5 × 10−36 | 88% | 46.10% | 160 |
Paraphysoderma sedebokerense | KAI9140125 | Blastocladiomycota | 8 × 10−35 | 94% | 41.81% | 330 |
Xenia sp. Carnegie-2017 | XP_046842992 | Cnidaria | 2 × 10−34 | 91% | 45.68% | 171 |
Helobdella robusta | XP_009017134 | Annelida | 1 × 10−33 | 88% | 45.57% | 160 |
Lytechinus pictus | XP_054770705 | Echinodermata | 1 × 10−33 | 93% | 47.56% | 170 |
Capitella teleta | ELU16892 | Annelida | 2 × 10−33 | 90% | 47.50% | 169 |
Batrachochytrium dendrobatidis | KAJ8323001 | Chytridiomycota | 6 × 10−33 | 98% | 41.53% | 258 |
Paramuricea clavata | CAB4022691 | Cnidaria | 1 × 10−32 | 91% | 48.12% | 171 |
Strongylocentrotus purpuratus | XP_782492 | Echinodermata | 1 × 10−32 | 91% | 45.62% | 171 |
Lytechinus variegatus | XP_041483006 | Echinodermata | 1 × 10−32 | 93% | 46.34% | 171 |
B. dendrobatidis | XP_006680205 | Chytridiomycota | 2 × 10−32 | 98% | 41.53% | 289 |
B. dendrobatidis | OAJ42613 | Chytridiomycota | 2 × 10−32 | 98% | 41.53% | 299 |
Gigantopelta aegis | XP_041378691 | Mollusca | 3 × 10−32 | 89% | 44.87% | 182 |
Dendronephthya gigantea | XP_028409959 | Cnidaria | 3 × 10−32 | 88% | 49.68% | 205 |
Acanthaster planci | XP_022082363 | Echinodermata | 7 × 10−32 | 91% | 45.62% | 172 |
Exaiptasia diaphana | XP_020906468 | Cnidaria | 7 × 10−32 | 91% | 45.00% | 172 |
Amoeboaphelidium protococcarum | KAI3639621 | Aphelidiomycota | 1 × 10−31 | 85% | 44.97% | 190 |
Chytridiales sp. JEL 0842 | KAJ3407993 | Chytridiomycota | 2 × 10−31 | 98% | 42.61% | 507 |
Orbicella faveolata | XP_020610915 | Cnidaria | 5 × 10−31 | 91% | 44.38% | 172 |
Hydractinia symbiolongicarpus | XP_057291302 | Cnidaria | 1 × 10−30 | 93% | 45.83% | 164 |
Clydaea vesicula | KAJ3223392 | Chytridiomycota | 5 × 10−30 | 98% | 42.39% | 314 |
Stylophora pistillata | XP_022794224 | Cnidaria | 7 × 10−30 | 93% | 45.12% | 172 |
Gigantopelta aegis | XP_041378692 | Mollusca | 8 × 10−30 | 87% | 46.41% | 163 |
A. protococcarum | KAI3650757 | Aphelidiomycota | 9 × 10−30 | 85% | 44.30% | 190 |
Phylum/Genus (Species) | TPPP-Like Protein | Flagellum | ||
---|---|---|---|---|
Long TPPP (Animal Type) | Fungal-Type TPPP | Apicortin | ||
Rozellomycota | Yes | No | Yes | Yes |
Aphelidiomycota | Yes | Yes | No | Yes |
Aphelidium | No | Yes | No | Yes |
Paraphelidium | No | Yes | No | Yes |
Amoeboaphelidium protococcorum | Yes | No | No | Pseudocilium |
Amoeboaphelidium occidentale | No | No | No | Pseudocilium |
Neocallimastigomycota | No | No | Yes | Yes |
Orpinomyces sp. | No | No | No | Yes |
Monoblepharomycota | No | Yes | Yes | Yes |
Gonapodya | No | Yes 1 | Yes | Yes |
Hyaloraphidium curvatum | No | No | No | No |
Chytridiomycota | Yes | Yes | Yes | Yes |
Olpidiomycota | No | Yes | No | Yes |
Blastocladiomycota | No | Yes | No | Yes |
Sanchytriomycota | Yes | No | No | Pseudocilium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orosz, F. The Unicellular, Parasitic Fungi, Sanchytriomycota, Possess a DNA Sequence Possibly Encoding a Long Tubulin Polymerization Promoting Protein (TPPP) but Not a Fungal-Type One. Microorganisms 2023, 11, 2029. https://doi.org/10.3390/microorganisms11082029
Orosz F. The Unicellular, Parasitic Fungi, Sanchytriomycota, Possess a DNA Sequence Possibly Encoding a Long Tubulin Polymerization Promoting Protein (TPPP) but Not a Fungal-Type One. Microorganisms. 2023; 11(8):2029. https://doi.org/10.3390/microorganisms11082029
Chicago/Turabian StyleOrosz, Ferenc. 2023. "The Unicellular, Parasitic Fungi, Sanchytriomycota, Possess a DNA Sequence Possibly Encoding a Long Tubulin Polymerization Promoting Protein (TPPP) but Not a Fungal-Type One" Microorganisms 11, no. 8: 2029. https://doi.org/10.3390/microorganisms11082029
APA StyleOrosz, F. (2023). The Unicellular, Parasitic Fungi, Sanchytriomycota, Possess a DNA Sequence Possibly Encoding a Long Tubulin Polymerization Promoting Protein (TPPP) but Not a Fungal-Type One. Microorganisms, 11(8), 2029. https://doi.org/10.3390/microorganisms11082029