Correlating the Gut Microbiota and Circulating Hormones with Acne Lesion Counts and Skin Biophysical Features
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Study Visits and Procedures
2.3. Gut Microbiome Sequencing and Analysis
2.4. Statistical Analysis
3. Results
3.1. Correlations to Facial Acne Lesion Counts
3.2. Correlations to Skin Biophysical Properties
3.3. Correlations to the Gut Microbiome
4. Discussion
5. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhate, K.; Williams, H.C. Epidemiology of acne vulgaris. Br. J. Dermatol. 2013, 168, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Zaenglein, A.L.; Pathy, A.L.; Schlosser, B.J.; Alikhan, A.; Baldwin, H.E.; Berson, D.S.; Bhushan, R. Guidelines of care for the management of acne vulgaris. J. Am. Acad. Dermatol. 2016, 74, 945–973.e33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, A.U.; Schlosser, B.J.; Paller, A.S. A review of diagnosis and treatment of acne in adult female patients. Int. J. Womens Dermatol. 2018, 4, 56–71. [Google Scholar] [CrossRef] [PubMed]
- Masterson, K.N. Acne Basics: Pathophysiology, Assessment, and Standard Treatment Options. J. Dermatol. Nurses Assoc. 2018, 10, S2–S10. [Google Scholar] [CrossRef]
- Iftikhar, U.; Choudhry, N. Serum levels of androgens in acne & their role in acne severity. Pak. J. Med. Sci. 2019, 35, 146–150. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Zhou, L.; Lv, M.; Yue, N.; Fei, W.; Wang, L.; Zhang, J. The Relevant of Sex Hormone Levels and Acne Grades in Patients with Acne Vulgaris: A Cross-Sectional Study in Beijing. Clin. Cosmet. Investig. Dermatol. 2022, 15, 2211–2219. [Google Scholar] [CrossRef]
- Bakry, O.A.; El Shazly, R.M.; El Farargy, S.M.; Kotb, D. Role of hormones and blood lipids in the pathogenesis of acne vulgaris in non-obese, non-hirsute females. Indian Dermatol. Online J. 2014, 5 (Suppl. S1), S9–S16. [Google Scholar] [CrossRef]
- Rybak, I.; Haas, K.N.; Dhaliwal, S.K.; Burney, W.A.; Pourang, A.; Sandhu, S.S.; Sivamani, R.K. Prospective Placebo-Controlled Assessment of Spore-Based Probiotic Supplementation on Sebum Production, Skin Barrier Function, and Acne. J. Clin. Med. 2023, 12, 895. [Google Scholar] [CrossRef]
- Yan, H.M.; Zhao, H.J.; Guo, D.Y.; Zhu, P.Q.; Zhang, C.L.; Jiang, W. Gut microbiota alterations in moderate to severe acne vulgaris patients. J. Dermatol. 2018, 45, 1166–1171. [Google Scholar] [CrossRef]
- Arora, M.K.; Yadav, A.; Saini, V. Role of hormones in acne vulgaris. Clin. Biochem. 2011, 44, 1035–1040. [Google Scholar] [CrossRef]
- Schmidt, J.B.; Lindmaier, A.; Spona, J. Endocrine parameters in acne vulgaris. Endocrinol. Exp. 1990, 24, 457–464. [Google Scholar]
- Riyanto, P.; Subchan, P.; Lelyana, R. Advantage of soybean isoflavone as antiandrogen on acne vulgaris. Dermatoendocrinology 2015, 7, e1063751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehan, S.T.; Khan, Z.; Abbas, S.; Imran, L.; Munir, S.; Tahir, M.J.; Ahmed, A. Role of topical spironolactone in the treatment of acne: A systematic review of clinical trials-Does this therapy open a path towards favorable outcomes? J. Dermatol. 2023, 50, 166–174. [Google Scholar] [CrossRef]
- Santer, M.; Lawrence, M.; Renz, S.; Eminton, Z.; Stuart, B.; Sach, T.H.; Layton, A.M. Effectiveness of spironolactone for women with acne vulgaris (SAFA) in England and Wales: Pragmatic, multicentre, phase 3, double blind, randomised controlled trial. BMJ 2023, 381, e074349. [Google Scholar] [CrossRef] [PubMed]
- Alkhodaidi, S.T.; Al Hawsawi, K.A.; Alkhudaidi, I.T.; Magzoub, D.; Abu-Zaid, A. Efficacy and safety of topical clascoterone cream for treatment of acne vulgaris: A systematic review and meta-analysis of randomized placebo-controlled trials. Dermatol. Ther. 2021, 34, e14609. [Google Scholar] [CrossRef] [PubMed]
- Hebert, A.; Thiboutot, D.; Gold, L.S.; Cartwright, M.; Gerloni, M.; Fragasso, E.; Mazzetti, A. Efficacy and Safety of Topical Clascoterone Cream, 1%, for Treatment in Patients With Facial Acne: Two Phase 3 Randomized Clinical Trials. JAMA Dermatol. 2020, 156, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Trivedi, M.K.; Shinkai, K.; Murase, J.E. A Review of hormone-based therapies to treat adult acne vulgaris in women. Int. J. Womens Dermatol. 2017, 3, 44–52. [Google Scholar] [CrossRef]
- Jovic, A.; Marinovic, B.; Kostovic, K.; Ceovic, R.; Basta-Juzbasic, A.; Bukvic Mokos, Z. The Impact of Pyschological Stress on Acne. Acta Dermatovenerol. Croat. 2017, 25, 1133–1141. [Google Scholar]
- Borzyszkowska, D.; Niedzielska, M.; Kozłowski, M.; Brodowska, A.; Przepiera, A.; Malczyk-Matysiak, K.; Sowińska-Przepiera, E. Evaluation of Hormonal Factors in Acne Vulgaris and the Course of Acne Vulgaris Treatment with Contraceptive-Based Therapies in Young Adult Women. Cells 2022, 11, 78. [Google Scholar] [CrossRef]
- Gezer, E.; Selek, A.; Cetinarslan, B.; Canturk, Z.; Tarkun, I.; Ceylan, S. The coexistence of infundibular pituicytoma and Cushing’s disease due to pituitary adenoma: A case report. Endocr. Regul. 2019, 53, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Wang, H.; Zhou, J.; Mou, Y.; Wang, G.; Xiong, X. Patients with Acne Vulgaris Have a Distinct Gut Microbiota in Comparison with Healthy Controls. Acta Derm. Venereol. 2018, 98, 783–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, S.R.; Nguyen, M.; Vaughn, A.R.; Notay, M.; Burney, W.A.; Sandhu, S.; Sivamani, R.K. The Skin and Gut Microbiome and Its Role in Common Dermatologic Conditions. Microorganisms 2019, 7, 550. [Google Scholar] [CrossRef] [Green Version]
- Jung, G.W.; Tse, J.E.; Guiha, I.; Rao, J. Prospective, randomized, open-label trial comparing the safety, efficacy, and tolerability of an acne treatment regimen with and without a probiotic supplement and minocycline in subjects with mild to moderate acne. J. Cutan. Med. Surg. 2013, 17, 114–122. [Google Scholar] [CrossRef]
- Tsai, W.H.; Chou, C.H.; Chiang, Y.J.; Lin, C.G.; Lee, C.H. Regulatory effects of Lactobacillus plantarum-GMNL6 on human skin health by improving skin microbiome. Int. J. Med. Sci. 2021, 18, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Nong, Y.; Gahoonia, N.; Rizzo, J.; Burney, W.; Sivamani, R.K.; Maloh, J. Prospective Evaluation of a Topical Botanical Skin Care Regimen on Mild to Moderate Facial and Truncal Acne and Mood. J. Clin. Med. 2023, 12, 1484. [Google Scholar] [CrossRef] [PubMed]
- Ottesen, A.; Ramachandran, P.; Reed, E.; White, J.R.; Hasan, N.; Subramanian, P.; Chen, Y. Enrichment dynamics of Listeria monocytogenes and the associated microbiome from naturally contaminated ice cream linked to a listeriosis outbreak. BMC Microbiol. 2016, 16, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponnusamy, D.; Kozlova, E.V.; Sha, J.; Erova, T.E.; Azar, S.R.; Fitts, E.C.; Chopra, A.K. Cross-talk among flesh-eating Aeromonas hydrophila strains in mixed infection leading to necrotizing fasciitis. Proc. Natl. Acad. Sci. USA 2016, 113, 722–727. [Google Scholar] [CrossRef]
- Lax, S.; Smith, D.P.; Hampton-Marcell, J.; Owens, S.M.; Handley, K.M.; Scott, N.M.; Gilbert, J.A. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 2014, 345, 1048–1052. [Google Scholar] [CrossRef] [Green Version]
- Hasan, N.A.; Young, B.A.; Minard-Smith, A.T.; Saeed, K.; Li, H.; Heizer, E.M.; Colwell, R.R. Microbial community profiling of human saliva using shotgun metagenomic sequencing. PLoS ONE 2014, 9, e97699. [Google Scholar] [CrossRef]
- Maruo, T.; Sakamoto, M.; Ito, C.; Toda, T.; Benno, Y. Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int. J. Syst. Evol. Microbiol. 2008, 58, 1221–1227. [Google Scholar] [CrossRef]
- Bissonnette, R.; Risch, J.E.; McElwee, K.J.; Marchessault, P.; Bolduc, C.; Nigen, S.; Maari, C. Changes in serum free testosterone, sleep patterns, and 5-alpha-reductase type I activity influence changes in sebum excretion in female subjects. Skin Res. Technol. 2015, 21, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Holland, D.B.; Cunliffe, W.J.; Norris, J.F. Differential response of sebaceous glands to exogenous testosterone. Br. J. Dermatol. 1998, 139, 102–103. [Google Scholar] [CrossRef] [PubMed]
- Darley, C.R.; Kirby, J.D.; Besser, G.M.; Munro, D.D.; Edwards, C.R.; Rees, L.H. Circulating testosterone, sex hormone binding globulin and prolactin in women with late onset or persistent acne vulgaris. Br. J. Dermatol. 1982, 106, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Kiayani, A.J.; Rehman, F.U. Association of Serum Testosterone and Sex Hormone Binding Globulin Levels in Females with Acne Based on Its Severity. J. Ayub. Med. Coll. Abbottabad. 2016, 28, 357–359. [Google Scholar]
- Dreno, B.; Poli, F.; Pawin, H.; Beylot, C.; Faure, M.; Chivot, M.; Revuz, J. Development and evaluation of a Global Acne Severity Scale (GEA Scale) suitable for France and Europe. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 43–48. [Google Scholar] [CrossRef]
- Yamamoto, A.; Takenouchi, K.; Ito, M. Impaired water barrier function in acne vulgaris. Arch. Dermatol. Res. 1995, 287, 214–218. [Google Scholar] [CrossRef]
- Zhou, M.; Xie, H.; Cheng, L.; Li, J. Clinical characteristics and epidermal barrier function of papulopustular rosacea: A comparison study with acne vulgaris. Pak. J. Med. Sci. 2016, 32, 1344–1348. [Google Scholar] [CrossRef]
- Halpern, C.T.; Whitsel, E.A.; Wagner, B.; Harris, K.M. Challenges of measuring diurnal cortisol concentrations in a large population-based field study. Psychoneuroendocrinology 2012, 37, 499–508. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, B.T.; Stanton, W.; Lord, R.; Petocz, P.; Pepping, G.J. Factors Affecting Measurement of Salivary Cortisol and Secretory Immunoglobulin A in Field Studies of Athletes. Front. Endocrinol. 2017, 8, 168. [Google Scholar] [CrossRef] [Green Version]
- Yosipovitch, G.; Tang, M.; Dawn, A.G.; Chen, M.; Goh, C.L.; Chan, Y.H.; Seng, L.F. Study of psychological stress, sebum production and acne vulgaris in adolescents. Acta Derm. Venereol. 2007, 87, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Zari, S.; Alrahmani, D. The association between stress and acne among female medical students in Jeddah, Saudi Arabia. Clin. Cosmet. Investig. Dermatol. 2017, 10, 503–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choe, S.J.; Kim, D.; Kim, E.J.; Ahn, J.S.; Choi, E.J.; Son, E.D.; Choi, E.H. Psychological Stress Deteriorates Skin Barrier Function by Activating 11beta-Hydroxysteroid Dehydrogenase 1 and the HPA Axis. Sci. Rep. 2018, 8, 6334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maarouf, M.; Maarouf, C.L.; Yosipovitch, G.; Shi, V.Y. The impact of stress on epidermal barrier function: An evidence-based review. Br. J. Dermatol. 2019, 181, 1129–1137. [Google Scholar] [CrossRef]
- Altemus, M.; Rao, B.; Dhabhar, F.S.; Ding, W.; Granstein, R.D. Stress-induced changes in skin barrier function in healthy women. J. Investig. Dermatol. 2001, 117, 309–317. [Google Scholar] [CrossRef]
- Murga-Garrido, S.M.; Ulloa-Pérez, E.J.; Díaz-Benítez, C.E.; Orbe-Orihuela, Y.C.; Cornejo-Granados, F.; Ochoa-Leyva, A.; Lagunas-Martínez, A. Virulence Factors of the Gut Microbiome Are Associated with BMI and Metabolic Blood Parameters in Children with Obesity. Microbiol. Spectr. 2023, 11, e0338222. [Google Scholar] [CrossRef]
- Macklis, P.; Adams, K.; Kaffenberger, J.; Kumar, P.; Krispinsky, A.; Kaffenberger, B. The Association between Oral Health and Skin Disease. J. Clin. Aesthet. Dermatol. 2020, 13, 48–53. [Google Scholar]
- Cruz-Morales, P.; Orellana, C.A.; Moutafis, G.; Moonen, G.; Rincon, G.; Nielsen, L.K.; Marcellin, E. Revisiting the Evolution and Taxonomy of Clostridia, a Phylogenomic Update. Genom. Biol. Evol. 2019, 11, 2035–2044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banaszak, M.; Gorna, I.; Wozniak, D.; Przyslawski, J.; Drzymala-Czyz, S. Association between Gut Dysbiosis and the Occurrence of SIBO, LIBO, SIFO and IMO. Microorganisms 2023, 11, 573. [Google Scholar] [CrossRef]
- Nickles, M.A.; Hasan, A.; Shakhbazova, A.; Wright, S.; Chambers, C.J.; Sivamani, R.K. Alternative Treatment Approaches to Small Intestinal Bacterial Overgrowth: A Systematic Review. J. Altern. Complement Med. 2021, 27, 108–119. [Google Scholar] [CrossRef]
- Raftar SK, A.; Ashrafian, F.; Abdollahiyan, S.; Yadegar, A.; Moradi, H.R.; Masoumi, M.; Zali, M.R. The anti-inflammatory effects of Akkermansia muciniphila and its derivates in HFD/CCL4-induced murine model of liver injury. Sci. Rep. 2022, 12, 2453. [Google Scholar] [CrossRef]
- Si, J.; Kang, H.; You, H.J.; Ko, G. Revisiting the role of Akkermansia muciniphila as a therapeutic bacterium. Gut. Microbes. 2022, 14, 2078619. [Google Scholar] [CrossRef] [PubMed]
Bacterial Species | Correlation | p-Value |
---|---|---|
Positive Correlation | ||
Lactobacillus_delbrueckii | 0.583 | 0.007 |
Actinomyces_naeslundii | 0.543 | 0.013 |
Bacteroidales_u_s | 0.535 | 0.015 |
Bifidobacterium_dentium | 0.511 | 0.021 |
Bifidobacterium_u_s | 0.505 | 0.023 |
Bifidobacterium_longum | 0.483 | 0.031 |
Intestinibacter_bartlettii | 0.460 | 0.041 |
Inverse Correlation | ||
Adlercreutzia_equolifaciens | −0.615 | 0.004 |
Schaalia_odontolytica | −0.470 | 0.037 |
Massilioclostridium_coli | −0.458 | 0.042 |
Bacterial Species | Correlation | p-Value |
---|---|---|
Positive Correlation | ||
Clostridium_u_s | 0.744 | 0.0002 |
Butyrivibrio_crossotus | 0.718 | 0.0004 |
Sutterella_faecalis | 0.718 | 0.0004 |
Pseudoruminococcus_massiliensis | 0.718 | 0.0004 |
Akkermansia_muciniphila | 0.715 | 0.0004 |
Megamonas_rupellensis | 0.714 | 0.0004 |
Prevotella_pectinovora | 0.635 | 0.0027 |
Collinsella_bouchesdurhonensis | 0.616 | 0.0038 |
Hungatella_effluvii | 0.593 | 0.0058 |
Parabacteroides_massiliensis | 0.557 | 0.0108 |
Hungatella_hathewayi | 0.555 | 0.0110 |
Parolsenella_catena | 0.541 | 0.0137 |
Prevotella_stercorea | 0.541 | 0.0137 |
Methanobrevibacter_smithii | 0.532 | 0.0158 |
Roseburia_hominis | 0.505 | 0.0230 |
Phascolarctobacterium_faecium | 0.494 | 0.0270 |
Inverse Correlation | ||
Alistipes_senegalensis | −0.475 | 0.034 |
Bacterial Strain | Correlation | p-Value |
---|---|---|
Positive Correlation | ||
Actinomyces_naeslundii_str_Howell_279 | 0.543 | 0.013 |
Bacteroidales_u_t | 0.535 | 0.015 |
Bifidobacterium_dentium | 0.511 | 0.021 |
Firmicutes_u_t | 0.461 | 0.041 |
Intestinibacter_bartlettii_DSM_16795 | 0.460 | 0.041 |
Eubacterium_sp_AM28-29 | 0.460 | 0.041 |
Inverse Correlation | ||
Blautia_obeum_ATCC_29174 | −0.455 | 0.044 |
Massilioclostridium_coli | −0.458 | 0.042 |
Schaalia_odontolytica | −0.470 | 0.037 |
Adlercreutzia_equolifaciens_subsp_celatus | −0.482 | 0.031 |
Butyricicoccus_sp_GAM44 | −0.514 | 0.020 |
Bacterial Strain | Correlation | p-Value |
---|---|---|
Positive Correlation | ||
Coprococcus_sp_AF16-22 | 0.773 | 6.53381 × 10−5 |
Lachnospiraceae_bacterium_OM04-12BH | 0.735 | 0.000225629 |
Butyrivibrio_crossotus_DSM_2876 | 0.718 | 0.000362097 |
Clostridium_sp_AF23-8 | 0.718 | 0.000362097 |
Escherichia_coli_KTE51 | 0.718 | 0.000362097 |
Faecalibacterium_sp_AF28-13AC | 0.718 | 0.000362097 |
Sutterella_faecalis | 0.718 | 0.000362097 |
Bacteria_u_t | 0.718 | 0.000362097 |
Bacteroides_dorei_CL03T12C01 | 0.718 | 0.000362097 |
Pseudoruminococcus_massiliensis | 0.718 | 0.000362097 |
Megamonas_rupellensis_DSM_19944 | 0.714 | 0.000404027 |
Bacteroides_pectinophilus_ATCC_43243 | 0.714 | 0.00041069 |
Akkermansia_muciniphila_ATCC_BAA-835 | 0.702 | 0.00056436 |
Bilophila_wadsworthia_3_1_6 | 0.653 | 0.001781736 |
Eubacterium_siraeum_70_3 | 0.646 | 0.002113114 |
Prevotella_pectinovora | 0.634 | 0.002658279 |
Methanobrevibacter_smithii_DSM_2375 | 0.625 | 0.003234041 |
Collinsella_bouchesdurhonensis | 0.616 | 0.003806916 |
Hungatella_hathewayi_VE202-04 | 0.611 | 0.004206782 |
Hungatella_effluvii | 0.593 | 0.005827701 |
Collinsella_sp_AM38-1BH | 0.593 | 0.005888244 |
Bifidobacterium_u_t | 0.584 | 0.006908296 |
Parabacteroides_massiliensis | 0.557 | 0.010799462 |
Parolsenella_catena | 0.541 | 0.013713086 |
Prevotella_stercorea_DSM_18206 | 0.541 | 0.013744505 |
Bacteroides_vulgatus_str_3975_RP4 | 0.526 | 0.017310217 |
Roseburia_hominis_A2-183 | 0.505 | 0.023038589 |
Phascolarctobacterium_faecium | 0.494 | 0.026951749 |
Megamonas_sp_Calf98-2 | 0.494 | 0.026973871 |
Ruminococcus_sp_AM26-12LB | 0.459 | 0.041819714 |
Inverse Correlation | ||
Bilophila_u_t | −0.455 | 0.043759349 |
Coprococcus_sp_ART55_1 | −0.456 | 0.043278258 |
Alistipes_senegalensis_JC50 | −0.475 | 0.034207072 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivamani, R.K.; Maloh, J.; Nong, Y. Correlating the Gut Microbiota and Circulating Hormones with Acne Lesion Counts and Skin Biophysical Features. Microorganisms 2023, 11, 2049. https://doi.org/10.3390/microorganisms11082049
Sivamani RK, Maloh J, Nong Y. Correlating the Gut Microbiota and Circulating Hormones with Acne Lesion Counts and Skin Biophysical Features. Microorganisms. 2023; 11(8):2049. https://doi.org/10.3390/microorganisms11082049
Chicago/Turabian StyleSivamani, Raja K., Jessica Maloh, and Yvonne Nong. 2023. "Correlating the Gut Microbiota and Circulating Hormones with Acne Lesion Counts and Skin Biophysical Features" Microorganisms 11, no. 8: 2049. https://doi.org/10.3390/microorganisms11082049