The Host–Pathogen Interplay: A Tale of Two Stories within the Cornea and Posterior Segment
Abstract
1. Introduction
2. Basics of Ocular Immunology
3. The Cornea
3.1. Viral Keratitis
3.2. Bacterial Keratitis
4. Infections of the Posterior Segment
4.1. Viral Retinitis
4.2. Bacterial Endophthalmitis
5. Conclusions: The Yin and Yang of Immunity in the Eye
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Azarmina, M.; Soheilian, M.; Ahmadieh, H.; Azarmina, H. Electroretinogram changes in the sound eye of subjects with unilateral necrotizing herpetic retinitis. J. Ophthalmic Vis. Res. 2014, 9, 195–203. [Google Scholar] [PubMed]
- Burton, M.J.; Mabey, D.C.W. The Global Burden of Trachoma: A Review. PLoS Neglected Trop. Dis. 2009, 3, e460. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Kong, X.; Wolle, M.; Gasquet, N.; Ssekasanvu, J.; Mariotti, S.P.; Bourne, R.; Taylor, H.; Resnikoff, S.; West, S. Global trends in blindness and vision impairment due to corneal opacity 1984–2020: A meta-analysis. Ophthalmology 2023, 2022, 8828358. [Google Scholar] [CrossRef]
- Liesegang, T.J.; Melton, L.J., III; Daly, P.J.; Ilstrup, D.M. Epidemiology of Ocular Herpes Simplex: Incidence in Rochester, Minn, 1950 Through 1982. Arch. Ophthalmol. 1989, 107, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.P.; Ramke, J.; Cairns, J.; Butt, T.; Zhang, J.H.; Muirhead, D.; Jones, I.; Tong, B.A.M.A.; Swenor, B.K.; Faal, H.; et al. Global economic productivity losses from vision impairment and blindness. eClinicalMedicine 2021, 35, 100852. [Google Scholar] [CrossRef]
- Flaxman, A.D.; Wittenborn, J.S.; Robalik, T.; Gulia, R.; Gerzoff, R.B.; Lundeen, E.A.; Saaddine, J.; Rein, D.B. Vision and Eye Health Surveillance System study group Prevalence of Visual Acuity Loss or Blindness in the US: A Bayesian Meta-analysis. JAMA Ophthalmol. 2021, 139, 717–723. [Google Scholar] [CrossRef]
- Teweldemedhin, M.; Gebreyesus, H.; Atsbaha, A.H.; Asgedom, S.W.; Saravanan, M. Bacterial profile of ocular infections: A systematic review. BMC Ophthalmol. 2017, 17, 212. [Google Scholar] [CrossRef]
- Petrillo, F.; Petrillo, A.; Sasso, F.P.; Schettino, A.; Maione, A.; Galdiero, M. Viral Infection and Antiviral Treatments in Ocular Pathologies. Microorganisms 2022, 10, 2224. [Google Scholar] [CrossRef]
- Conrady, C.D.; Hanson, K.E.; Mehra, S.; Carey, A.; Larochelle, M.; Shakoor, A. The First Case of Trypanosoma cruzi-Associated Retinitis in an Immunocompromised Host Diagnosed With Pan-Organism Polymerase Chain Reaction. Clin. Infect. Dis. 2018, 67, 141–143. [Google Scholar] [CrossRef]
- Fashina, T.; Huang, Y.; Thomas, J.; Conrady, C.D.; Yeh, S. Ophthalmic Features and Implications of Poxviruses: Lessons from Clinical and Basic Research. Microorganisms 2022, 10, 2487. [Google Scholar] [CrossRef]
- Conrady, C.D.; Faia, L.J.; Gregg, K.S.; Rao, R.C. Coronavirus-19-Associated Retinopathy. Ocul. Immunol. Inflamm. 2021, 29, 675–676. [Google Scholar] [CrossRef] [PubMed]
- Conrady, C.D.; Demirci, H.; Wubben, T.J. Retinal Whitening After Lung Transplant for Cystic Fibrosis. JAMA Ophthalmol. 2020, 138, 994–995. [Google Scholar] [CrossRef] [PubMed]
- Conrady, C.D.; Feist, R.M.; Crum, A. Shingles as the underlying cause of orbital myositis in an adolescent: A case report. Am. J. Ophthalmol. Case Rep. 2017, 5, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Pappas, G.; Roussos, N.; Falagas, M.E. Toxoplasmosis snapshots: Global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int. J. Parasitol. 2009, 39, 1385–1394. [Google Scholar] [CrossRef]
- Desai, R.J.; Solomon, D.H.; Shadick, N.; Iannaccone, C.; Kim, S.C. Identification of smoking using Medicare data--A validation study of claims-based algorithms. Pharmacoepidemiol. Drug Saf. 2016, 25, 472–475. [Google Scholar] [CrossRef]
- Khan, A.; Jordan, C.; Muccioli, C.; Vallochi, A.L.; Rizzo, L.V.; Belfort, R., Jr.; Vitor, R.W.A.; Silveira, C.; Sibley, L.D. Genetic divergence of Toxoplasma gondii strains associated with ocular toxoplasmosis, Brazil. Emerg. Infect. Dis. 2006, 12, 942–949. [Google Scholar] [CrossRef]
- Conrady, C.D.; Joos, Z.P.; Patel, B.C.K. Review: The Lacrimal Gland and Its Role in Dry Eye. J. Ophthalmol. 2016, 2016, 7542929. [Google Scholar]
- Du, Y.; Yan, B. Ocular immune privilege and retinal pigment epithelial cells. J. Leukoc. Biol. 2023, 113, 288–304. [Google Scholar] [CrossRef]
- Jin, X.; Qin, Q.; Chen, W.; Qu, J. Expression of Toll-Like Receptors in the Healthy and Herpes Simplex Virus-Infected Cornea. Cornea 2007, 26, 847–852. [Google Scholar] [CrossRef]
- Kumar, M.V.; Nagineni, C.N.; Chin, M.S.; Hooks, J.J.; Detrick, B. Innate immunity in the retina: Toll-like receptor (TLR) signaling in human retinal pigment epithelial cells. J. Neuroimmunol. 2004, 153, 7–15. [Google Scholar] [CrossRef]
- Singh, P.K.; Kumar, A. Retinal Photoreceptor Expresses Toll-like Receptors (TLRs) and Elicits Innate Responses Following TLR Ligand and Bacterial Challenge. PLoS ONE 2015, 10, e0119541. [Google Scholar] [CrossRef]
- Bryant-Hudson, K.; Conrady, C.D.; Carr, D.J.J. Type I interferon and lymphangiogenesis in the HSV-1 infected cornea—Are they beneficial to the host? Prog. Retin. Eye Res. 2013, 36, 281–291. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Song, P.I.; Abraham, T.A.; Park, Y.; Zivony, A.S.; Harten, B.; Edelhauser, H.F.; Ward, S.L.; Armstrong, C.A.; Ansel, J.C. The Expression of Functional LPS Receptor Proteins CD14 And Toll-like Receptor 4 in Human Corneal Cells. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2867–2877. [Google Scholar]
- Huang, X.; Hazlett, L.D. Analysis of Pseudomonas aeruginosa Corneal Infection Using an Oligonucleotide Microarray. Investig. Ophthalmol. Vis. Sci. 2003, 44, 3409–3416. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yu, F.-S.X.; Hazlett, L.D. Toll-like Receptors and the Eye. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1255–1263. [Google Scholar] [CrossRef] [PubMed]
- Conrady, C.D.; Drevets, D.A.; Carr, D.J.J. Herpes simplex type I (HSV-1) infection of the nervous system: Is an immune response a good thing? J. Neuroimmunol. 2010, 220, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Enzmann, V.; Row, B.W.; Yamauchi, Y.; Kheirandish, L.; Gozal, D.; Kaplan, H.J.; McCall, M.A. Behavioral and anatomical abnormalities in a sodium iodate-induced model of retinal pigment epithelium degeneration. Exp. Eye Res. 2006, 82, 441–448. [Google Scholar] [CrossRef]
- Horie, S.; Sugita, S.; Futagami, Y.; Yamada, Y.; Mochizuki, M. Human retinal pigment epithelium-induced CD4+CD25+ regulatory T cells suppress activation of intraocular effector T cells. Clin. Immunol. 2010, 136, 83–95. [Google Scholar] [CrossRef]
- Sugita, S.; Horie, S.; Nakamura, O.; Futagami, Y.; Takase, H.; Keino, H.; Aburatani, H.; Katunuma, N.; Ishidoh, K.; Yamamoto, Y.; et al. Retinal Pigment Epithelium-Derived CTLA-2α Induces TGFβ-Producing T Regulatory Cells12. J. Immunol. 2008, 181, 7525–7536. [Google Scholar] [CrossRef]
- Ashour, H.M.; Niederkorn, J.Y. Peripheral Tolerance Via the Anterior Chamber of the Eye: Role of B Cells in MHC Class I and II Antigen Presentation1. J. Immunol. 2006, 176, 5950–5957. [Google Scholar] [CrossRef]
- Skelsey, M.E.; Mayhew, E.; Niederkorn, J.Y. Splenic B Cells Act as Antigen Presenting Cells for the Induction of Anterior Chamber-Associated Immune Deviation. Investig. Ophthalmol. Vis. Sci. 2003, 44, 5242–5251. [Google Scholar] [CrossRef]
- Skelsey, M.E.; Mayhew, E.; Niederkorn, J.Y. CD25+, interleukin-10-producing CD4+ T cells are required for suppressor cell production and immune privilege in the anterior chamber of the eye. Immunology 2003, 110, 18–29. [Google Scholar] [CrossRef]
- Streilein, J.W. Ocular immune privilege: Therapeutic opportunities from an experiment of nature. Nat. Rev. Immunol. 2003, 3, 879–889. [Google Scholar] [CrossRef]
- Skelsey, M.E.; Mellon, J.; Niederkorn, J.Y. γδ T Cells Are Needed for Ocular Immune Privilege and Corneal Graft Survival1. J. Immunol. 2001, 166, 4327–4333. [Google Scholar] [CrossRef] [PubMed]
- Paunicka, K.; Chen, P.W.; Niederkorn, J.Y. Role of IFN-γ in the establishment of anterior chamber-associated immune deviation (ACAID)-induced CD8+ T regulatory cells. J. Leukoc. Biol. 2012, 91, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Wenkel, H.; Streilein, J.W. Analysis of immune deviation elicited by antigens injected into the subretinal space. Investig. Ophthalmol. Vis. Sci. 1998, 39, 1823–1834. [Google Scholar]
- Hori, J.; Yamaguchi, T.; Keino, H.; Hamrah, P.; Maruyama, K. Immune privilege in corneal transplantation. Prog. Retin. Eye Res. 2019, 72, 100758. [Google Scholar] [CrossRef] [PubMed]
- Niederkorn, J.Y. Corneal Transplantation and Immune Privilege. Int. Rev. Immunol. 2013, 32, 57–67. [Google Scholar] [CrossRef]
- Cunnusamy, K.; Chen, P.W.; Niederkorn, J.Y. IL-17A–Dependent CD4+CD25+ Regulatory T Cells Promote Immune Privilege of Corneal Allografts. J. Immunol. 2011, 186, 6737–6745. [Google Scholar] [CrossRef]
- Toda, M.; Ueno, M.; Yamada, J.; Hiraga, A.; Asada, K.; Hamuro, J.; Sotozono, C.; Kinoshita, S. Quiescent innate and adaptive immune responses maintain the long-term integrity of corneal endothelium reconstituted through allogeneic cell injection therapy. Sci. Rep. 2022, 12, 18072. [Google Scholar] [CrossRef]
- Neelam, S.; Niederkorn, J.Y. Corneal Nerve Ablation Abolishes Ocular Immune Privilege by Downregulating CD103 on T Regulatory Cells. Investig. Ophthalmol. Vis. Sci. 2020, 61, 25. [Google Scholar] [CrossRef]
- Paunicka, K.J.; Mellon, J.; Robertson, D.; Petroll, M.; Brown, J.R.; Niederkorn, J.Y. Severing Corneal Nerves in One Eye Induces Sympathetic Loss of Immune Privilege and Promotes Rejection of Future Corneal Allografts Placed in Either Eye. Am. J. Transplant. 2015, 15, 1490–1501. [Google Scholar] [CrossRef] [PubMed]
- Haskova, Z.; Sproule, T.J.; Roopenian, D.C.; Ksander, B.R. An immunodominant minor histocompatibility alloantigen that initiates corneal allograft rejection1. Transplantation 2003, 75, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Mettenleiter, T.C. Budding events in herpesvirus morphogenesis. Virus Res. 2004, 106, 167–180. [Google Scholar] [CrossRef]
- Akhtar, J.; Shukla, D. Viral entry mechanisms: Cellular and viral mediators of herpes simplex virus entry. FEBS J. 2009, 276, 7228–7236. [Google Scholar] [CrossRef] [PubMed]
- Nicola, A.V.; Hou, J.; Major, E.O.; Straus, S.E. Herpes Simplex Virus Type 1 Enters Human Epidermal Keratinocytes, but Not Neurons, via a pH-Dependent Endocytic Pathway. J. Virol. 2005, 79, 7609–7616. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Bruun, B.; Minson, T.; Browne, H. Browne Helena Glycoproteins gB, gD, and gHgL of Herpes Simplex Virus Type 1 Are Necessary and Sufficient To Mediate Membrane Fusion in a Cos Cell Transfection System. J. Virol. 1998, 72, 873–875. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, X.; Ostrikov, K.; Abrahamyan, L. Host receptors: The key to establishing cells with broad viral tropism for vaccine production. Crit. Rev. Microbiol. 2020, 46, 147–168. [Google Scholar] [CrossRef]
- Greenan, E.; Gallagher, S.; Khalil, R.; Murphy, C.C.; Ní Gabhann-Dromgoole, J. Advancing Our Understanding of Corneal Herpes Simplex Virus-1 Immune Evasion Mechanisms and Future Therapeutics. Viruses 2021, 13, 1856. [Google Scholar] [CrossRef]
- Zheng, M.; Conrady, C.D.; Ward, J.M.; Bryant-Hudson, K.M.; Carr, D.J.J. Comparison of the host immune response to herpes simplex virus 1 (HSV-1) and HSV-2 at two different mucosal sites. J. Virol. 2012, 86, 7454–7458. [Google Scholar] [CrossRef][Green Version]
- Conrady, C.D.; Zheng, M.; Fitzgerald, K.A.; Liu, C.; Carr, D.J.J. Resistance to HSV-1 Infection in the Epithelium Resides with the Novel Innate Sensor, IFI-16. Mucosal Immunol 2012, 5, 173–183. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Jouanguy, E.; Ugolini, S.; Smahi, A.; Elain, G.; Romero, P.; Segal, D.; Sancho-Shimizu, V.; Lorenzo, L.; Puel, A.; et al. TLR3 Deficiency in Patients with Herpes Simplex Encephalitis. Science 2007, 317, 1522–1527. [Google Scholar] [CrossRef] [PubMed]
- Conrady, C.D.; Zheng, M.; van Rooijen, N.; Drevets, D.A.; Royer, D.; Alleman, A.; Carr, D.J.J. Microglia and a functional type I IFN pathway are required to counter HSV-1-driven brain lateral ventricle enlargement and encephalitis. J. Immunol. 2013, 190, 2807–2817. [Google Scholar] [CrossRef] [PubMed]
- Lafaille, F.G.; Pessach, I.M.; Zhang, S.-Y.; Ciancanelli, M.J.; Herman, M.; Abhyankar, A.; Ying, S.-W.; Keros, S.; Goldstein, P.A.; Mostoslavsky, G.; et al. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 2012, 491, 769–773. [Google Scholar] [CrossRef]
- Casrouge, A.; Zhang, S.-Y.; Eidenschenk, C.; Jouanguy, E.; Puel, A.; Yang, K.; Alcais, A.; Picard, C.; Mahfoufi, N.; Nicolas, N.; et al. Herpes Simplex Virus Encephalitis in Human UNC-93B Deficiency. Science 2006, 314, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Conrady, C.D.; Jones, H.; Zheng, M.; Carr, D.J.J. A Functional Type I Interferon Pathway Drives Resistance to Cornea Herpes Simplex Virus Type 1 Infection by Recruitment of Leukocytes. J. Biomed Res. 2011, 25, 111–119. [Google Scholar] [CrossRef]
- Al-khatib, K.; Williams, B.R.G.; Silverman, R.H.; Halford, W.; Carr, D.J.J. The murine double-stranded RNA-dependent protein kinase PKR and the murine 2′,5′-oligoadenylate synthetase-dependent RNase L are required for IFN-β-mediated resistance against herpes simplex virus type 1 in primary trigeminal ganglion culture. Virology 2003, 313, 126–135. [Google Scholar] [CrossRef]
- Al-khatib, K.; Williams, B.R.G.; Silverman, R.H.; Halford, W.; Carr, D.J.J. Distinctive Roles for 2′,5′-Oligoadenylate Synthetases and Double-Stranded RNA-Dependent Protein Kinase R in the In Vivo Antiviral Effect of an Adenoviral Vector Expressing Murine IFN-β1. J. Immunol. 2004, 172, 5638–5647. [Google Scholar] [CrossRef]
- Conrady, C.D.; Zheng, M.; Mandal, N.A.; van Rooijen, N.; Carr, D.J.J. IFN-α-driven CCL2 production recruits inflammatory monocytes to infection site in mice. Mucosal Immunol 2013, 6, 45–55. [Google Scholar] [CrossRef]
- Frank, G.M.; Buela, K.-A.G.; Maker, D.M.; Harvey, S.A.K.; Hendricks, R.L. Early Responding Dendritic Cells Direct the Local NK Response To Control Herpes Simplex Virus 1 Infection within the Cornea. J. Immunol. 2012, 188, 1350–1359. [Google Scholar] [CrossRef]
- Jamali, A.; Hu, K.; Sendra, V.G.; Blanco, T.; Lopez, M.J.; Ortiz, G.; Qazi, Y.; Zheng, L.; Turhan, A.; Harris, D.L.; et al. Characterization of Resident Corneal Plasmacytoid Dendritic Cells and Their Pivotal Role in Herpes Simplex Keratitis. Cell Rep. 2020, 32, 108099. [Google Scholar] [CrossRef] [PubMed]
- Conrady, C.D.; Thapa, M.; Wuest, T.; Carr, D.J.J. Loss of mandibular lymph node integrity is associated with an increase in sensitivity to HSV-1 infection in CD118-deficient mice. J. Immunol. 2009, 182, 3678–3687. [Google Scholar] [CrossRef]
- Conrady, C.D.; Zheng, M.; Stone, D.U.; Carr, D.J.J. CD8+ T cells suppress viral replication in the cornea but contribute to VEGF-C-induced lymphatic vessel genesis. J. Immunol. 2012, 189, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Bryant-Hudson, K.M.; Carr, D.J.J. PD-L1-expressing dendritic cells contribute to viral resistance during acute HSV-1 infection. Clin. Dev. Immunol. 2012, 2012, 924619. [Google Scholar] [CrossRef] [PubMed]
- Royer, D.J.; Conrady, C.D.; Carr, D.J.J. Herpesvirus-Associated Lymphadenitis Distorts Fibroblastic Reticular Cell Microarchitecture and Attenuates CD8 T Cell Responses to Neurotropic Infection in Mice Lacking the STING-IFNα/β Defense Pathways. J. Immunol. 2016, 197, 2338–2352. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.J.; Chen, B.; Chew, M.V.; Barra, N.G.; Shenouda, M.M.; Nham, T.; van Rooijen, N.; Jordana, M.; Mossman, K.L.; Schreiber, R.D.; et al. Inflammatory monocytes require type I interferon receptor signaling to activate NK cells via IL-18 during a mucosal viral infection. J. Exp. Med. 2017, 214, 1153–1167. [Google Scholar] [CrossRef]
- Madera, S.; Rapp, M.; Firth, M.A.; Beilke, J.N.; Lanier, L.L.; Sun, J.C. Type I IFN promotes NK cell expansion during viral infection by protecting NK cells against fratricide. J. Exp. Med. 2016, 213, 225–233. [Google Scholar] [CrossRef]
- Fitzpatrick, S.; Lausch, R.; Barrington, R.A. CCR6-Positive γδ T Cells Provide Protection Against Intracorneal HSV-1 Infection. Investig. Ophthalmol. Vis. Sci. 2019, 60, 3952–3962. [Google Scholar] [CrossRef]
- Ghiasi, H.; Cai, S.; Perng, G.-C.; Nesburn, A.B.; Wechsler, S.L. The role of natural killer cells in protection of mice against death and corneal scarring following ocular HSV-1 infection. Antivir. Res. 2000, 45, 33–45. [Google Scholar] [CrossRef]
- Orr, M.T.; Mathis, M.A.; Lagunoff, M.; Sacks, J.A.; Wilson, C.B. CD8 T Cell Control of HSV Reactivation from Latency Is Abrogated by Viral Inhibition of MHC Class I. Cell Host Microbe 2007, 2, 172–180. [Google Scholar] [CrossRef]
- Yu, W.; Geng, S.; Suo, Y.; Wei, X.; Cai, Q.; Wu, B.; Zhou, X.; Shi, Y.; Wang, B. Critical Role of Regulatory T Cells in the Latency and Stress-Induced Reactivation of HSV-1. Cell Rep. 2018, 25, 2379–2389.e3. [Google Scholar] [CrossRef]
- Knickelbein, J.E.; Khanna, K.M.; Yee, M.B.; Baty, C.J.; Kinchington, P.R.; Hendricks, R.L. Noncytotoxic Lytic Granule-Mediated CD8+ T Cell Inhibition of HSV-1 Reactivation from Neuronal Latency. Science 2008, 322, 268–271. [Google Scholar] [CrossRef]
- Prakash, S.; Roy, S.; Srivastava, R.; Coulon, P.-G.; Dhanushkodi, N.R.; Vahed, H.; Jankeel, A.; Geertsema, R.; Amezquita, C.; Nguyen, L.; et al. Unique molecular signatures of antiviral memory CD8+ T cells associated with asymptomatic recurrent ocular herpes. Sci. Rep. 2020, 10, 13843. [Google Scholar] [CrossRef] [PubMed]
- St. Leger, A.J.; Jeon, S.; Hendricks, R.L. Broadening the Repertoire of Functional Herpes Simplex Virus Type 1–Specific CD8+ T Cells Reduces Viral Reactivation from Latency in Sensory Ganglia. J. Immunol. 2013, 191, 2258–2265. [Google Scholar] [CrossRef]
- Croen, K.D. Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J. Clin. Investig. 1993, 91, 2446–2452. [Google Scholar] [CrossRef] [PubMed]
- Pertile, T.L.; Karaca, K.; Sharma, J.M.; Walser, M.M. An Antiviral Effect of Nitric Oxide: Inhibition of Reovirus Replication. Avian Dis. 1996, 40, 342–348. [Google Scholar] [CrossRef]
- Mehta, D.R.; Ashkar, A.A.; Mossman, K.L. The Nitric Oxide Pathway Provides Innate Antiviral Protection in Conjunction with the Type I Interferon Pathway in Fibroblasts. PLoS ONE 2012, 7, e31688. [Google Scholar] [CrossRef]
- Karupiah, G.; Xie, Q.; Buller, R.M.L.; Nathan, C.; Duarte, C.; MacMicking, J.D. Inhibition of Viral Replication by Interferon-γ-Induced Nitric Oxide Synthase. Science 1993, 261, 1445–1448. [Google Scholar] [CrossRef]
- Cheng, H.; Tumpey, T.M.; Staats, H.F.; van Rooijen, N.; Oakes, J.E.; Lausch, R.N. Role of Macrophages in Restricting Herpes Simplex Virus Type 1 Growth after Ocular Infection. Investig. Ophthalmol. Vis. Sci. 2000, 41, 1402–1409. [Google Scholar]
- Jaggi, U.; Matundan, H.H.; Yu, J.; Hirose, S.; Mueller, M.; Wormley, F.L., Jr.; Ghiasi, H. Essential role of M1 macrophages in blocking cytokine storm and pathology associated with murine HSV-1 infection. PLOS Pathog. 2021, 17, e1009999. [Google Scholar] [CrossRef] [PubMed]
- Wuest, T.R.; Carr, D.J.J. VEGF-A expression by HSV-1–infected cells drives corneal lymphangiogenesis. J. Exp. Med. 2009, 207, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Wuest, T.; Zheng, M.; Efstathiou, S.; Halford, W.P.; Carr, D.J.J. The Herpes Simplex Virus-1 Transactivator Infected Cell Protein-4 Drives VEGF-A Dependent Neovascularization. PLoS Pathog. 2011, 7, e1002278. [Google Scholar] [CrossRef] [PubMed]
- Suryawanshi, A.; Mulik, S.; Sharma, S.; Reddy, P.B.J.; Sehrawat, S.; Rouse, B.T. Ocular Neovascularization Caused by Herpes Simplex Virus Type 1 Infection Results from Breakdown of Binding between Vascular Endothelial Growth Factor A and Its Soluble Receptor. J. Immunol. 2011, 186, 3653–3665. [Google Scholar] [CrossRef]
- Yun, H.; Yee, M.B.; Lathrop, K.L.; Kinchington, P.R.; Hendricks, R.L.; St. Leger, A.J. Production of the Cytokine VEGF-A by CD4+ T and Myeloid Cells Disrupts the Corneal Nerve Landscape and Promotes Herpes Stromal Keratitis. Immunity 2020, 53, 1050–1062.e5. [Google Scholar] [CrossRef]
- Kuffova, L.; Knickelbein, J.E.; Yu, T.; Medina, C.; Amescua, G.; Rowe, A.M.; Hendricks, R.L.; Forrester, J.V. High-Risk Corneal Graft Rejection in the Setting of Previous Corneal Herpes Simplex Virus (HSV)-1 Infection. Investig. Ophthalmol. Vis. Sci. 2016, 57, 1578–1587. [Google Scholar] [CrossRef]
- Biswas, P.S.; Rouse, B.T. Early events in HSV keratitis—Setting the stage for a blinding disease. Microbes Infect. 2005, 7, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Giménez, F.; Suryawanshi, A.; Rouse, B.T. Pathogenesis of herpes stromal keratitis—A focus on corneal neovascularization. Prog. Retin. Eye Res. 2013, 33, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mercadal, C.M.; Bouley, D.M.; DeStephano, D.; Rouse, B.T. Herpetic stromal keratitis in the reconstituted scid mouse model. J. Virol. 1993, 67, 3404–3408. [Google Scholar] [CrossRef]
- Russell, R.G.; Nasisse, M.P.; Larsen, H.S.; Rouse, B.T. Role of T-lymphocytes in the pathogenesis of herpetic stromal keratitis. Investig. Ophthalmol. Vis. Sci. 1984, 25, 938–944. [Google Scholar]
- Wilhelmus, K.R.; Gee, L.; Hauck, W.W.; Kurinij, N.; Dawson, C.R.; Jones, D.B.; Barron, B.A.; Kaufman, H.E.; Sugar, J.; Hyndiuk, R.A.; et al. Herpetic Eye Disease Study: A Controlled Trial of Topical Corticosteroids for Herpes Simplex Stromal Keratitis. Ophthalmology 1994, 101, 1883–1896. [Google Scholar] [CrossRef]
- Royer, D.J.; Zheng, M.; Conrady, C.D.; Carr, D.J.J. Granulocytes in Ocular HSV-1 Infection: Opposing Roles of Mast Cells and Neutrophils. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3763–3775. [Google Scholar] [CrossRef]
- Zheng, M.; Deshpande, S.; Lee, S.; Ferrara, N.; Rouse, B.T. Contribution of Vascular Endothelial Growth Factor in the Neovascularization Process during the Pathogenesis of Herpetic Stromal Keratitis. J. Virol. 2001, 75, 9828–9835. [Google Scholar] [CrossRef]
- Sohn, J.-H.; Bora, P.S.; Suk, H.-J.; Molina, H.; Kaplan, H.J.; Bora, N.S. Tolerance is dependent on complement C3 fragment iC3b binding to antigen-presenting cells. Nat. Med. 2003, 9, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Filiberti, A.; Gmyrek, G.B.; Berube, A.N.; Royer, D.J.; Carr, D.J.J. An intact complement system dampens cornea inflammation during acute primary HSV-1 infection. Sci. Rep. 2021, 11, 10247. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.R.; Flynn, H.W.J.; Miller, D.; Forster, R.K.; Alfonso, E.C. Infectious keratitis progressing to endophthalmitis: A 15-year study of microbiology, associated factors, and clinical outcomes. Ophthalmology 2012, 119, 2443–2449. [Google Scholar] [CrossRef]
- Durand, M.L.; Barshak, M.B.; Chodosh, J. Infectious Keratitis in 2021. JAMA 2021, 326, 1319–1320. [Google Scholar] [CrossRef]
- Khoo, P.; Cabrera-Aguas, M.P.; Nguyen, V.; Lahra, M.M.; Watson, S.L. Microbial keratitis in Sydney, Australia: Risk factors, patient outcomes, and seasonal variation. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 1745–1755. [Google Scholar] [CrossRef]
- Das, S.; Jhanji, V. Infections of the Cornea and Conjunctiva; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 9811588112. [Google Scholar]
- Lin, A.; Rhee, M.K.; Akpek, E.K.; Amescua, G.; Farid, M.; Garcia-Ferrer, F.J.; Varu, D.M.; Musch, D.C.; Dunn, S.P.; Mah, F.S. Bacterial Keratitis Preferred Practice Pattern®. Ophthalmology 2019, 126, P1–P55. [Google Scholar] [CrossRef]
- Ting, D.S.J.; Cairns, J.; Gopal, B.P.; Ho, C.S.; Krstic, L.; Elsahn, A.; Lister, M.; Said, D.G.; Dua, H.S. Risk Factors, Clinical Outcomes, and Prognostic Factors of Bacterial Keratitis: The Nottingham Infectious Keratitis Study. Front. Med. 2021, 8, 715118. [Google Scholar] [CrossRef]
- Eby, A.; Hazlett, L. Pseudomonas Keratitis, a Review of Where We’ve Been and What Lies Ahead. J. Microb. Biochem. Technol. 2015, 8, 9–13. [Google Scholar]
- Esen, M.; Grassmé, H.; Riethmüller, J.; Riehle, A.; Fassbender, K.; Gulbins, E. Gulbins Erich Invasion of Human Epithelial Cells by Pseudomonas aeruginosa Involves Src-Like Tyrosine Kinases p60Src and p59Fyn. Infect. Immun. 2001, 69, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Hilliam, Y.; Kaye, S.; Winstanley, C. Pseudomonas aeruginosa and microbial keratitis. J. Med. Microbiol. 2020, 69, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Finck-Barbançon, V.; Goranson, J.; Zhu, L.; Sawa, T.; Wiener-Kronish, J.P.; Fleiszig, S.M.J.; Wu, C.; Mende-Mueller, L.; Frank, D.W. ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol. Microbiol. 1997, 25, 547–557. [Google Scholar] [CrossRef]
- Murugan, N.; Malathi, J.; Umashankar, V.; Madhavan, H.N. Resistome and pathogenomics of multidrug resistant (MDR) Pseudomonas aeruginosa VRFPA03, VRFPA05 recovered from alkaline chemical keratitis and post-operative endophthalmitis patient. Gene 2016, 578, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Borkar, D.S.; Acharya, N.R.; Leong, C.; Lalitha, P.; Srinivasan, M.; Oldenburg, C.E.; Cevallos, V.; Lietman, T.M.; Evans, D.J.; Fleiszig, S.M.J. Cytotoxic clinical isolates of Pseudomonas aeruginosaidentified during the Steroids for Corneal Ulcers Trial show elevated resistance to fluoroquinolones. BMC Ophthalmol. 2014, 14, 54. [Google Scholar] [CrossRef]
- Bardoel, B.W.; van der Ent, S.; Pel, M.J.C.; Tommassen, J.; Pieterse, C.M.J.; van Kessel, K.P.M.; van Strijp, J.A.G. Pseudomonas Evades Immune Recognition of Flagellin in Both Mammals and Plants. PLoS Pathog. 2011, 7, e1002206. [Google Scholar] [CrossRef]
- Zaidi, T.S.; Zaidi, T.; Pier, G.B. Role of Neutrophils, MyD88-Mediated Neutrophil Recruitment, and Complement in Antibody-Mediated Defense against Pseudomonas aeruginosa Keratitis. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2085–2093. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Barrett, R.P.; McClellan, S.A.; Hazlett, L.D. Silencing Toll-like Receptor-9 in Pseudomonas aeruginosa Keratitis. Investig. Ophthalmol. Vis. Sci. 2005, 46, 4209–4216. [Google Scholar] [CrossRef]
- Huang, X.; Du, W.; McClellan, S.A.; Barrett, R.P.; Hazlett, L.D. TLR4 Is Required for Host Resistance in Pseudomonas aeruginosa Keratitis. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4910–4916. [Google Scholar] [CrossRef]
- Yoon, G.S.; Dong, C.; Gao, N.; Kumar, A.; Standiford, T.J.; Yu, F.-S.X. Interferon Regulatory Factor-1 in Flagellin-Induced Reprogramming: Potential Protective Role of CXCL10 in Cornea Innate Defense Against Pseudomonas aeruginosa Infection. Investig. Ophthalmol. Vis. Sci. 2013, 54, 7510–7521. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, K.; Ambati, B.; Yu, F.-S.X. Toll-like Receptor 5-Mediated Corneal Epithelial Inflammatory Responses to Pseudomonas aeruginosa Flagellin. Investig. Ophthalmol. Vis. Sci. 2003, 44, 4247–4254. [Google Scholar] [CrossRef] [PubMed]
- Hazlett, L.D. Corneal response to Pseudomonas aeruginosa infection. Prog. Retin. Eye Res. 2004, 23, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Thanabalasuriar, A.; Scott, B.N.V.; Peiseler, M.; Willson, M.E.; Zeng, Z.; Warrener, P.; Keller, A.E.; Surewaard, B.G.J.; Dozier, E.A.; Korhonen, J.T.; et al. Neutrophil Extracellular Traps Confine Pseudomonas aeruginosa Ocular Biofilms and Restrict Brain Invasion. Cell Host Microbe 2019, 25, 526–536.e4. [Google Scholar] [CrossRef] [PubMed]
- Vareechon, C.; Zmina, S.E.; Karmakar, M.; Pearlman, E.; Rietsch, A. Pseudomonas aeruginosa Effector ExoS Inhibits ROS Production in Human Neutrophils. Cell Host Microbe 2017, 21, 611–618.e5. [Google Scholar] [CrossRef]
- Berger, E.A.; McClellan, S.A.; Vistisen, K.S.; Hazlett, L.D. HIF-1α Is Essential for Effective PMN Bacterial Killing, Antimicrobial Peptide Production and Apoptosis in Pseudomonas aeruginosa Keratitis. PLoS Pathog. 2013, 9, e1003457. [Google Scholar] [CrossRef]
- Kernacki, K.A.; Barrett, R.P.; Hobden, J.A.; Hazlett, L.D. Macrophage Inflammatory Protein-2 Is a Mediator of Polymorphonuclear Neutrophil Influx in Ocular Bacterial Infection1. J. Immunol. 2000, 164, 1037–1045. [Google Scholar] [CrossRef]
- McClellan, S.; Jiang, X.; Barrett, R.; Hazlett, L.D. High-Mobility Group Box 1: A Novel Target for Treatment of Pseudomonas aeruginosa Keratitis. J. Immunol. 2015, 194, 1776–1787. [Google Scholar] [CrossRef]
- Szliter, E.A.; Lighvani, S.; Barrett, R.P.; Hazlett, L.D. Vasoactive Intestinal Peptide Balances Pro- and Anti-Inflammatory Cytokines in the Pseudomonas aeruginosa-Infected Cornea and Protects against Corneal Perforation1. J. Immunol. 2007, 178, 1105–1114. [Google Scholar] [CrossRef]
- Rudner, X.L.; Kernacki, K.A.; Barrett, R.P.; Hazlett, L.D. Prolonged Elevation of IL-1 in Pseudomonas aeruginosa Ocular Infection Regulates Macrophage-Inflammatory Protein-2 Production, Polymorphonuclear Neutrophil Persistence, and Corneal Perforation1. J. Immunol. 2000, 164, 6576–6582. [Google Scholar] [CrossRef]
- Hazlett, L.D.; McClellan, S.; Kwon, B.; Barrett, R. Increased Severity of Pseudomonas aeruginosa Corneal Infection in Strains of Mice Designated as Th1 versus Th2 Responsive. Investig. Ophthalmol. Vis. Sci. 2000, 41, 805–810. [Google Scholar]
- Gao, J.-L.; Wynn, T.A.; Chang, Y.; Lee, E.J.; Broxmeyer, H.E.; Cooper, S.; Tiffany, H.L.; Westphal, H.; Kwon-Chung, J.; Murphy, P.M. Impaired Host Defense, Hematopoiesis, Granulomatous Inflammation and Type 1–Type 2 Cytokine Balance in Mice Lacking CC Chemokine Receptor 1. J. Exp. Med. 1997, 185, 1959–1968. [Google Scholar] [CrossRef] [PubMed]
- Me, R.; Gao, N.; Zhang, Y.; Lee, P.S.Y.; Wang, J.; Liu, T.; Standiford, T.J.; Mi, Q.-S.; Yu, F.-S.X. IL-36α Enhances Host Defense against Pseudomonas aeruginosa Keratitis in C57BL/6 Mouse Corneas. J. Immunol. 2021, 207, 2868–2877. [Google Scholar] [CrossRef] [PubMed]
- Me, R.; Gao, N.; Dai, C.; Yu, F.X. IL-17 Promotes Pseudomonas aeruginosa Keratitis in C57BL/6 Mouse Corneas. J. Immunol. 2020, 204, 169–179. [Google Scholar] [CrossRef]
- Kopplin, L.J.; Thomas, A.S.; Cramer, S.; Kim, Y.H.; Yeh, S.; Lauer, A.K.; Flaxel, C.J. Long-Term Surgical Outcomes of Retinal Detachment Associated With Acute Retinal Necrosis. Ophthalmic Surg. Lasers Imaging Retin. 2016, 47, 660–664. [Google Scholar] [CrossRef]
- Silva, R.A.; Berrocal, A.M.; Moshfeghi, D.M.; Blumenkranz, M.S.; Sanislo, S.; Davis, J.L. Herpes simplex virus type 2 mediated acute retinal necrosis in a pediatric population: Case series and review. Graefe’s Arch. Clin. Exp. Ophthalmol. 2013, 251, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Schoenberger, S.D.; Kim, S.J.; Thorne, J.E.; Mruthyunjaya, P.; Yeh, S.; Bakri, S.J.; Ehlers, J.P. Diagnosis and Treatment of Acute Retinal Necrosis: A Report by the American Academy of Ophthalmology. Ophthalmology 2017, 124, 382–392. [Google Scholar] [CrossRef]
- Fukunaga, H.; Kaburaki, T.; Shirahama, S.; Tanaka, R.; Murata, H.; Sato, T.; Takeuchi, M.; Tozawa, H.; Urade, Y.; Katsura, M.; et al. Analysis of inflammatory mediators in the vitreous humor of eyes with pan-uveitis according to aetiological classification. Sci. Rep. 2020, 10, 2783. [Google Scholar] [CrossRef]
- de Visser, L.; de Boer, J.H.; Rijkers, G.T.; Wiertz, K.; van den Ham, H.J.; de Boer, R.; van Loon, A.M.; Rothova, A.; de Groot-Mijnes, D.F. Cytokines and Chemokines Involved in Acute Retinal Necrosis. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2139–2151. [Google Scholar] [CrossRef]
- Von Szily, A. Experimental endogenous transmission of infection from bulbus to bulbus. Klin Monatsbl Augenheilkd 1924, 75, 593–602. [Google Scholar]
- Atherton, S.S.; Streilein, J.W. Two waves of virus following anterior chamber inoculation of HSV-1. Investig. Ophthalmol. Vis. Sci. 1987, 28, 571–579. [Google Scholar] [CrossRef]
- Kezuka, T.; Sakai, J.; Usui, N.; Streilein, J.W.; Usui, M. Evidence for Antigen-Specific Immune Deviation in Patients With Acute Retinal Necrosis. Arch. Ophthalmol. 2001, 119, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Atherton, S.S. Cytokine Profiles and Inflammatory Cells during HSV-1–Induced Acute Retinal Necrosis. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1356–1363. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Qian, H.; Joshi, R.M.; Nechtman, J.; Atherton, S.S. DNA microarray analysis of the uninoculated eye following anterior chamber inoculation of HSV-1. Ocul. Immunol. Inflamm. 2003, 11, 187–195. [Google Scholar] [CrossRef]
- Zheng, M.; Fields, M.A.; Liu, Y.; Cathcart, H.; Richter, E.; Atherton, S.S. Neutrophils Protect the Retina of the Injected Eye from Infection after Anterior Chamber Inoculation of HSV-1 in BALB/c Mice. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4018–4025. [Google Scholar] [CrossRef] [PubMed]
- Grajewski, R.S.; Li, J.; Wasmuth, S.; Hennig, M.; Bauer, D.; Heiligenhaus, A. Intravitreal treatment with antisense oligonucleotides targeting tumor necrosis factor-α in murine herpes simplex virus type 1 retinitis. Graefe’s Arch. Clin. Exp. Ophthalmol. 2012, 250, 231–238. [Google Scholar] [CrossRef]
- Azumi, A.; Atherton, S.S. T cells in the uninjected eye after anterior chamber inoculation of herpes simplex virus type 1. Investig. Ophthalmol. Vis. Sci. 1998, 39, 78–83. [Google Scholar]
- Ng, C.C.; Chen, J.J.; Agarwal, A.; Cunningham, E.T. Clinical course of von Szily reaction: Case report and comprehensive review of the literature. Am. J. Ophthalmol. Case Rep. 2020, 20, 100927. [Google Scholar] [CrossRef]
- Ross, B.X.; Jia, L.; Kong, D.; Wang, T.; Hager, H.M.; Abcouwer, S.F.; Zacks, D.N. Conditional Knock out of High-Mobility Group Box 1 (HMGB1) in Rods Reduces Autophagy Activation after Retinal Detachment. Cells 2021, 10, 2010. [Google Scholar] [CrossRef]
- Freeman, W.; Schneiderman, T.; Wiley, C.; Listhaus, A.; Svendsen, P.; Munguia, D.; Bergeron-Lynn, G. An animal model of focal, subacute, viral retinitis. Retina 1993, 13, 214–221. [Google Scholar] [CrossRef]
- Fan, S.; Yoo, J.H.; Park, G.; Yeh, S.; Conrady, C.D. Type I Interferon Signaling Is Critical During the Innate Immune Response to HSV-1 Retinal Infection. Investig. Ophthalmol. Vis. Sci. 2022, 63, 28. [Google Scholar] [CrossRef]
- Conrady, C.D.; Halford, W.P.; Carr, D.J.J. Loss of the type I interferon pathway increases vulnerability of mice to genital herpes simplex virus 2 infection. J. Virol. 2011, 85, 1625–1633. [Google Scholar] [CrossRef]
- Chien, H.; Dix, R.D. Evidence For Multiple Cell Death Pathways during Development of Experimental Cytomegalovirus Retinitis in Mice with Retrovirus-Induced Immunosuppression: Apoptosis, Necroptosis, and Pyroptosis. J. Virol. 2012, 86, 10961–10978. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.J.; Nemeno, J.G.E.; Oh, J.J.; Houghton, J.E.; Dix, R.D. Atypical cytomegalovirus retinal disease in pyroptosis-deficient mice with murine acquired immunodeficiency syndrome. Exp. Eye Res. 2021, 209, 108651. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Koehler, H.S.; Mocarski, E.S.; Dix, R.D. RIPK3 and caspase 8 collaborate to limit herpes simplex encephalitis. PLoS Pathog. 2022, 18, e1010857. [Google Scholar] [CrossRef]
- Brundrett, A.; Conrady, C.D.; Shakoor, A.; Lin, A. Current Strategies for Prevention and Treatment of Postoperative Endophthalmitis. Curr. Ophthalmol. Rep. 2018, 6, 105–114. [Google Scholar] [CrossRef]
- Conrady, C.D.; Feistmann, J.A.; Roller, A.B.; Boldt, H.C.; Shakoor, A. Hemorrhagic vasculitis and retinopathy heralding as an early sign of bacterial endophthalmitis after intravitreal injection. Retin. Cases Brief Rep. 2017, 13, 329–332. [Google Scholar] [CrossRef]
- Conrady, C.D.; Feist, R.M., Jr.; Vitale, A.T.; Shakoor, A. Long-term visual outcomes of endophthalmitis and the role of systemic steroids in addition to intravitreal dexamethasone. BMC Ophthalmol. 2020, 20, 181. [Google Scholar] [CrossRef] [PubMed]
- Ho, I.-V.; Fernandez-Sanz, G.; Levasseur, S.; Ting, E.; Liew, G.; Playfair, J.; Downie, J.; Gorbatov, M.; Hunyor, A.P.; Chang, A.A. Early Pars Plana Vitrectomy for Treatment of Acute Infective Endophthalmitis. Asia-Pac. J. Ophthalmol. 2019, 8, 3–7. [Google Scholar]
- Combey de Lambert, A.; Campolmi, N.; Cornut, P.-L.; Aptel, F.; Creuzot-Garcher, C.; Chiquet, C. French Institutional Endophthalmitis Study Group Baseline factors predictive of visual prognosis in acute postoperative bacterial endophthalmitis in patients undergoing cataract surgery. JAMA Ophthalmol. 2013, 131, 1159–1166. [Google Scholar] [CrossRef]
- Lin, J.; Huang, S.; Liu, M.; Lin, L.; Gu, J.; Duan, F. Endophthalmitis Caused by Pseudomonas aeruginosa: Clinical Characteristics, Outcomes, and Antibiotics Sensitivities. J. Ophthalmol. 2022, 2022, 1265556. [Google Scholar] [CrossRef]
- Staropoli, P.C.; Flynn, H.W., Jr.; Miller, D.; Persad, P.J.; Vanner, E.A. Endophthalmitis Caused by Streptococcus:Clinical Outcomes and Antimicrobial Susceptibilities 2014–2019. Ophthalmic Surg. Lasers Imaging Retin. 2021, 52, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Endophthalmitis Vitrectomy Study Group. A randomized trial of immediate vitrectomy and of intravenous antibiotics for the treatment of postoperative bacterial endophthalmitis. Arch. Ophthalmol. 1995, 113, 1479–1496. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A. Role of Staphylococcus aureus Virulence Factors in Inducing Inflammation and Vascular Permeability in a Mouse Model of Bacterial Endophthalmitis. PLoS ONE 2015, 10, e0128423. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Singh, S.; Kumar, A. Bacterial Burden Declines But Neutrophil Infiltration and Ocular Tissue Damage Persist in Experimental Staphylococcus epidermidis Endophthalmitis. Front. Cell. Infect. Microbiol. 2021, 11, 780648. [Google Scholar] [CrossRef] [PubMed]
- Soon, M.Y.; Allen, P.J.; Dawkins, R.C.H. Cytokine Expression in Staphylococcal and Streptococcal Endophthalmitis. Biomed. Hub 2022, 7, 88–98. [Google Scholar] [CrossRef]
- Coburn, P.S.; Parrott, A.C.; Miller, F.C.; LaGrow, A.L.; Mursalin, M.H.; Callegan, M.C. The Role of C-X-C Chemokines in Staphylococcus aureus Endophthalmitis. Investig. Ophthalmol. Vis. Sci. 2023, 64, 10. [Google Scholar] [CrossRef]
- Tsioti, I.; Steiner, B.L.; Escher, P.; Zinkernagel, M.S.; Benz, P.M.; Kokona, D. Endothelial Toll-like receptor 4 is required for microglia activation in the murine retina after systemic lipopolysaccharide exposure. J. Neuroinflammation 2023, 20, 25. [Google Scholar] [CrossRef]
- Kochan, T.; Singla, A.; Tosi, J.; Kumar, A. Toll-like Receptor 2 Ligand Pretreatment Attenuates Retinal Microglial Inflammatory Response but Enhances Phagocytic Activity toward Staphylococcus aureus. Infect. Immun. 2012, 80, 2076–2088. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, P.K.; Ahmed, Z.; Singh, S.; Kumar, A. Kumar Ashok Essential Role of NLRP3 Inflammasome in Mediating IL-1β Production and the Pathobiology of Staphylococcus aureus Endophthalmitis. Infect. Immun. 2022, 90, e00103–e00122. [Google Scholar] [CrossRef]
- Grumann, D.; Nübel, U.; Bröker, B.M. Staphylococcus aureus toxins—Their functions and genetics. Infect. Genet. Evol. 2014, 21, 583–592. [Google Scholar] [CrossRef]
- Callegan, M.C.; Engelbert, M.; Parke, D.W.; Jett, B.D.; Gilmore, M.S. Bacterial Endophthalmitis: Epidemiology, Therapeutics, and Bacterium-Host Interactions. Clin. Microbiol. Rev. 2002, 15, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Coburn, P.S.; Miller, F.C.; LaGrow, A.L.; Land, C.; Mursalin, H.; Livingston, E.; Amayem, O.; Chen, Y.; Gao, W.; Zhang, L.; et al. Disarming Pore-Forming Toxins with Biomimetic Nanosponges in Intraocular Infections. mSphere 2019, 4, e00262-19. [Google Scholar] [CrossRef] [PubMed]
- Baharivand, N.; Mahdavifard, A.; Fouladi, R.F. Intravitreal clindamycin plus dexamethasone versus classic oral therapy in toxoplasmic retinochoroiditis: A prospective randomized clinical trial. Int. Ophthalmol. 2013, 33, 39–46. [Google Scholar] [CrossRef] [PubMed]
Sites of Ocular Infections and Associated Bacterial Microbes | |||
---|---|---|---|
Site of Infection | Associated Bacteria | ||
Ocular Surface | Keratitis | Gram-Positive | Staphylococcus spp., Enterococcus faecalis, Corynebacterium spp., and Bacillus spp. |
Gram-Negative | Pseudomonas aeruginosa, Escherichia coli, K. pneumoniae, Acinetobacter, Serratia marcescens, Serratia liquefaciens, Aeromonas spp., Fusobacterium spp., Enterobacter spp., Proteus mirabilis, P Pasteurella multocida, Morexella catarrhalis, and Haemophilus influenzae | ||
Conjunctivitis | Gram-Positive | Staphylococcus spp., Streptoccus spp., E. faecalis, Corynebacterium spp., and Bacillus spp. | |
Gram-Negative | Neisseria gonorrhoeae, Chlamydia trachomatis, Escherichia coli, P. aeruginosa, Enterobacter spp. (i.e., E. cloacae and E. aerogenes), Citrobacter koseri, Proteus spp., Moraxella spp., Morexella catarrhalis, and Haemophilus influenzae | ||
Episcleritis/Scleritis | Gram-Positive | Staphylococcus spp., Streptococcus spp., Nocardia | |
Gram-Negative | Pseudomonas aeruginosa, Klebsiella spp., and Mycobacterium tuberculosis | ||
Intraocular | Uveitis | Gram-Positive | * Nocardia brasiliensis |
Gram-Negative | Mycobaterium tuberculosis, * Rickettsia spp., * Francisella tularensis, * Bartonella henselae, * Yersinia enterocolitica, * Pasteurella multocida, and * Chlamydia trachomatis | ||
Endophthalmitis | Gram-Positive | Staphylococcus spp., Streptoccus spp., Corynebacterium spp., Bacillus spp., and * Clostridium spp. | |
Gram-Negative | Pseudomonas aeruginosa, Escherichia coli, Propiolactone spp., Serratia spp., Klebsiella pneumoniae, Enterobacter spp., Acinetobacter spp., Morexella catarrhailis, and Haemophilus spp. | ||
Ocular Adnexa | Dacryocystis | Gram-Positive | Staphylococcus spp., Streptococcus spp., and Corynebacterium spp. |
Gram-Negative | Pseudomonas spp., Enterobacter spp., Klebsella. pneumoniae, Haemophilus influenzae, Escherichia coli, * Acinetobacter iwoifi, * Haemophilus parainfluenzae, and * Haemophilus aegypticus | ||
Blepharitis | Gram-Positive | Staphylococcus aureus, Staphylococcus spp., Enterococcus faecalis, and Corynebacterium spp. | |
Gram-Negative | Haemophilus influenzae |
Sites of Ocular Infections and Associated Microbes | |||
---|---|---|---|
Site of Infection | Infection Category | Associated Pathogens | |
Ocular Surface | Keratitis | Viruses | HSV, VSV, and adenovirus |
Fungi | Candida spp., and Aspergillus spp. | ||
Protozoa | Acanthamoeba spp. | ||
Conjunctivitis | Viruses | HSV, and adenoviruses | |
Episcleritis/Scleritis | Viruses | VZV | |
Intraocular | Anterior Uveitis | Viruses | HSV, VZV, and CMV |
Posterior Uveitis | Viruses | HSV, VZV, and CMV | |
Endophthalmitis | Protozoa | Toxoplasma gondii | |
Viruses | |||
Fungi | Candida spp., Aspergillus spp., and Fusarium spp. | ||
Ocular Adnexa | Blepharitis | Mites | Demodex folliculorum |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dempsey, M.P.; Conrady, C.D. The Host–Pathogen Interplay: A Tale of Two Stories within the Cornea and Posterior Segment. Microorganisms 2023, 11, 2074. https://doi.org/10.3390/microorganisms11082074
Dempsey MP, Conrady CD. The Host–Pathogen Interplay: A Tale of Two Stories within the Cornea and Posterior Segment. Microorganisms. 2023; 11(8):2074. https://doi.org/10.3390/microorganisms11082074
Chicago/Turabian StyleDempsey, Michael P., and Christopher D. Conrady. 2023. "The Host–Pathogen Interplay: A Tale of Two Stories within the Cornea and Posterior Segment" Microorganisms 11, no. 8: 2074. https://doi.org/10.3390/microorganisms11082074
APA StyleDempsey, M. P., & Conrady, C. D. (2023). The Host–Pathogen Interplay: A Tale of Two Stories within the Cornea and Posterior Segment. Microorganisms, 11(8), 2074. https://doi.org/10.3390/microorganisms11082074