Considerations of COVID-19 in Ophthalmology
Abstract
:1. Introduction
2. Isolation of COVID-19 Virus from Ocular Tissues
3. Ocular Manifestations of COVID-19
3.1. Ocular Complications of COVID-19
3.2. Confirmed Ocular Diseases in COVID-19
4. Precautions Taken in Ophthalmic Practices to Prevent the Spread of the Virus
5. Adverse Eye Reactions after Vaccination
6. The Impact of the Pandemic on Patients, Clinicians, and the Eye Care System as a Whole
7. The Future of Ophthalmology Conditioned by This Global Pandemic Experience
8. Long COVID in Ophthalmology
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sen, M.; Honavar, S.G.; Sharma, N.; Sachdev, M.S. COVID-19 and Eye: A Review of Ophthalmic Manifestations of COVID-19. Indian J. Ophthalmol. 2021, 69, 488–509. [Google Scholar] [PubMed]
- Gregorczyk, M.; Roskal-Walek, J. Ocular symptoms in SARS-CoV-2 infection. Pol. Merkur Lek. 2022, 50, 86–93. [Google Scholar]
- Kumar, K.K.; Sampritha, U.C.; Prakash, A.A.; Adappa, K.; Chandraprabha, S.; Neeraja, T.G.; Guru Prasad, N.S.; Basumatary, J.; Gangasagara, S.B.; Sujatha Rathod, B.L.; et al. Ophthalmic manifestations in the COVID-19 clinical spectrum. Indian J. Ophthalmol. 2021, 69, 691–694. [Google Scholar] [CrossRef] [PubMed]
- Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.C.; Di Napoli, R. Features, Evaluation, and Treatment of Coronavirus (COVID-19). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Coerdt, K.M.; Khachemoune, A. Corona viruses: Reaching far beyond the common cold. Afr. Health Sci. 2021, 21, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Chathappady House, N.N.; Palissery, S.; Sebastian, H. Corona Viruses: A Review on SARS, MERS and COVID-19. Microbiol. Insights 2021, 14, 11786361211002481. [Google Scholar] [CrossRef] [PubMed]
- Lotfi, M.; Hamblin, M.R.; Rezaei, N. COVID-19: Transmission, prevention, and potential therapeutic opportunities. Clin. Chim. Acta 2020, 508, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Dawood, A.A. Transmission of SARS CoV-2 virus through the ocular mucosa worth taking precautions. Vacunas 2021, 22, 56–57. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Deng, Y.; Dai, Z.; Meng, Z. COVID-19 and anosmia: A review based on up-to-date knowledge. Am. J. Otolaryngol. 2020, 41, 102581. [Google Scholar] [CrossRef]
- Song, W.J.; Hui, C.K.M.; Hull, J.H.; Birring, S.S.; McGarvey, L.; Mazzone, S.B.; Chung, K.F. Confronting COVID-19-associated cough and the post-COVID syndrome: Role of viral neurotropism, neuroinflammation, and neuroimmune responses. Lancet Respir. Med. 2021, 9, 533–544. [Google Scholar] [CrossRef]
- Sah, P.; Fitzpatrick, M.C.; Zimmer, C.F.; Abdollahi, E.; Juden-Kelly, L.; Moghadas, S.M.; Singer, B.H.; Galvani, A.P. Asymptomatic SARS-CoV-2 infection: A systematic review and meta-analysis. Proc. Natl. Acad. Sci. USA 2021, 118, e2109229118. [Google Scholar] [CrossRef]
- van Breemen, R.B.; Muchiri, R.N.; Bates, T.A.; Weinstein, J.B.; Leier, H.C.; Farley, S.; Tafesse, F.G. Cannabinoids Block Cellular Entry of SARS-CoV-2 and the Emerging Variants. J. Nat. Prod. 2022, 85, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Ranzani, O.T.; Hitchings, M.D.T.; Dorion, M.; D’Agostini, T.L.; de Paula, R.C.; de Paula, O.F.P.; Villela, E.F.M.; Torres, M.S.S.; de Oliveira, S.B.; Schulz, W.; et al. Effectiveness of the CoronaVac vaccine in older adults during a gamma variant associated epidemic of covid-19 in Brazil: Test negative case-control study. BMJ 2021, 374, n2015. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Sun, Y.; Zhou, J.; Ye, Q. The Global Epidemic of the SARS-CoV-2 Delta Variant, Key Spike Mutations and Immune Escape. Front. Immunol. 2021, 12, 751778. [Google Scholar] [CrossRef]
- Araf, Y.; Akter, F.; Tang, Y.D.; Fatemi, R.; Parvez, M.S.A.; Zheng, C.; Hossain, M.G. Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. J. Med. Virol. 2022, 94, 1825–1832. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, M.J.; Castro-Jorge, L.A.; Fraga-Silva, T.F.C.; de Azevedo, P.O.; Capato, C.F.; Rattis, B.A.C.; Hojo-Souza, N.S.; Floriano, V.G.; de Castro, J.T.; Ramos, S.G.; et al. Protective Immunity against Gamma and Zeta Variants after Inactivated SARS-CoV-2 Virus Immunization. Viruses 2021, 13, 2440. [Google Scholar] [CrossRef] [PubMed]
- Melo-Gonzalez, F.; Soto, J.A.; Gonzalez, L.A.; Fernandez, J.; Duarte, L.F.; Schultz, B.M.; Galvez, N.M.S.; Pacheco, G.A.; Rios, M.; Vazquez, Y.; et al. Recognition of Variants of Concern by Antibodies and T Cells Induced by a SARS-CoV-2 Inactivated Vaccine. Front. Immunol. 2021, 12, 747830. [Google Scholar] [CrossRef] [PubMed]
- Farhud, D.D.; Mojahed, N. SARS-COV-2 Notable Mutations and Variants: A Review Article. Iran. J. Public. Health 2022, 51, 1494–1501. [Google Scholar] [CrossRef] [PubMed]
- Ullah, H.; Ullah, A.; Gul, A.; Mousavi, T.; Khan, M.W. Novel coronavirus 2019 (COVID-19) pandemic outbreak: A comprehensive review of the current literature. Vacunas 2021, 22, 106–113. [Google Scholar] [CrossRef]
- Guemes-Villahoz, N.; Burgos-Blasco, B.; Echevarria-Torres, P.L.; Vidal-Villegas, B.; Rodriguez de la Pena, A.; Diaz-Valle, D.; Fernandez-Vigo, J.I.; Sanchez-Ramon, S.; Garcia-Feijoo, J. Detection of anti-SARS-CoV-2 antibodies in tears: Ocular surface immunity to COVID-19. Arch. Soc. Esp. Oftalmol. 2023, 98, 397–403. [Google Scholar] [CrossRef]
- Abbas, S.; Rafique, A.; Abbas, B.; Iqbal, R. Real-Time Polymerase chain reaction trends in COVID-19 patients. Pak. J. Med. Sci. 2021, 37, 180–184. [Google Scholar] [CrossRef]
- Parmar, H.; Montovano, M.; Banada, P.; Pentakota, S.R.; Shiau, S.; Ma, Z.; Saibire, K.; Chopoorian, A.; O’Shaughnessy, M.; Hirsch, M.; et al. RT-PCR negative COVID-19. BMC Infect. Dis. 2022, 22, 149. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.; Kumar, B.K.; Deekshit, V.K.; Karunasagar, I.; Karunasagar, I. Detection technologies and recent developments in the diagnosis of COVID-19 infection. Appl. Microbiol. Biotechnol. 2021, 105, 441–455. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020, 323, 1843–1844. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.; Liu, S.; Potula, H.H.; Bhargava, P.; Cruz, I.; Force, D.; Bazerbashi, A.; Ramasamy, R. IgG and IgM antibody formation to spike and nucleocapsid proteins in COVID-19 characterized by multiplex immunoblot assays. BMC Infect. Dis. 2021, 21, 325. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T.; Murakami, M. COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity 2020, 52, 731–733. [Google Scholar] [CrossRef] [PubMed]
- Perrotta, F.; Matera, M.G.; Cazzola, M.; Bianco, A. Severe respiratory SARS-CoV2 infection: Does ACE2 receptor matter? Respir. Med. 2020, 168, 105996. [Google Scholar] [CrossRef] [PubMed]
- Sharif, N.; Alzahrani, K.J.; Ahmed, S.N.; Dey, S.K. Efficacy, Immunogenicity and Safety of COVID-19 Vaccines: A Systematic Review and Meta-Analysis. Front. Immunol. 2021, 12, 714170. [Google Scholar] [CrossRef] [PubMed]
- Willcox, M.D.; Walsh, K.; Nichols, J.J.; Morgan, P.B.; Jones, L.W. The ocular surface, coronaviruses and COVID-19. Clin. Exp. Optom. 2020, 103, 418–424. [Google Scholar] [CrossRef]
- Seah, I.Y.J.; Anderson, D.E.; Kang, A.E.Z.; Wang, L.; Rao, P.; Young, B.E.; Lye, D.C.; Agrawal, R. Assessing Viral Shedding and Infectivity of Tears in Coronavirus Disease 2019 (COVID-19) Patients. Ophthalmology 2020, 127, 977–979. [Google Scholar] [CrossRef]
- Hui, K.P.Y.; Cheung, M.C.; Perera, R.; Ng, K.C.; Bui, C.H.T.; Ho, J.C.W.; Ng, M.M.T.; Kuok, D.I.T.; Shih, K.C.; Tsao, S.W.; et al. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: An analysis in ex-vivo and in-vitro cultures. Lancet Respir. Med. 2020, 8, 687–695. [Google Scholar] [CrossRef]
- Koo, E.H.; Eghrari, A.O.; Dzhaber, D.; Shah, A.; Fout, E.; Dubovy, S.; Maestre-Mesa, J.; Miller, D. Presence of SARS-CoV-2 Viral RNA in Aqueous Humor of Asymptomatic Individuals. Am. J. Ophthalmol. 2021, 230, 151–155. [Google Scholar] [CrossRef]
- Arora, R.; Goel, R.; Kumar, S.; Chhabra, M.; Saxena, S.; Manchanda, V.; Pumma, P. Evaluation of SARS-CoV-2 in Tears of Patients with Moderate to Severe COVID-19. Ophthalmology 2021, 128, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Sopp, N.M.; Sharda, V. An Eye on COVID-19: A Meta-analysis of Positive Conjunctival Reverse Transcriptase-Polymerase Chain Reaction and SARS-CoV-2 Conjunctivitis Prevalence. Optom. Vis. Sci. 2021, 98, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Hada, M.; Khilnani, K.; Vyas, N.; Chouhan, J.K.; Dharawat, K.S.; Bhandari, S.; Tripathy, K. Evaluating the presence of SARS-CoV-2 in the intraocular fluid of COVID-19 patients. Indian J. Ophthalmol. 2021, 69, 2503–2506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, X.; Chen, L.; Deng, C.; Zou, X.; Liu, W.; Yu, H.; Chen, B.; Sun, X. The evidence of SARS-CoV-2 infection on ocular surface. Ocul. Surf. 2020, 18, 360–362. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Xu, Z.; Castiglione, G.M.; Soiberman, U.S.; Eberhart, C.G.; Duh, E.J. ACE2 and TMPRSS2 are expressed on the human ocular surface, suggesting susceptibility to SARS-CoV-2 infection. Ocul. Surf. 2020, 18, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Baj, J.; Forma, A.; Teresinska, B.; Tyczynska, M.; Zembala, J.; Januszewski, J.; Flieger, J.; Buszewicz, G.; Teresinski, G. How Does SARS-CoV-2 Affect Our Eyes-What Have We Learnt So Far about the Ophthalmic Manifestations of COVID-19? J. Clin. Med. 2022, 11, 3379. [Google Scholar] [CrossRef]
- Sen, M.; Honavar, S.G. After the Storm: Ophthalmic Manifestations of COVID-19 Vaccines. Indian J. Ophthalmol. 2021, 69, 3398–3420. [Google Scholar]
- Wu, P.; Duan, F.; Luo, C.; Liu, Q.; Qu, X.; Liang, L.; Wu, K. Characteristics of Ocular Findings of Patients with Coronavirus Disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol. 2020, 138, 575–578. [Google Scholar] [CrossRef]
- Xia, J.; Tong, J.; Liu, M.; Shen, Y.; Guo, D. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. J. Med. Virol. 2020, 92, 589–594. [Google Scholar] [CrossRef]
- Scalinci, S.Z.; Trovato Battagliola, E. Conjunctivitis can be the only presenting sign and symptom of COVID-19. IDCases 2020, 20, e00774. [Google Scholar] [CrossRef] [PubMed]
- Tonkerdmongkol, D.; Poyomtip, T.; Poolsanam, C.; Watcharapalakorn, A.; Tawonkasiwattanakun, P. Prevalence and associated factors for self-reported symptoms of dry eye among Thai school children during the COVID-19 outbreak. PLoS ONE 2023, 18, e0284928. [Google Scholar] [CrossRef] [PubMed]
- Krolo, I.; Blazeka, M.; Merdzo, I.; Vrtar, I.; Sabol, I.; Petric-Vickovic, I. Mask-Associated Dry Eye During COVID-19 Pandemic-How Face Masks Contribute to Dry Eye Disease Symptoms. Med. Arch. 2021, 75, 144–148. [Google Scholar] [CrossRef]
- Dikmetas, O.; Tellioglu, H.T.; Ozturan, I.; Kocabeyoglu, S.; Cankaya, A.B.; Irkec, M. The Effect of Mask Use on the Ocular Surface During the COVID-19 Pandemic. Turk. J. Ophthalmol. 2023, 53, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.K.; Sharma, V. Mask-associated dry eye disease and dry eye due to prolonged screen time: Are we heading towards a new dry eye epidemic during the COVID-19 era? Indian J. Ophthalmol. 2021, 69, 448–449. [Google Scholar] [CrossRef] [PubMed]
- Cheema, M.; Aghazadeh, H.; Nazarali, S.; Ting, A.; Hodges, J.; McFarlane, A.; Kanji, J.N.; Zelyas, N.; Damji, K.F.; Solarte, C. Keratoconjunctivitis as the initial medical presentation of the novel coronavirus disease 2019 (COVID-19). Can. J. Ophthalmol. 2020, 55, e125–e129. [Google Scholar] [CrossRef] [PubMed]
- Marinho, P.M.; Marcos, A.A.A.; Romano, A.C.; Nascimento, H.; Belfort, R., Jr. Retinal findings in patients with COVID-19. Lancet 2020, 395, 1610. [Google Scholar] [CrossRef]
- Wang, Y.; Detrick, B.; Yu, Z.X.; Zhang, J.; Chesky, L.; Hooks, J.J. The role of apoptosis within the retina of coronavirus-infected mice. Investig. Ophthalmol. Vis. Sci. 2000, 41, 3011–3018. [Google Scholar]
- Alnahdi, M.A.; Alkharashi, M. Ocular manifestations of COVID-19 in the pediatric age group. Eur. J. Ophthalmol. 2023, 33, 21–28. [Google Scholar] [CrossRef]
- Tatti, F.; Mangoni, L.; Pirodda, S.; Demarinis, G.; Iovino, C.; Siotto Pintor, E.; Orru, G.; Lecca, L.I.; Campagna, M.; Denotti, G.; et al. Ocular Surface Changes Associated with Face Masks in Healthcare Personnel during COVID-19 Pandemic. Life 2022, 12, 1491. [Google Scholar] [CrossRef]
- Subathra, G.N.; Rajendrababu, S.R.; Senthilkumar, V.A.; Mani, I.; Udayakumar, B. Impact of COVID-19 on follow-up and medication adherence in patients with glaucoma in a tertiary eye care centre in south India. Indian J. Ophthalmol. 2021, 69, 1264–1270. [Google Scholar] [PubMed]
- Ramakers, J.; Verd, S.; Diez, R. COVID-19-associated risk in children who were never breastfed. Acta Paediatr. 2023, 112, 2013–2014. [Google Scholar] [CrossRef] [PubMed]
- Verdoni, L.; Mazza, A.; Gervasoni, A.; Martelli, L.; Ruggeri, M.; Ciuffreda, M.; Bonanomi, E.; D’Antiga, L. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: An observational cohort study. Lancet 2020, 395, 1771–1778. [Google Scholar] [CrossRef]
- Reyes-Bueno, J.A.; Garcia-Trujillo, L.; Urbaneja, P.; Ciano-Petersen, N.L.; Postigo-Pozo, M.J.; Martinez-Tomas, C.; Serrano-Castro, P.J. Miller-Fisher syndrome after SARS-CoV-2 infection. Eur. J. Neurol. 2020, 27, 1759–1761. [Google Scholar] [CrossRef] [PubMed]
- Neophytou, P.; Artemiadis, A.; Hadjigeorgiou, G.M.; Zis, P. Miller Fischer syndrome after COVID-19 infection and vaccine: A systematic review. Acta Neurol. Belg. 2023. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Eleiwa, T.; Abdelrahman, S.N.; ElSheikh, R.H.; Elhusseiny, A.M. Orbital inflammatory disease associated with COVID-19 infection. J. AAPOS 2021, 25, 232–234. [Google Scholar] [CrossRef] [PubMed]
- Przekwas, A.; Chen, Z. Washing hands and the face may reduce COVID-19 infection. Med. Hypotheses 2020, 144, 110261. [Google Scholar] [CrossRef] [PubMed]
- Sikakulya, F.K.; Ssebuufu, R.; Mambo, S.B.; Pius, T.; Kabanyoro, A.; Kamahoro, E.; Mulumba, Y.; Muhongya, J.K.; Kyamanywa, P. Use of face masks to limit the spread of the COVID-19 among western Ugandans: Knowledge, attitude and practices. PLoS ONE 2021, 16, e0248706. [Google Scholar] [CrossRef]
- VoPham, T.; Weaver, M.D.; Hart, J.E.; Ton, M.; White, E.; Newcomb, P.A. Effect of social distancing on COVID-19 incidence and mortality in the US. medRxiv 2020, arXiv:2020.06.10.20127589. [Google Scholar]
- Brown, N.; Nettleton, S.; Buse, C.; Lewis, A.; Martin, D. The coughing body: Etiquettes, techniques, sonographies and spaces. Biosocieties 2021, 16, 270–288. [Google Scholar] [CrossRef]
- Newsom, R.; Pattison, C.; Lundgren, A.; Robison, P.; Quint, M.; Amara, A. Comparison of breath-guards and face-masks on droplet spread in eye clinics. Eye 2022, 37, 2135–2138. [Google Scholar] [CrossRef] [PubMed]
- ALBalawi, H.B. COVID-19: Precautionary Guidelines for Ophthalmologists. Cureus 2020, 12, e8815. [Google Scholar] [CrossRef] [PubMed]
- Repici, A.; Maselli, R.; Colombo, M.; Gabbiadini, R.; Spadaccini, M.; Anderloni, A.; Carrara, S.; Fugazza, A.; Di Leo, M.; Galtieri, P.A.; et al. Coronavirus (COVID-19) outbreak: What the department of endoscopy should know. Gastrointest. Endosc. 2020, 92, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Fang, Y.; Chou, C.A.; Fard, N.; Luo, L. A reinforcement learning-based optimal control approach for managing an elective surgery backlog after pandemic disruption. Health Care Manag. Sci. 2023, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Lo, A.X.; Wedel, L.K.; Liu, S.W.; Wongtangman, T.; Thatphet, P.; Santangelo, I.; Chary, A.N.; Biddinger, P.D.; Grudzen, C.R.; Kennedy, M. COVID-19 hospital and emergency department visitor policies in the United States: Impact on persons with cognitive or physical impairment or receiving end-of-life care. J. Am. Coll. Emerg. Physicians Open 2022, 3, e12622. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; D’Souza, S.; Nathawat, R.; Sinha, R.; Gokhale, N.S.; Fogla, R.; Titiyal, J.S.; Maskati, Q.B.; Mukherjee, G.; Sachdev, M.S.; et al. All India Ophthalmological Society—Eye Bank Association of India consensus statement on guidelines for cornea and eyebanking during COVID-19 era. Indian J. Ophthalmol. 2020, 68, 1258–1262. [Google Scholar] [CrossRef] [PubMed]
- Ballouz, D.; Mian, S.I. Eye banking in the coronavirus disease 2019 era. Curr. Opin. Ophthalmol. 2020, 31, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Danesh-Meyer, H.V.; McGhee, C.N.J. Implications of COVID-19 for Ophthalmologists. Am. J. Ophthalmol. 2021, 223, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Lam, D.S.C.; Wong, R.L.M.; Lai, K.H.W.; Ko, C.N.; Leung, H.Y.; Lee, V.Y.W.; Lau, J.Y.N.; Huang, S.S. COVID-19: Special Precautions in Ophthalmic Practice and FAQs on Personal Protection and Mask Selection. Asia Pac. J. Ophthalmol. 2020, 9, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, S.; Rheinstein, P. Eyeglasses Reduce Risk of COVID-19 Infection. In Vivo 2021, 35, 1581–1582. [Google Scholar] [CrossRef]
- Mack, H.G.; Fraser-Bell, S. “COVID new normal” in ophthalmology: Implications for ophthalmologists, eye care, ophthalmic education and research. Clin. Exp. Ophthalmol. 2021, 49, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Sommer, A.C.; Blumenthal, E.Z. Telemedicine in ophthalmology in view of the emerging COVID-19 outbreak. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 2341–2352. [Google Scholar] [CrossRef]
- Tham, Y.C.; Husain, R.; Teo, K.Y.C.; Tan, A.C.S.; Chew, A.C.Y.; Ting, D.S.; Cheng, C.Y.; Tan, G.S.W.; Wong, T.Y. New digital models of care in ophthalmology, during and beyond the COVID-19 pandemic. Br. J. Ophthalmol. 2022, 106, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Lancet Commission on COVID-19 Vaccines; Therapeutics Task Force Members. Operation Warp Speed: Implications for global vaccine security. Lancet Glob. Health. 2021, 9, e1017–e1021. [Google Scholar] [CrossRef]
- Kashte, S.; Gulbake, A.; El-Amin Iii, S.F.; Gupta, A. COVID-19 vaccines: Rapid development, implications, challenges and future prospects. Hum. Cell 2021, 34, 711–733. [Google Scholar] [CrossRef]
- Lee, Y.K.; Huang, Y.H. Ocular Manifestations after Receiving COVID-19 Vaccine: A Systematic Review. Vaccines 2021, 9, 1404. [Google Scholar] [CrossRef]
- Ng, X.L.; Betzler, B.K.; Testi, I.; Ho, S.L.; Tien, M.; Ngo, W.K.; Zierhut, M.; Chee, S.P.; Gupta, V.; Pavesio, C.; et al. Ocular Adverse Events After COVID-19 Vaccination. Ocul. Immunol. Inflamm. 2021, 29, 1216–1224. [Google Scholar] [CrossRef]
- Ho, D.; Low, R.; Tong, L.; Gupta, V.; Veeraraghavan, A.; Agrawal, R. COVID-19 and the Ocular Surface: A Review of Transmission and Manifestations. Ocul. Immunol. Inflamm. 2020, 28, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, N.; Sharifi, H.; Bazrafshan, A.; Noori, A.; Karamouzian, M.; Sharifi, A. Ocular Manifestations of COVID-19: A Systematic Review and Meta-analysis. J. Ophthalmic Vis. Res. 2021, 16, 103–112. [Google Scholar] [CrossRef]
- Nyankerh, C.N.A.; Boateng, A.K.; Appah, M. Ocular Complications after COVID-19 Vaccination, Vaccine Adverse Event Reporting System. Vaccines 2022, 10, 941. [Google Scholar] [CrossRef]
- Bolletta, E.; Iannetta, D.; Mastrofilippo, V.; De Simone, L.; Gozzi, F.; Croci, S.; Bonacini, M.; Belloni, L.; Zerbini, A.; Adani, C.; et al. Uveitis and Other Ocular Complications Following COVID-19 Vaccination. J. Clin. Med. 2021, 10, 5960. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.G.; Hilton, T.; Choi, R.Y.; Abbey, A.M. Uveitis and Posterior Ophthalmic Manifestations Following the SARS-CoV-2 (COVID-19) Vaccine. Ocul. Immunol. Inflamm. 2022, 30, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- ElSheikh, R.H.; Haseeb, A.; Eleiwa, T.K.; Elhusseiny, A.M. Acute Uveitis following COVID-19 Vaccination. Ocul. Immunol. Inflamm. 2021, 29, 1207–1209. [Google Scholar] [CrossRef] [PubMed]
- Mendez Mangana, C.; Barraquer Kargacin, A.; Barraquer, R.I. Episcleritis as an ocular manifestation in a patient with COVID-19. Acta Ophthalmol. 2020, 98, e1056–e1057. [Google Scholar] [CrossRef] [PubMed]
- Feizi, S.; Meshksar, A.; Naderi, A.; Esfandiari, H. Anterior Scleritis Manifesting After Coronavirus Disease 2019: A Report of Two Cases. Cornea 2021, 40, 1204–1206. [Google Scholar] [CrossRef] [PubMed]
- Keikha, M.; Zandhaghighi, M.; Zahedani, S.S. Optic neuritis associated with COVID-19-related vaccines. Vacunas 2023, 24, 158–159. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Soni, D.; Nagpal, A.; Khurram, F.; Karkhur, S.; Verma, V.; Mohan, R.R.; Sharma, B. Ocular manifestations of RT-PCR-confirmed COVID-19 cases in a large database cross-sectional study. BMJ Open Ophthalmol. 2021, 6, e000775. [Google Scholar] [CrossRef] [PubMed]
- Susiyanti, M.; Daniel, H.; Faridah, D.; Devona, D.A.; Pramitha, P.; Bela, B.; Haryanto, B.; Barliana, J.D.; Estu, D.; Victor, A.A.; et al. Incidence and clinical characteristic of ocular surface manifestation: An evaluation of conjunctival swab results in Corona Virus 2019 (COVID-19) patients in Jakarta, Indonesia. J. Ophthalmic Inflamm. Infect. 2023, 13, 20. [Google Scholar] [CrossRef]
- Dorney, I.; Shaia, J.; Kaelber, D.C.; Talcott, K.E.; Singh, R.P. Risk of New Retinal Vascular Occlusion After mRNA COVID-19 Vaccination Within Aggregated Electronic Health Record Data. JAMA Ophthalmol. 2023, 141, 441–447. [Google Scholar] [CrossRef]
- Akbari, M.; Dourandeesh, M. Update on overview of ocular manifestations of COVID-19. Front. Med. 2022, 9, 877023. [Google Scholar] [CrossRef]
- Musa, M.J.; Okoye, G.S.; Akpalaba, R.U.; Atuanya, G.N. Managing in early COVID-19: The Nigerian optometry experience. Scand. J. Optom. Vis. Sci. 2021, 14, 1–7. [Google Scholar] [CrossRef]
- Kolahchi, Z.; De Domenico, M.; Uddin, L.Q.; Cauda, V.; Grossmann, I.; Lacasa, L.; Grancini, G.; Mahmoudi, M.; Rezaei, N. COVID-19 and Its Global Economic Impact. Adv. Exp. Med. Biol. 2021, 1318, 825–837. [Google Scholar] [PubMed]
- Musa, M.J.; Akpalaba, R.U.; Atuanya, G.N.; Akpalaba, I.O. Challenges and Successes of Virtual Learning: An Emerging Trend. Benin J. Educ. Stud. 2021, 26, 192–199. [Google Scholar]
- Girum, T.; Lentiro, K.; Geremew, M.; Migora, B.; Shewamare, S. Global strategies and effectiveness for COVID-19 prevention through contact tracing, screening, quarantine, and isolation: A systematic review. Trop. Med. Health 2020, 48, 91. [Google Scholar] [CrossRef] [PubMed]
- Olivia Li, J.P.; Shantha, J.; Wong, T.Y.; Wong, E.Y.; Mehta, J.; Lin, H.; Lin, X.; Strouthidis, N.G.; Park, K.H.; Fung, A.T.; et al. Preparedness among Ophthalmologists: During and Beyond the COVID-19 Pandemic. Ophthalmology 2020, 127, 569–572. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Bandello, F. Academic Ophthalmology during and after the COVID-19 Pandemic. Ophthalmology 2020, 127, e51–e52. [Google Scholar] [CrossRef] [PubMed]
- Choy, D.M.Y.; Lee, L.K.M.; Yong, V.K.Y.; Yip, L.W.L. COVID-19: Additional Precautions against Aerosols for the Slit Lamp User. Asia Pac. J. Ophthalmol. 2020, 10, 123–124. [Google Scholar] [CrossRef] [PubMed]
- Moravvej, Z.; Soltani-Moghadam, R.; Ahmadian Yazdi, A.; Shahraki, K. COVID-19 pandemic: Ophthalmic practice and precautions in a tertiary eye hospital in Iran. Infect. Control. Hosp. Epidemiol. 2020, 41, 1237–1238. [Google Scholar] [CrossRef]
- Nourazari, S.; Davis, S.R.; Granovsky, R.; Austin, R.; Straff, D.J.; Joseph, J.W.; Sanchez, L.D. Decreased hospital admissions through emergency departments during the COVID-19 pandemic. Am. J. Emerg. Med. 2021, 42, 203–210. [Google Scholar] [CrossRef]
- Roy, A.; Kanhere, M.; Rajarajan, M.; Dureja, R.; Bagga, B.; Das, S.; Sharma, S.; Mohammed, A.; Fernandes, M. Challenges in management of microbial keratitis during COVID-19 pandemic related lockdown: A comparative analysis with pre pandemic data. Int. Ophthalmol. 2023, 43, 1639–1645. [Google Scholar] [CrossRef]
- Muhrer, J.C. Risk of misdiagnosis and delayed diagnosis with COVID-19: A Syndemic Approach. Nurse Pract. 2021, 46, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Felfeli, T.; Ximenes, R.; Naimark, D.M.J.; Hooper, P.L.; Campbell, R.J.; El-Defrawy, S.R.; Sander, B. The ophthalmic surgical backlog associated with the COVID-19 pandemic: A population-based and microsimulation modelling study. CMAJ Open 2021, 9, E1063–E1072. [Google Scholar] [CrossRef] [PubMed]
- Prager, K.M.; Dagi Glass, L.R.; Wang, M.; Chen, R.W.S.; Liebmann, J.M.; Cioffi, G.A. Ophthalmology and Ethics in the COVID-19 Era. Am. J. Ophthalmol. 2021, 224, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Etges, A.; Zanotto, B.S.; Ruschel, K.B.; da Silva, R.S.; Oliveira, M.; de Campos Moreira, T.; Cabral, F.C.; de Araujo, A.L.; Umpierre, R.N.; Goncalves, M.R.; et al. Telemedicine Versus Face-to-Face Care in Ophthalmology: Costs and Utility Measures in a Real-World Setting. Value Health Reg. Issues 2022, 28, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Ting, D.S.W.; Pasquale, L.R.; Peng, L.; Campbell, J.P.; Lee, A.Y.; Raman, R.; Tan, G.S.W.; Schmetterer, L.; Keane, P.A.; Wong, T.Y. Artificial intelligence and deep learning in ophthalmology. Br. J. Ophthalmol. 2019, 103, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Kumari Rani, P.; Raman, R.; Manikandan, M.; Mahajan, S.; Paul, P.G.; Sharma, T. Patient satisfaction with tele-ophthalmology versus ophthalmologist-based screening in diabetic retinopathy. J. Telemed. Telecare 2006, 12, 159–160. [Google Scholar] [CrossRef] [PubMed]
- Nanji, K.; Kherani, I.N.; Damji, K.F.; Nyenze, M.; Kiage, D.; Tennant, M.T. The Muranga Teleophthalmology Study: A Comparison of Virtual (Teleretina) Assessment with in-person Clinical Examination to Diagnose Diabetic Retinopathy and Age-related Macular Degeneration in Kenya. Middle East Afr. J. Ophthalmol. 2020, 27, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Grossman, S.N.; Calix, R.; Tow, S.; Odel, J.G.; Sun, L.D.; Balcer, L.J.; Galetta, S.L.; Rucker, J.C. Neuro-ophthalmology in the Era of COVID-19: Future Implications of a Public Health Crisis. Ophthalmology 2020, 127, e72–e74. [Google Scholar] [CrossRef]
- Ferro Desideri, L.; Rutigliani, C.; Corazza, P.; Nastasi, A.; Roda, M.; Nicolo, M.; Traverso, C.E.; Vagge, A. The upcoming role of Artificial Intelligence (AI) for retinal and glaucomatous diseases. J. Optom. 2022, 15 (Suppl. 1), S50–S57. [Google Scholar] [CrossRef]
- Hadziahmetovic, M.; Nicholas, P.; Jindal, S.; Mettu, P.S.; Cousins, S.W. Evaluation of a Remote Diagnosis Imaging Model vs. Dilated Eye Examination in Referable Macular Degeneration. JAMA Ophthalmol. 2019, 137, 802–808. [Google Scholar] [CrossRef]
- Feizi, N.; Tavakoli, M.; Patel, R.V.; Atashzar, S.F. Robotics and AI for Teleoperation, Tele-Assessment, and Tele-Training for Surgery in the Era of COVID-19: Existing Challenges, and Future Vision. Front. Robot. AI 2021, 8, 610677. [Google Scholar] [CrossRef] [PubMed]
- Biousse, V.; Bruce, B.B.; Newman, N.J. Ophthalmoscopy in the 21st century: The 2017 H. Houston Merritt Lecture. Neurology 2018, 90, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Alafaleq, M. Robotics and cybersurgery in ophthalmology: A current perspective. J. Robot. Surg. 2023, 17, 1159–1170. [Google Scholar] [CrossRef] [PubMed]
- Hart, K.M.; Stapleton, F.; Carnt, N.; Arundel, L.; Lian, K.Y. Optometry Australia’s infection control guidelines 2020. Clin. Exp. Optom. 2021, 104, 267–284. [Google Scholar] [CrossRef] [PubMed]
- Horton, M.B.; Brady, C.J.; Cavallerano, J.; Abramoff, M.; Barker, G.; Chiang, M.F.; Crockett, C.H.; Garg, S.; Karth, P.; Liu, Y.; et al. Practice Guidelines for Ocular Telehealth-Diabetic Retinopathy, Third Edition. Telemed. J. E Health 2020, 26, 495–543. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Raman, R.; Mohan, R.E. Application of tele-ophthalmology in remote diagnosis and management of adnexal and orbital diseases. Indian J. Ophthalmol. 2009, 57, 381–384. [Google Scholar] [PubMed]
- Luzio, S.; Hatcher, S.; Zahlmann, G.; Mazik, L.; Morgan, M.; Liesenfeld, B.; Bek, T.; Schuell, H.; Schneider, S.; Owens, D.R.; et al. Feasibility of using the TOSCA telescreening procedures for diabetic retinopathy. Diabet. Med. 2004, 21, 1121–1128. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.; Aldington, S.J.; Kohner, E.M.; Luzio, S.; Owens, D.R.; Schmidt, V.; Schuell, H.; Zahlmann, G. Quality assurance for diabetic retinopathy telescreening. Diabet. Med. 2005, 22, 794–802. [Google Scholar] [CrossRef]
- Massie, J.; Block, S.S.; Morjaria, P. The Role of Optometry in the Delivery of Eye Care via Telehealth: A Systematic Literature Review. Telemed. J. E Health 2022, 28, 1753–1763. [Google Scholar] [CrossRef]
- Ilesanmi, O.S.; Afolabi, A.A.; Akande, A.; Raji, T.; Mohammed, A. Infection prevention and control during COVID-19 pandemic: Realities from health care workers in a north central state in Nigeria. Epidemiol. Infect. 2021, 149, e15. [Google Scholar] [CrossRef]
- Hoernke, K.; Djellouli, N.; Andrews, L.; Lewis-Jackson, S.; Manby, L.; Martin, S.; Vanderslott, S.; Vindrola-Padros, C. Frontline healthcare workers’ experiences with personal protective equipment during the COVID-19 pandemic in the UK: A rapid qualitative appraisal. BMJ Open 2021, 11, e046199. [Google Scholar] [CrossRef] [PubMed]
- Arnetz, J.E.; Goetz, C.M.; Sudan, S.; Arble, E.; Janisse, J.; Arnetz, B.B. Personal Protective Equipment and Mental Health Symptoms Among Nurses During the COVID-19 Pandemic. J. Occup. Environ. Med. 2020, 62, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mohindra, R.; Rana, K.; Suri, V.; Bhalla, A.; Biswal, M.; Singh, M.P.; Goyal, K.; Lakshmi, P.V.M. Assessment of Potential Risk Factors for 2019-Novel Coronavirus (2019-nCov) Infection among Health Care Workers in a Tertiary Care Hospital, North India. J. Prim. Care Community Health 2021, 12, 21501327211002099. [Google Scholar] [CrossRef] [PubMed]
- Al Abri, Z.G.H.; Al Zeedi, M.; Al Lawati, A.A. Risk Factors Associated with COVID-19 Infected Healthcare Workers in Muscat Governorate, Oman. J. Prim. Care Community Health 2021, 12, 2150132721995454. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, M.O.; Chughtai, A.A.; Islam, M.S.; Tuckerman, J.; Seale, H. Examining the discourse regarding the delivery of occupational infection prevention and control training to healthcare workers: A scoping review of pandemic plans of 23 countries. BMJ Open 2022, 12, e061850. [Google Scholar] [CrossRef] [PubMed]
- Bontzos, G.; Gkiala, A.; Karakosta, C.; Maliotis, N.; Detorakis, E.T. COVID-19 in Ophthalmology. Current Disease Status and Challenges during Clinical Practice. Maedica 2021, 16, 668–680. [Google Scholar] [PubMed]
- Wang, Y.; Wang, L.; Zhao, X.; Zhang, J.; Ma, W.; Zhao, H.; Han, X. A Semi-Quantitative Risk Assessment and Management Strategies on COVID-19 Infection to Outpatient Health Care Workers in the Post-Pandemic Period. Risk Manag. Healthc. Policy 2021, 14, 815–825. [Google Scholar] [CrossRef] [PubMed]
- National Health Commission WS/T511-2016 Nosocomial Infection Prevention and Control Regulations for Airborne Diseases. Available online: http://www.nhc.gov.cn/ (accessed on 17 January 2017).
- Romano, M.R.; Montericcio, A.; Montalbano, C.; Raimondi, R.; Allegrini, D.; Ricciardelli, G.; Angi, M.; Pagano, L.; Romano, V. Facing COVID-19 in Ophthalmology Department. Curr. Eye Res. 2020, 45, 653–658. [Google Scholar] [CrossRef]
- Safadi, K.; Kruger, J.M.; Chowers, I.; Solomon, A.; Amer, R.; Aweidah, H.; Frenkel, S.; Mechoulam, H.; Anteby, I.; Ben Eli, H.; et al. Ophthalmology practice during the COVID-19 pandemic. BMJ Open Ophthalmol. 2020, 5, e000487. [Google Scholar] [CrossRef]
- Rosdahl, J.A.; Swamy, L.; Stinnett, S.; Muir, K.W. Patient education preferences in ophthalmic care. Patient Prefer. Adherence 2014, 8, 565–574. [Google Scholar] [CrossRef]
- Durmaz Engin, C.; Senel Kara, B.; Ozturk, T.; Dadas, O.F. The Impact of COVID-19 Pandemic on Practice Patterns and Psychological Status of Ophthalmologists in Turkey. Cureus 2021, 13, e16614. [Google Scholar] [CrossRef] [PubMed]
- Sunil, R.; Bhatt, M.T.; Bhumika, T.V.; Thomas, N.; Puranik, A.; Chaudhuri, S.; Shwethapriya, R. Weathering the Storm: Psychological Impact of COVID-19 Pandemic on Clinical and Nonclinical Healthcare Workers in India. Indian. J. Crit. Care Med. 2021, 25, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Yahya, A.S.; Khawaja, S.; Chukwuma, J. Staff Morale and Well-Being During the COVID-19 Pandemic. Prim. Care Companion CNS Disord. 2020, 22, 20com02645. [Google Scholar] [CrossRef] [PubMed]
- Brodin, A.C.; Tamhankar, M.A.; Whitehead, G.; MacKay, D.; Kim, B.J.; O’Brien, J.M. Approach of an Academic Ophthalmology Department to Recovery During the Coronavirus Pandemic. Clin. Ophthalmol. 2022, 16, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Lacorzana, J.; Ortiz-Perez, S.; Rubio Prats, M. Incidence of COVID-19 among ophthalmology professionals. Med. Clin. 2020, 155, 225. [Google Scholar] [CrossRef] [PubMed]
- Ko, M.W.; Busis, N.A. Tele-Neuro-Ophthalmology: Vision for 20/20 and Beyond. J. Neuroophthalmol. 2020, 40, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Paintsil, E. COVID-19 threatens health systems in sub-Saharan Africa: The eye of the crocodile. J. Clin. Investig. 2020, 130, 2741–2744. [Google Scholar] [CrossRef] [PubMed]
- Tessema, G.A.; Kinfu, Y.; Dachew, B.A.; Tesema, A.G.; Assefa, Y.; Alene, K.A.; Aregay, A.F.; Ayalew, M.B.; Bezabhe, W.M.; Bali, A.G.; et al. The COVID-19 pandemic and healthcare systems in Africa: A scoping review of preparedness, impact and response. BMJ Glob. Health 2021, 6, e007179. [Google Scholar] [CrossRef]
- Chu, D.T.; Singh, V.; Vu Ngoc, S.M.; Nguyen, T.L.; Barcelo, D. Transmission of SARS-CoV-2 infections and exposure in surfaces, points and wastewaters: A global one health perspective. Case Stud. Chem. Environ. Eng. 2022, 5, 100184. [Google Scholar] [CrossRef]
- Rahman, J.; Mumin, J.; Fakhruddin, B. How Frequently Do We Touch Facial T-Zone: A Systematic Review. Ann. Glob. Health 2020, 86, 75. [Google Scholar] [CrossRef]
- Kwok, Y.L.; Gralton, J.; McLaws, M.L. Face touching: A frequent habit that has implications for hand hygiene. Am. J. Infect. Control 2015, 43, 112–114. [Google Scholar] [CrossRef] [PubMed]
- Nicas, M.; Best, D. A study quantifying the hand-to-face contact rate and its potential application to predicting respiratory tract infection. J. Occup. Environ. Hyg. 2008, 5, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Phan, L.T.; Maita, D.; Mortiz, D.C.; Weber, R.; Fritzen-Pedicini, C.; Bleasdale, S.C.; Jones, R.M.; Program, C.D.C.P.E. Personal protective equipment doffing practices of healthcare workers. J. Occup. Environ. Hyg. 2019, 16, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Kantor, J. Behavioral considerations and impact on personal protective equipment use: Early lessons from the coronavirus (COVID-19) pandemic. J. Am. Acad. Derm. Dermatol. 2020, 82, 1087–1088. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Jiang, Y.; Jones, P. Does wearing a surgical mask influence face touching by healthcare workers? A retrospective cohort study. Emerg. Med. Australas. 2023, 35, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Sampalo, A.; Bernal-Lopez, M.R.; Gomez-Huelgas, R. Persistent COVID-19 syndrome. A narrative review. Rev. Clin. Esp. 2022, 222, 241–250. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence (NICE). COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19; National Institute for Health and Care Excellence (NICE): London, UK, 2020. [Google Scholar]
- Lledo, G.M.; Sellares, J.; Brotons, C.; Sans, M.; Anton, J.D.; Blanco, J.; Bassat, Q.; Sarukhan, A.; Miro, J.M.; de Sanjose, S.; et al. Post-acute COVID-19 syndrome: A new tsunami requiring a universal case definition. Clin. Microbiol. Infect. 2022, 28, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Raveendran, A.V.; Jayadevan, R.; Sashidharan, S. Long COVID: An overview. Diabetes Metab. Syndr. 2021, 15, 869–875. [Google Scholar] [CrossRef]
- Nasserie, T.; Hittle, M.; Goodman, S.N. Assessment of the Frequency and Variety of Persistent Symptoms Among Patients With COVID-19: A Systematic Review. JAMA Netw. Open 2021, 4, e2111417. [Google Scholar] [CrossRef]
- Osikomaiya, B.; Erinoso, O.; Wright, K.O.; Odusola, A.O.; Thomas, B.; Adeyemi, O.; Bowale, A.; Adejumo, O.; Falana, A.; Abdus-Salam, I.; et al. ‘Long COVID’: Persistent COVID-19 symptoms in survivors managed in Lagos State, Nigeria. BMC Infect Dis 2021, 21, 304. [Google Scholar] [CrossRef]
- Jadali, Z.; Jalil, A.T. Long COVID and ophthalmology: New insights into underlying disease mechanisms. Taiwan. J. Ophthalmol. 2022, 12, 499–500. [Google Scholar] [CrossRef] [PubMed]
- Midena, E.; Cosmo, E.; Cattelan, A.M.; Briani, C.; Leoni, D.; Capizzi, A.; Tabacchi, V.; Parrozzani, R.; Midena, G.; Frizziero, L. Small Fibre Peripheral Alterations Following COVID-19 Detected by Corneal Confocal Microscopy. J. Pers. Med. 2022, 12, 563. [Google Scholar] [CrossRef] [PubMed]
- Bitirgen, G.; Korkmaz, C.; Zamani, A.; Ozkagnici, A.; Zengin, N.; Ponirakis, G.; Malik, R.A. Corneal confocal microscopy identifies corneal nerve fibre loss and increased dendritic cells in patients with long COVID. Br. J. Ophthalmol. 2022, 106, 1635–1641. [Google Scholar] [CrossRef] [PubMed]
- Czernin, J. Dr. Li Wenliang and the Time of COVID-19. J. Nucl. Med. 2020, 61, 625. [Google Scholar] [CrossRef]
Variant | Origins | Remarks |
---|---|---|
Alpha variant (B.1.1.7) | First identified in the UK | It has been found to be more contagious than the original strain [12]. |
Beta variant (B.1.351): | First identified in South Africa | It has mutations that may make it more resistant to some antibodies [12]. |
Gamma variant (P.1) | First identified in Brazil | It is thought to be more transmissible and may be able to re-infect people who have already had COVID-19 [13]. |
Delta variant (B.1.617.2) | First identified in India | It is highly transmissible and has become the dominant strain in many parts of the world [14]. |
Omicron variant (B.1.1.529) | Emerged in South Africa in November 2021 | A heavily mutated, highly virulent variant that quickly spread around the world [15]. |
Epsilon, Zeta, Eta, Theta, Iota, and Kappa variants | Are being closely monitored to understand their differentiating characteristics [16,17]. |
Low Risk | This Group Included Individuals Without COVID-19 Symptomatology and Had Not Been in Contact with High-Risk Areas of Positive Patients |
Intermediate risk | This group included individuals with COVID-19 symptomatology but had not been in contact with high-risk areas of positive patients OR anyone who had been in contact with a COVID-19 patient or stayed in a high-risk area but who did not have any symptoms. |
High risk | This included people who had at least one COVID-19 symptom and had been in contact with a confirmed case or stayed in a high-risk area. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvetat, M.L.; Musa, M.; Pellegrini, F.; Salati, C.; Spadea, L.; Zeppieri, M. Considerations of COVID-19 in Ophthalmology. Microorganisms 2023, 11, 2220. https://doi.org/10.3390/microorganisms11092220
Salvetat ML, Musa M, Pellegrini F, Salati C, Spadea L, Zeppieri M. Considerations of COVID-19 in Ophthalmology. Microorganisms. 2023; 11(9):2220. https://doi.org/10.3390/microorganisms11092220
Chicago/Turabian StyleSalvetat, Maria Letizia, Mutali Musa, Francesco Pellegrini, Carlo Salati, Leopoldo Spadea, and Marco Zeppieri. 2023. "Considerations of COVID-19 in Ophthalmology" Microorganisms 11, no. 9: 2220. https://doi.org/10.3390/microorganisms11092220