Next Article in Journal
Nigrospora oryzae Causing Leaf Spot Disease on Chrysanthemum × morifolium Ramat and Screening of Its Potential Antagonistic Bacteria
Next Article in Special Issue
A Real-World Nationwide Study on COVID-19 Trend in Italy during the Autumn–Winter Season of 2020 (before Mass Vaccination) and 2021 (after Mass Vaccination) Integrated with a Retrospective Analysis of the Mortality Burden per Year
Previous Article in Journal
Bacteriophages as Potential Clinical Immune Modulators
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

SARS-CoV-2 Induced Herpes Virus Reactivations and Related Implications in Oncohematology: When Lymphocytopenia Sets in and Immunosurveillance Drops Out

1
Institute of Pathology, Department of Laboratory Medicine and Anatomical Pathology, University Hospital of Modena—Polyclinic, 41124 Modena, Italy
2
Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplantation, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy
3
Graduate School of Anatomical Pathology, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
4
Graduate School of Medical Oncology, Department of Maternal, Infant and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
5
Unit of Diagnostic Hematology, Department of Laboratory Medicine and Anatomical Pathology, University Hospital of Modena—Polyclinic, 41124 Modena, Italy
*
Author to whom correspondence should be addressed.
Microorganisms 2023, 11(9), 2223; https://doi.org/10.3390/microorganisms11092223
Submission received: 10 April 2023 / Revised: 1 August 2023 / Accepted: 30 August 2023 / Published: 1 September 2023
(This article belongs to the Special Issue Advances in SARS-CoV-2 Infection)
The severe acute respiratory syndrome, coronavirus 2 (SARS-CoV-2), is a positive-sense single-stranded ribonucleic acid (RNA) virus contagious in humans and responsible for the ongoing coronavirus disease 2019 (COVID-19) [1]. First identified in Wuhan, China, the World Health Organization declared the outbreak a pandemic on 11 March 2020 [2]. To date, this disease has caused more than 6.9 million deaths [3].
SARS-CoV-2 mainly spreads via close contact and aerosols or respiratory droplets produced when speaking, breathing, exhaling, coughing, or sneezing [4]. The virus enters human cells via the interaction between its spike protein and angiotensin-converting enzyme 2 (ACE2) receptors, ubiquitous throughout the body [5].
In 67–90% of the patients affected by severe COVID-19, lymphocytopenia occurs, a well-known marker of impaired cellular immunity; both killer T cells and helper T cells have been found to decrease in these circumstances [6]. In addition, white pulp and lymphoid tissue depletion have been reported in the literature [7]. Among the pathogenetic mechanisms to explain lymphopenia and lymphodepletion, there is a direct cytotoxic action of SARS-CoV-2 related to the ACE2-dependent or ACE2-independent entry into lymphocytes [6].
With the loss of immunosurveillance, latent pathogens in the body can be reactivated, as is the example of herpes viruses. They are a family of deoxyribonucleic acid (DNA) viruses, of which nine are known to primarily infect humans, and five cause extremely common diseases, such as orolabial and genital herpes due to human herpes virus 1 (HHV1) and human herpes virus 2 (HHV2), chickenpox and shingles from human herpes virus 3 (HHV3), and mononucleosis and mononucleosis-like syndrome from human herpes virus 4 (HHV4) and human herpes virus 5 (HHV5) [8]. Over 90% of adults have been infected with at least one of these strains; depending on the virus, latent cells include neurons, monocytes, and B and T lymphocytes (Table 1).
Much of the literature discloses infective herpetic reactivations in the course of COVID-19 [9,10,11,12,13,14,15,16,17,18,19,20,21,22]; surprisingly, they have also been reported after COVID-19 vaccination, based on nucleoside-modified messenger RNAs (modRNAs) and adenoviral vectors [23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49]. In addition, HHV5, alias Epstein–Barr virus (EBV), and HHV8, alias Kaposi’s sarcoma-associated herpes virus, are two notorious oncoviruses. The former is responsible for EBV-positive Burkitt’s lymphoma, EBV-positive Hodgkin lymphoma, EBV-positive diffuse large B cell lymphoma (DLBCL), extranodal NK/T cell lymphoma nasal type, EBV-associated aggressive NK cell leukemia, angioimmunoblastic T cell lymphoma, post-transplant lymphoproliferative disorder, and nasopharyngeal carcinoma, while the latter for Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease (Table 1).
In very rare circumstances of immunodeficiency, e.g., the acquired immune deficiency syndrome (AIDS), they may act synergistically as in the case of EBV-positive HHV8-associated large B cell lymphoma with plasmablastic differentiation [50], recently encountered during our diagnostic practice on the bone marrow biopsy from a 50-year-old female lymphopenic COVID-19 patient, pancreas and kidney transplant recipient for about 20 years due to type 1 diabetes mellitus, with a rapidly lethal course (Figure 1).
Similarly, we had previously diagnosed on autoptic specimens an EBV-positive DLBCL involving the whole organism, even the lungs, in a 78-year-old male lymphopenic patient with SARS-CoV-2 infection (Figure 1). Moreover, we had reported the fatal case of a 70-year-old male patient co-affected by severe COVID-19 and EBV-positive Hodgkin lymphoma [51]. Other authors have described these associations [52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67] following COVID-19 vaccination with modRNA and adenoviral vector-based vaccines [68,69,70,71], which appear worthy of further larger-scale surveys.
The hypothesis that other DNA oncoviruses, such as human papillomavirus (HPV), may also take advantage of the immune system exhaustion induced by COVID-19 is under investigation [72], as known HPV can reactivate in the course of AIDS or graft-versus-host disease [73,74,75]. From preliminary data in a lymphopenic setting, COVID-19 can lead to rapid progression of HPV-positive cervical intraepithelial neoplasia toward microinvasive carcinoma [76]. Therefore, this further aspect should be deeply explored in the context of cervical cancer screening programs.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Roncati, L.; Palmieri, B. What about the original antigenic sin of the humans versus SARS-CoV-2? Med. Hypotheses 2020, 142, 109824. [Google Scholar] [CrossRef]
  2. Roncati, L.; Corsi, L. Nucleoside-modified messenger RNA COVID-19 vaccine platform. J. Med. Virol. 2021, 93, 4054–4057. [Google Scholar] [CrossRef] [PubMed]
  3. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 26 July 2023).
  4. Tang, S.; Mao, Y.; Jones, R.M.; Tan, Q.; Ji, J.S.; Li, N.; Shen, J.; Lv, Y.; Pan, L.; Ding, P.; et al. Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. Environ. Int. 2020, 144, 106039. [Google Scholar] [CrossRef] [PubMed]
  5. Roncati, L.; Gallo, G.; Manenti, A.; Palmieri, B. Renin-angiotensin system: The unexpected flaw inside the human immune system revealed by SARS-CoV-2. Med. Hypotheses 2020, 140, 109686. [Google Scholar] [CrossRef] [PubMed]
  6. Gupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y.; et al. Extrapulmonary manifestations of COVID-19. Nat. Med. 2020, 26, 1017–1032. [Google Scholar] [CrossRef] [PubMed]
  7. Roncati, L.; Lusenti, B. The «moonlighting protein» able to explain the Th1 immune lockdown in severe COVID-19. Med. Hypotheses 2020, 143, 110087. [Google Scholar] [CrossRef] [PubMed]
  8. Sehrawat, S.; Kumar, D.; Rouse, B.T. Herpesviruses: Harmonious pathogens but relevant cofactors in other diseases? Front. Cell. Infect. Microbiol. 2018, 8, 177. [Google Scholar] [CrossRef]
  9. Roncati, L.; Manenti, A.; Fabbiani, L.; Malagoli, C.; Nasillo, V.; Lusenti, B.; Lupi, M.; Zanelli, G.; Salviato, T.; Costantini, M.; et al. HSV1 viremia with fulminant hepatitis as opportunistic sequela in severe COVID-19. Ann. Hematol. 2022, 101, 229–231. [Google Scholar] [CrossRef]
  10. Franceschini, E.; Cozzi-Lepri, A.; Santoro, A.; Bacca, E.; Lancellotti, G.; Menozzi, M.; Gennari, W.; Meschiari, M.; Bedini, A.; Orlando, G.; et al. Herpes simplex virus re-activation in patients with SARS-CoV-2 pneumonia: A prospective, observational study. Microorganisms 2021, 9, 1896. [Google Scholar] [CrossRef]
  11. Shafiee, A.; Teymouri Athar, M.M.; Amini, M.J.; Hajishah, H.; Siahvoshi, S.; Jalali, M.; Jahanbakhshi, B.; Mozhgani, S.H. Reactivation of herpesviruses during COVID-19: A systematic review and meta-analysis. Rev. Med. Virol. 2023, 33, e2437. [Google Scholar] [CrossRef]
  12. Giacobbe, D.R.; Di Bella, S.; Dettori, S.; Brucci, G.; Zerbato, V.; Pol, R.; Segat, L.; D’Agaro, P.; Roman-Pognuz, E.; Friso, F.; et al. Reactivation of herpes simplex virus type 1 (HSV-1) detected on bronchoalveolar lavage fluid (BALF) samples in critically ill COVID-19 patients undergoing invasive mechanical ventilation: Preliminary results from two Italian centers. Microorganisms 2022, 10, 362. [Google Scholar] [CrossRef]
  13. Bhavsar, A.; Lonnet, G.; Wang, C.; Chatzikonstantinidou, K.; Parikh, R.; Brabant, Y.; Servotte, N.; Shi, M.; Widenmaier, R.; Aris, E. Increased risk of herpes zoster in adults ≥50 years old diagnosed with COVID-19 in the United States. Open Forum Infect. Dis. 2022, 9, ofac118. [Google Scholar] [CrossRef] [PubMed]
  14. Fuest, K.E.; Erber, J.; Berg-Johnson, W.; Heim, M.; Hoffmann, D.; Kapfer, B.; Kriescher, S.; Ulm, B.; Schmid, R.M.; Rasch, S.; et al. Risk factors for herpes simplex virus (HSV) and cytomegalovirus (CMV) infections in critically ill COVID-19 patients. Multidiscip. Respir. Med. 2022, 17, 815. [Google Scholar] [CrossRef] [PubMed]
  15. Pérez-Pedrero Sánchez-Belmonte, M.J.; Sánchez-Casado, M.; Moran Gallego, F.J.; Piza Pinilla, R.; Gomez Hernando, C.; Paredes Borrachero, I. Herpes simplex virus type 1 (HSV-1) over-infection in patients with acute respiratory distress syndrome secondary to COVID-19 pneumonia: Impact on mortality. Med. Clin. 2023, 160, 66–70. [Google Scholar] [CrossRef] [PubMed]
  16. Giacobbe, D.R.; Di Bella, S.; Lovecchio, A.; Ball, L.; De Maria, A.; Vena, A.; Bruzzone, B.; Icardi, G.; Pelosi, P.; Luzzati, R.; et al. Herpes simplex virus 1 (HSV-1) reactivation in critically ill COVID-19 patients: A brief narrative review. Infect. Dis. Ther. 2022, 11, 1779–1791. [Google Scholar] [CrossRef] [PubMed]
  17. Marques, N.P.; Maia, C.M.F.; Marques, N.C.T.; de Lucena, E.H.G.; Martelli, D.R.B.; Oliveira, E.A.; Martelli-Júnior, H. Continuous increase of herpes zoster cases in Brazil during the COVID-19 pandemic. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2022, 133, 612–614. [Google Scholar] [CrossRef] [PubMed]
  18. Carneiro, V.C.S.; Alves-Leon, S.V.; Sarmento, D.J.S.; Coelho, W.L.D.C.N.P.; Moreira, O.D.C.; Salvio, A.L.; Ramos, C.H.F.; Ramos Filho, C.H.F.; Marques, C.A.B.; da Costa Gonçalves, J.P.; et al. Herpesvirus and neurological manifestations in patients with severe coronavirus disease. Virol. J. 2022, 19, 101. [Google Scholar] [CrossRef] [PubMed]
  19. Czech, T.; Nishimura, Y. Characteristics of herpes zoster infection in patients with COVID-19: A systematic scoping review. Int. J. Dermatol. 2022, 61, 1087–1092. [Google Scholar] [CrossRef]
  20. Ramírez-Colombres, M.; Maenza, C.E.; Rocchetti, N.S.; Gattino, S.P.; Diodati, S.; Luchitta, C.A.; Ré, M.D.; Settecase, C.J.; Bagilet, D.H. COVID-19 and herpesvirus encephalitis. Rev. Neurol. 2022, 74, 280–283. [Google Scholar] [CrossRef] [PubMed]
  21. Majtanova, N.; Kriskova, P.; Keri, P.; Fellner, Z.; Majtan, J.; Kolar, P. Herpes simplex keratitis in patients with SARS-CoV-2 infection: A series of five cases. Medicina 2021, 57, 412. [Google Scholar] [CrossRef]
  22. Meyer, A.; Buetti, N.; Houhou-Fidouh, N.; Patrier, J.; Abdel-Nabey, M.; Jaquet, P.; Presente, S.; Girard, T.; Sayagh, F.; Ruckly, S.; et al. HSV-1 reactivation is associated with an increased risk of mortality and pneumonia in critically ill COVID-19 patients. Crit. Care 2021, 25, 417. [Google Scholar] [CrossRef] [PubMed]
  23. Martinez-Reviejo, R.; Tejada, S.; Adebanjo, G.A.R.; Chello, C.; Machado, M.C.; Parisella, F.R.; Campins, M.; Tammaro, A.; Rello, J. Varicella zoster virus reactivation following severe acute respiratory syndrome coronavirus 2 vaccination or infection: New insights. Eur. J. Intern. Med. 2022, 104, 73–79. [Google Scholar] [CrossRef] [PubMed]
  24. Maple, P.A.C. COVID-19, SARS-CoV-2 vaccination, and human herpesviruses infections. Vaccines 2023, 11, 232. [Google Scholar] [CrossRef] [PubMed]
  25. Hertel, M.; Heiland, M.; Nahles, S.; von Laffert, M.; Mura, C.; Bourne, P.E.; Preissner, R.; Preissner, S. Real-world evidence from over one million COVID-19 vaccinations is consistent with reactivation of the varicella zoster virus. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 1342–1348. [Google Scholar] [CrossRef] [PubMed]
  26. Wan, E.Y.F.; Chui, C.S.L.; Wang, Y.; Ng, V.W.S.; Yan, V.K.C.; Lai, F.T.T.; Li, X.; Wong, C.K.H.; Chan, E.W.Y.; Wong, C.S.M.; et al. Herpes zoster related hospitalization after inactivated (CoronaVac) and mRNA (BNT162b2) SARS-CoV-2 vaccination: A self-controlled case series and nested case-control study. Lancet Reg. Health West. Pac. 2022, 21, 100393. [Google Scholar] [CrossRef] [PubMed]
  27. Gringeri, M.; Battini, V.; Cammarata, G.; Mosini, G.; Guarnieri, G.; Leoni, C.; Pozzi, M.; Radice, S.; Clementi, E.; Carnovale, C. Herpes zoster and simplex reactivation following COVID-19 vaccination: New insights from a vaccine adverse event reporting system (VAERS) database analysis. Expert Rev. Vaccines 2022, 21, 675–684. [Google Scholar] [CrossRef]
  28. Chu, C.W.; Jiesisibieke, Z.L.; Yang, Y.P.; Wu, P.C.; Lin, H.L.; Tung, T.H. Association of COVID-19 vaccination with herpes zoster: A systematic review and meta-analysis. Expert Rev. Vaccines 2022, 21, 601–608. [Google Scholar] [CrossRef]
  29. Naoum, C.; Hartmann, M. Herpes zoster reactivation after COVID-19 vaccination—A retrospective case series of 22 patients. Int. J. Dermatol. 2022, 61, 628–629. [Google Scholar] [CrossRef]
  30. Chen, J.; Li, F.; Tian, J.; Xie, X.; Tang, Q.; Chen, Y.; Ge, Y. Varicella zoster virus reactivation following COVID-19 vaccination in patients with autoimmune inflammatory rheumatic diseases: A cross-sectional Chinese study of 318 cases. J. Med. Virol. 2023, 95, e28307. [Google Scholar] [CrossRef]
  31. Akpandak, I.; Miller, D.C.; Sun, Y.; Arnold, B.F.; Kelly, J.D.; Acharya, N.R. Assessment of herpes zoster risk among recipients of COVID-19 vaccine. JAMA Netw. Open 2022, 5, e2242240. [Google Scholar] [CrossRef]
  32. Singh, R.B.; Parmar, U.P.S.; Ichhpujani, P.; Jeng, B.H.; Jhanji, V. Herpetic eye disease after SARS-CoV-2 vaccination: A CDC-VAERS database analysis. Cornea 2023, 42, 731–738. [Google Scholar] [CrossRef] [PubMed]
  33. Kuziez, L.; Eleiwa, T.K.; Chauhan, M.Z.; Sallam, A.B.; Elhusseiny, A.M.; Saeed, H.N. Corneal adverse events associated with SARS-CoV-2/COVID-19 vaccination: A systematic review. Vaccines 2023, 11, 166. [Google Scholar] [CrossRef] [PubMed]
  34. Huang, L.Y.; Chiang, C.C.; Li, Y.L.; Lai, H.Y.; Hsieh, Y.C.; Wu, Y.H.; Tsai, Y.Y. Corneal complications after COVID-19 vaccination: A systemic review. J. Clin. Med. 2022, 11, 6828. [Google Scholar] [CrossRef]
  35. Ichhpujani, P.; Parmar, U.P.S.; Duggal, S.; Kumar, S. COVID-19 vaccine-associated ocular adverse effects: An overview. Vaccines 2022, 10, 1879. [Google Scholar] [CrossRef] [PubMed]
  36. Pillar, S.; Weinberg, T.; Amer, R. Posterior ocular manifestations following BNT162b2 mRNA COVID-19 vaccine: A case series. Int. Ophthalmol. 2022, 43, 1677–1686. [Google Scholar] [CrossRef]
  37. Alpalhão, M.; Filipe, P. Herpes zoster following SARS-CoV-2 vaccination—A series of four cases. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 750–752. [Google Scholar] [CrossRef]
  38. Rodríguez-Jiménez, P.; Chicharro, P.; Cabrera, L.M.; Seguí, M.; Morales-Caballero, Á.; Llamas-Velasco, M.; Sánchez-Pérez, J. Varicella zoster virus reactivation after SARS-CoV-2 BNT162b2 mRNA vaccination: Report of 5 cases. JAAD Case Rep. 2021, 12, 58–59. [Google Scholar] [CrossRef] [PubMed]
  39. Furer, V.; Zisman, D.; Kibari, A.; Rimar, D.; Paran, Y.; Elkayam, O. Herpes zoster following BNT162b2 mRNA COVID-19 vaccination in patients with autoimmune inflammatory rheumatic diseases: A case series. Rheumatology 2021, 60, 90–95. [Google Scholar] [CrossRef] [PubMed]
  40. Papasavvas, I.; de Courten, C.; Herbort, C.P., Jr. Varicella-zoster virus reactivation causing herpes zoster ophthalmicus (HZO) after SARS-CoV-2 vaccination—Report of three cases. J. Ophthalmic Inflamm. Infect. 2021, 11, 28. [Google Scholar] [CrossRef]
  41. Fathy, R.A.; McMahon, D.E.; Lee, C.; Chamberlin, G.C.; Rosenbach, M.; Lipoff, J.B.; Tyagi, A.; Desai, S.R.; French, L.E.; Lim, H.W.; et al. Varicella zoster and herpes simplex virus reactivation post-COVID-19 vaccination: A review of 40 cases in an International Dermatology Registry. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 6–9. [Google Scholar] [CrossRef]
  42. Ibuchi, Y.; Tamayose, F.; Katayama, H.; Saeki, H.; Osada, S.I. Varicella zoster virus reactivation after coronavirus disease 2019 vaccination in Japanese patients: A series of 14 cases. J. Dermatol. 2022, 49, 151–153. [Google Scholar] [CrossRef] [PubMed]
  43. Koumaki, D.; Krueger-Krasagakis, S.E.; Papadakis, M.; Katoulis, A.; Koumaki, V.; Evangelou, G.; Stefanidou, M.; Mylonakis, D.; Zografaki, K.; Krasagakis, K. Herpes zoster viral infection after AZD1222 and BNT162b2 coronavirus disease 2019 mRNA vaccines: A case series. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 85–86. [Google Scholar] [CrossRef] [PubMed]
  44. Katsikas Triantafyllidis, K.; Giannos, P.; Mian, I.T.; Kyrtsonis, G.; Kechagias, K.S. Varicella zoster virus reactivation following COVID-19 vaccination: A systematic review of case reports. Vaccines 2021, 9, 1013. [Google Scholar] [CrossRef] [PubMed]
  45. Kluger, N.; Klimenko, T.; Bosonnet, S. Herpes simplex, herpes zoster and periorbital erythema flares after SARS-CoV-2 vaccination: 4 cases. Ann. Dermatol. Venereol. 2022, 149, 58–60. [Google Scholar] [CrossRef] [PubMed]
  46. Fukuoka, H.; Fukuoka, N.; Kibe, T.; Tubbs, R.S.; Iwanaga, J. Oral herpes zoster infection following COVID-19 vaccination: A report of five cases. Cureus 2021, 13, e19433. [Google Scholar] [CrossRef] [PubMed]
  47. Lee, T.J.; Lu, C.H.; Hsieh, S.C. Herpes zoster reactivation after mRNA-1273 vaccination in patients with rheumatic diseases. Ann. Rheum. Dis. 2022, 81, 595–597. [Google Scholar] [CrossRef] [PubMed]
  48. Tejada Cifuentes, F.; Lloret Callejo, Á.; Tirado Peláez, M.J. COVID-19 vaccines and herpes infection. Med. Clin. 2021, 157, 355–356. [Google Scholar] [CrossRef]
  49. Chen, I.L.; Chiu, H.Y. Association of herpes zoster with COVID-19 vaccination: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2023, 21, 601–608. [Google Scholar] [CrossRef]
  50. Twagirimana, S.; Doucet, S.; Meunier, C.; Maietta, A. Expanding the spectrum of Epstein-Barr virus and human herpesvirus-8 co-infection associated large B-cell lymphomas with plasmablastic differentiation in HIV-positive patients: Report of two unusual cases and review of the literature. Hum. Pathol. Rep. 2022, 29, 300657. [Google Scholar] [CrossRef]
  51. Roncati, L.; Lusenti, B.; Nasillo, V.; Manenti, A. Fatal SARS-CoV-2 coinfection in course of EBV-associated lymphoproliferative disease. Ann. Hematol. 2020, 99, 1945–1946. [Google Scholar] [CrossRef]
  52. Paolucci, S.; Cassaniti, I.; Novazzi, F.; Fiorina, L.; Piralla, A.; Comolli, G.; Bruno, R.; Maserati, R.; Gulminetti, R.; Novati, S.; et al. EBV DNA increase in COVID-19 patients with impaired lymphocyte subpopulation count. Int. J. Infect. Dis. 2021, 104, 315–319. [Google Scholar] [CrossRef] [PubMed]
  53. Shafiee, A.; Aghajanian, S.; Athar, M.M.T.; Gargari, O.K. Epstein-Barr virus and COVID-19. J. Med. Virol. 2022, 94, 4040–4042. [Google Scholar] [CrossRef] [PubMed]
  54. Im, J.H.; Nahm, C.H.; Je, Y.S.; Lee, J.S.; Baek, J.H.; Kwon, H.Y.; Chung, M.H.; Jang, J.H.; Kim, J.S.; Lim, J.H.; et al. The effect of Epstein-Barr virus viremia on the progression to severe COVID-19. Medicine 2022, 101, e29027. [Google Scholar] [CrossRef] [PubMed]
  55. Xie, Y.; Cao, S.; Dong, H.; Lv, H.; Teng, X.; Zhang, J.; Wang, T.; Zhang, X.; Qin, Y.; Chai, Y.; et al. Clinical characteristics and outcomes of critically ill patients with acute COVID-19 with Epstein-Barr virus reactivation. BMC Infect. Dis. 2021, 21, 955. [Google Scholar] [CrossRef] [PubMed]
  56. Manoharan, S.; Ying, L.Y. Epstein-Barr virus reactivation during COVID-19 hospitalization significantly increased mortality/death in SARS-CoV-2(+)/EBV(+) than SARS-CoV-2(+)/EBV(-) patients: A comparative meta-analysis. Int. J. Clin. Pract. 2023, 2023, 1068000. [Google Scholar] [CrossRef] [PubMed]
  57. Chen, T.; Song, J.; Liu, H.; Zheng, H.; Chen, C. Positive Epstein-Barr virus detection in coronavirus disease 2019 (COVID-19) patients. Sci. Rep. 2021, 11, 10902. [Google Scholar] [CrossRef] [PubMed]
  58. Brooks, B.; Tancredi, C.; Song, Y.; Mogus, A.T.; Huang, M.W.; Zhu, H.; Phan, T.L.; Zhu, H.; Kadl, A.; Woodfolk, J.; et al. Epstein-Barr virus and human herpesvirus 6 reactivation in acute COVID-19 patients. Viruses 2022, 14, 1872. [Google Scholar] [CrossRef]
  59. Nadeem, A.; Suresh, K.; Awais, H.; Waseem, S. Epstein-Barr virus coinfection in COVID-19. J. Investig. Med. High Impact Case Rep. 2021, 9, 23247096211040626. [Google Scholar] [CrossRef]
  60. García-Martínez, F.J.; Moreno-Artero, E.; Jahnke, S. SARS-CoV-2 and EBV coinfection. Med. Clin. 2020, 155, 319–320. [Google Scholar] [CrossRef]
  61. Meng, M.; Zhang, S.; Dong, X.; Sun, W.; Deng, Y.; Li, W.; Li, R.; Annane, D.; Wu, Z.; Chen, D. COVID-19 associated EBV reactivation and effects of ganciclovir treatment. Immun. Inflamm. Dis. 2022, 10, e597. [Google Scholar] [CrossRef]
  62. Villafuerte, D.B.; Lavrynenko, O.; Qazi, R.; Passeri, M.F.; Sanchez, F.L. Chronic active Epstein-Barr exacerbated by COVID-19 co-infection. Int. J. Infect. Dis. 2022, 122, 976–978. [Google Scholar] [CrossRef] [PubMed]
  63. Dias, E.; Marques, M.; Lopes, S.; Gullo, I.; Bastos, J.; Macedo, G. Acute gastrointestinal graft-versus-host disease with cytomegalovirus and Epstein-Barr virus superinfection in a patient with COVID-19. Rev. Esp. Enferm. Dig. 2023, 115, 92–93. [Google Scholar] [CrossRef] [PubMed]
  64. Chan, D.; Karimi, S.; Follows, G.; Torpey, N.; Suchanek, O. Use of rituximab in SARS-CoV-2-positive renal transplant recipient with EBV reactivation and probable haemophagocytic lymphohistiocytosis. CEN Case Rep. 2023, 12, 27–31. [Google Scholar] [CrossRef] [PubMed]
  65. Gardini, G.; Odolini, S.; Moioli, G.; Papalia, D.A.; Ferrari, V.; Matteelli, A.; Caligaris, S. Disseminated Kaposi sarcoma following COVID-19 in a 61-year-old Albanian immunocompetent man: A case report and review of the literature. Eur. J. Med. Res. 2021, 26, 152. [Google Scholar] [CrossRef] [PubMed]
  66. Magri, F.; Giordano, S.; Latini, A.; Muscianese, M. New-onset cutaneous Kaposi’s sarcoma following SARS-CoV-2 infection. J. Cosmet. Dermatol. 2021, 20, 3747–3750. [Google Scholar] [CrossRef] [PubMed]
  67. Yanes, R.R.; Malijan, G.M.B.; Escora-Garcia, L.K.; Ricafrente, S.A.M.; Salazar, M.J.; Suzuki, S.; Smith, C.; Ariyoshi, K.; Solante, R.M.; Edrada, E.M.; et al. Detection of SARS-CoV-2 and HHV-8 from a large pericardial effusion in an HIV-positive patient with COVID-19 and clinically diagnosed Kaposi sarcoma: A case report. Trop. Med. Health 2022, 50, 72. [Google Scholar] [CrossRef]
  68. Tang, W.R.; Hsu, C.W.; Lee, C.C.; Huang, W.L.; Lin, C.Y.; Hsu, Y.T.; Chang, C.; Tsai, M.T.; Hu, Y.N.; Hsu, C.H.; et al. A case report of posttransplant lymphoproliferative disorder after AstraZeneca Coronavirus Disease 2019 vaccine in a heart transplant recipient. Transplant. Proc. 2022, 54, 1575–1578. [Google Scholar] [CrossRef]
  69. Musialik, J.; Kolonko, A.; Więcek, A. Increased EBV DNAemia after anti-SARS-CoV-2 vaccination in solid organ transplants. Vaccines 2022, 10, 992. [Google Scholar] [CrossRef]
  70. Goldman, S.; Bron, D.; Tousseyn, T.; Vierasu, I.; Dewispelaere, L.; Heimann, P.; Cogan, E.; Goldman, M. Rapid progression of angioimmunoblastic T cell lymphoma following BNT162b2 mRNA vaccine booster shot: A case report. Front. Med. 2021, 8, 798095. [Google Scholar] [CrossRef]
  71. Herzum, A.; Trave, I.; D’Agostino, F.; Burlando, M.; Cozzani, E.; Parodi, A. Epstein-Barr virus reactivation after COVID-19 vaccination in a young immunocompetent man: A case report. Clin. Exp. Vaccine Res. 2022, 11, 222–225. [Google Scholar] [CrossRef]
  72. Vavoulidis, E.; Margioula-Siarkou, C.; Petousis, S.; Dinas, K. SARS-CoV-2 infection and impact on female genital tract: An untested hypothesis. Med. Hypotheses 2020, 144, 110162. [Google Scholar] [CrossRef] [PubMed]
  73. Hinten, F.; Hilbrands, L.B.; Meeuwis, K.A.P.; IntHout, J.; Quint, W.G.V.; Hoitsma, A.J.; Massuger, L.F.A.G.; Melchers, W.J.G.; de Hullu, J.A. Reactivation of latent HPV infections after renal transplantation. Am. J. Transplant. 2017, 17, 1563–1573. [Google Scholar] [CrossRef] [PubMed]
  74. Strickler, H.D.; Burk, R.D.; Fazzari, M.; Anastos, K.; Minkoff, H.; Massad, L.S.; Hall, C.; Bacon, M.; Levine, A.M.; Watts, D.H.; et al. Natural history and possible reactivation of human papillomavirus in human immunodeficiency virus-positive women. J. Natl. Cancer Inst. 2005, 97, 577–586. [Google Scholar] [CrossRef] [PubMed]
  75. Sri, T.; Merideth, M.A.; Pulanic, T.K.; Childs, R.; Stratton, P. Human papillomavirus reactivation following treatment of genital graft-versus-host disease. Transpl. Infect. Dis. 2013, 15, E148–E151. [Google Scholar] [CrossRef] [PubMed]
  76. Becker, S.; Jonigk, D.; Luft, A.; Dübbel, L.; Werlein, C.; Malik, E.; Schild-Suhren, M. COVID-19 can lead to rapid progression of cervical intraepithelial neoplasia by dysregulating the immune system: A hypothesis. J. Reprod. Immunol. 2022, 154, 103763. [Google Scholar] [CrossRef]
Figure 1. EBV-positive DLBCL lymphoma disseminated to the lungs [(A), hematoxylin and eosin, 40×], resulted intensely blue-stained with EBV-encoded RNA (EBER) probe [(B), in situ hybridization (ISH), 40×] and completely negative for HHV8 immunohistochemistry (IHC) [(C), 13B10 clone, 40×; chromogen: 3,3′-diaminobenzidine (DAB)], in a 78-year-old male COVID-19 patient; on the death day blood tests revealed lymphopenia (320 µL) of both killer and helper T cells. Bone marrow biopsy from a 50-year-old female COVID-19 patient, transplant bearer, showing EBV-positive HHV8-associated large B cell lymphoma with plasmablastic differentiation [(D), hematoxylin and eosin, 40×; (E), positive blue-stained EBER ISH, 40×; (F), positive brown-stained anti-HHV8 DAB IHC, 13B10 clone, 40×; (G), positive brown-stained anti-MUM1 DAB IHC, EP190 clone, 40×; (H), positive brown-stained anti-CD138 Syndecan-1 DAB IHC, B-A38 clone, 40×; (I), negative anti-CD20 DAB IHC, L26 clone, 40×]; on the death day blood tests revealed lymphopenia (330 µL) and tacrolimus concentration in normal range (6.01 ηg/mL).
Figure 1. EBV-positive DLBCL lymphoma disseminated to the lungs [(A), hematoxylin and eosin, 40×], resulted intensely blue-stained with EBV-encoded RNA (EBER) probe [(B), in situ hybridization (ISH), 40×] and completely negative for HHV8 immunohistochemistry (IHC) [(C), 13B10 clone, 40×; chromogen: 3,3′-diaminobenzidine (DAB)], in a 78-year-old male COVID-19 patient; on the death day blood tests revealed lymphopenia (320 µL) of both killer and helper T cells. Bone marrow biopsy from a 50-year-old female COVID-19 patient, transplant bearer, showing EBV-positive HHV8-associated large B cell lymphoma with plasmablastic differentiation [(D), hematoxylin and eosin, 40×; (E), positive blue-stained EBER ISH, 40×; (F), positive brown-stained anti-HHV8 DAB IHC, 13B10 clone, 40×; (G), positive brown-stained anti-MUM1 DAB IHC, EP190 clone, 40×; (H), positive brown-stained anti-CD138 Syndecan-1 DAB IHC, B-A38 clone, 40×; (I), negative anti-CD20 DAB IHC, L26 clone, 40×]; on the death day blood tests revealed lymphopenia (330 µL) and tacrolimus concentration in normal range (6.01 ηg/mL).
Microorganisms 11 02223 g001
Table 1. Names, acronyms, synonyms, main diseases, latency cells, and transmission routes of the nine viruses belonging to the Herpesviridae family that infect humans.
Table 1. Names, acronyms, synonyms, main diseases, latency cells, and transmission routes of the nine viruses belonging to the Herpesviridae family that infect humans.
Name, Acronym & SynonymDiseasesLatencyTransmission
HHV1 alias HSV1
(Herpes Simplex Virus 1)
Oral herpesNeuronsClose contact
Genital herpes(sensory)(oral and sexual)
Herpes keratitis(ganglia)
HHV2 alias HSV2
(Herpes Simplex Virus 2)
Oral herpesNeuronsClose contact
Genital herpes(sensory)(oral and sexual)
Herpes keratitis(ganglia)
Mollaret’s meningitis
HHV3 alias VZV
(Varicella Zoster Virus)
ChickenpoxNeuronsRespiratory and
Shingles(sensory)close contact
(ganglia)(oral and sexual)
HHV4 alias EBV
(Epstein–Barr Virus)
Infectious mononucleosis (IM)B cellsClose contact,
Lymphoproliferative disorders transfusions,
Inflammatory pseudotumor tissue transplant
Nasopharyngeal carcinoma and congenital
HHV5 alias CMV
(Cytomegalovirus)
IM-like syndromeMonocytesSaliva, urine,
Retinitis blood and milk
HHV6 (A & B)
(Human Betaherpesvirus 6A & 6B)
Sixth disease (roseola infantumT cellsRespiratory and
or exanthem subitum) close contact
HHV7
(Human Betaherpesvirus 7)
IM-like syndromeT cellsRespiratory and
Hepatitis close contact
HHV8 alias KSHV
(Kaposi’s Sarcoma Associated Herpesvirus)
Kaposi’s sarcomaB cellsClose contact
Primary effusion lymphoma (sexual) and
Multicentric Castleman’s disease saliva (?)
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Roncati, L.; Sweidan, E.; Tchawa, C.; Gianotti, G.; Di Massa, G.; Siciliano, F.; Paolini, A. SARS-CoV-2 Induced Herpes Virus Reactivations and Related Implications in Oncohematology: When Lymphocytopenia Sets in and Immunosurveillance Drops Out. Microorganisms 2023, 11, 2223. https://doi.org/10.3390/microorganisms11092223

AMA Style

Roncati L, Sweidan E, Tchawa C, Gianotti G, Di Massa G, Siciliano F, Paolini A. SARS-CoV-2 Induced Herpes Virus Reactivations and Related Implications in Oncohematology: When Lymphocytopenia Sets in and Immunosurveillance Drops Out. Microorganisms. 2023; 11(9):2223. https://doi.org/10.3390/microorganisms11092223

Chicago/Turabian Style

Roncati, Luca, Elizabeth Sweidan, Cyrielle Tchawa, Greta Gianotti, Gianluca Di Massa, Flavia Siciliano, and Ambra Paolini. 2023. "SARS-CoV-2 Induced Herpes Virus Reactivations and Related Implications in Oncohematology: When Lymphocytopenia Sets in and Immunosurveillance Drops Out" Microorganisms 11, no. 9: 2223. https://doi.org/10.3390/microorganisms11092223

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop