The Association between Gut Microbiota and Depression in the Japanese Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Iwaki Health Promotion Project
2.2. Microbiota Composition Measurements
2.3. The Center for Epidemiologic Studies Depression Scale
2.4. Blood IL-6
2.5. Soluble Fiber Intake
2.6. Statistical Analysis
2.6.1. Data Handling
2.6.2. Regression Analysis
2.6.3. Multiple Testing Problem
2.6.4. Statistical Software
3. Results
3.1. Demographic Characteristics
3.2. The Regression Analysis Outcomes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Ruan, M.; Chen, J.; Fang, Y. Major Depressive Disorder: Advances in Neuroscience Research and Translational Applications. Neurosci. Bull. 2021, 37, 863–880. [Google Scholar] [CrossRef]
- Proudman, D.; Greenberg, P.; Nellesen, D. The Growing Burden of Major Depressive Disorders (MDD): Implications for Researchers and Policy Makers. Pharmacoeconomics 2021, 39, 619. [Google Scholar] [CrossRef]
- Chisholm, D.; Sanderson, K.; Ayuso-Mateos, J.L.; Saxena, S. Reducing the global burden of depression: Population-level analysis of intervention cost-effectiveness in 14 world regions. Br. J. Psychiatry 2004, 184, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef] [PubMed]
- Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef]
- Simpson, C.A.; Diaz-Arteche, C.; Eliby, D.; Schwartz, O.S.; Simmons, J.G.; Cowan, C.S.M. The gut microbiota in anxiety and depression—A systematic review. Clin. Psychol. Rev. 2021, 83, 101943. [Google Scholar] [CrossRef] [PubMed]
- Sutcigil, L.; Oktenli, C.; Musabak, U.; Bozkurt, A.; Cansever, A.; Uzun, O.; Sanisoglu, S.Y.; Yesilova, Z.; Ozmenler, N.; Ozsahin, A.; et al. Pro- and anti-inflammatory cytokine balance in major depression: Effect of sertraline therapy. Clin. Dev. Immunol. 2007, 2007, 076396. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. Interleukin (IL-6) Immunotherapy. Cold Spring Harb. Perspect. Biol. 2018, 10, a028456. [Google Scholar] [CrossRef]
- Howren, M.B.; Lamkin, D.M.; Suls, J. Associations of depression with C-reactive protein, IL-1, and IL-6: A meta-analysis. Psychosom. Med. 2009, 71, 171–186. [Google Scholar] [CrossRef]
- Liu, Y.; Ho, R.C.M.; Mak, A. Interleukin (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: A meta-analysis and meta-regression. J. Affect Disord. 2012, 139, 230–239. [Google Scholar] [CrossRef]
- DellaGioia, N.; Hannestad, J. A critical review of human endotoxin administration as an experimental paradigm of depression. Neurosci. Biobehav. Rev. 2010, 34, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Dinan, T.G.; Cryan, J.F. Melancholic microbes: A link between gut microbiota and depression? Neurogastroenterol. Motil. 2013, 25, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Kamada, N.; Seo, S.U.; Chen, G.Y.; Núñez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 2013, 13, 321–335. [Google Scholar] [CrossRef]
- Bourassa, M.W.; Alim, I.; Bultman, S.J.; Ratan, R.R. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neurosci. Lett. 2016, 625, 56–63. [Google Scholar] [CrossRef]
- Akbaraly, T.N.; Brunner, E.J.; Ferrie, J.E.; Marmot, M.G.; Kivimaki, M.; Singh-Manoux, A. Dietary pattern and depressive symptoms in middle age. Br. J. Psychiatry 2009, 195, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, J.; Gui, S.; Zhou, C.; Chen, J.; Yang, C.; Hu, Z.; Wang, H.; Zhong, X.; Zeng, L.; et al. Comparative metaproteomics analysis shows altered fecal microbiota signatures in patients with major depressive disorder. Neuroreport 2018, 29, 417–425. [Google Scholar] [CrossRef]
- Huang, Y.; Shi, X.; Li, Z.; Shen, Y.; Shi, X.; Wang, L.; Li, G.; Yuan, Y.; Wang, J.; Zhang, Y.; et al. Possible association of Firmicutes in the gut microbiota of patients with major depressive disorder. Neuropsychiatr. Dis. Treat. 2018, 14, 3329–3337. [Google Scholar] [CrossRef]
- Jiang, H.; Ling, Z.; Zhang, Y.; Mao, H.; Ma, Z.; Yin, Y.; Wang, W.; Tang, W.; Tan, Z.; Shi, J.; et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav. Immun. 2015, 48, 186–194. [Google Scholar] [CrossRef]
- Chung, Y.C.E.; Chen, H.C.; Chou, H.C.L.; Chen, I.M.; Lee, M.S.; Chuang, L.C.; Liu, Y.W.; Lu, M.L.; Chen, C.H.; Wu, C.H.; et al. Exploration of microbiota targets for major depressive disorder and mood related traits. J. Psychiatr. Res. 2019, 111, 74–82. [Google Scholar] [CrossRef]
- Zheng, P.; Zeng, B.; Zhou, C.; Liu, M.; Fang, Z.; Xu, X.; Zeng, L.; Chen, J.; Fan, S.; Du, X.; et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 2016, 21, 786–796. [Google Scholar] [CrossRef]
- Kelly, J.R.; Borre, Y.; O’ Brien, C.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 2016, 82, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Nakahata, N.; Nakamura, T.; Kawarabayashi, T.; Seino, Y.; Ichii, S.; Ikeda, Y.; Amari, M.; Takatama, M.; Mu-rashita, K.; Ihara, K.; et al. Age-Related Cognitive Decline and Prevalence of Mild Cognitive Impairment in the Iwaki Health Promotion Project. J. Alzheimers Dis. 2021, 84, 1233–1245. [Google Scholar] [CrossRef] [PubMed]
- Radloff, L.S. The CES-D Scale: A Self-Report Depression Scale for Research in the General Population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Takekawa, D.; Kudo, T.; Saito, J.; Nikaido, Y.; Sawada, K.; Takanashi, S.; Hirota, K. Lower fractional exhaled nitric oxide levels are associated with depressive symptom in males: A population-based cross-sectional study. Psychiatry Res. 2020, 293, 113453. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar] [CrossRef]
- Breslow, N.E.; Clayton, D.G. Approximate Inference in Generalized Linear Mixed Models. J. Am. Stat. Assoc. 1993, 88, 9. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing 2022. Available online: https://www.r-project.org/ (accessed on 15 July 2023).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Barcenilla, A.; Pryde, S.E.; Martin, J.C.; Duncan, S.H.; Stewart, C.S.; Henderson, C.; Flint, H.J. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol. 2000, 66, 1654–1661. [Google Scholar] [CrossRef]
- Wang, K.; Wu, S.; Li, P.; Xiao, N.; Wen, J.; Lin, J.; Lu, S.; Cai, X.; Xu, Y.; Du, B. Sacha Inchi Oil Press-Cake Protein Hydrolysates Exhibit Anti-Hyperuricemic Activity via Attenuating Renal Damage and Regulating Gut Microbiota. Foods 2022, 11, 2534. [Google Scholar] [CrossRef]
- Yang, C.; Deng, Q.; Xu, J.; Wang, X.; Hu, C.; Tang, H.; Huang, F. Sinapic acid and resveratrol alleviate oxidative stress with modulation of gut microbiota in high-fat diet-fed rats. Food Res. Int. 2019, 116, 1202–1211. [Google Scholar] [CrossRef]
- Takahashi, K.; Nishida, A.; Fujimoto, T.; Fujii, M.; Shioya, M.; Imaeda, H.; Inatomi, O.; Bamba, S.; Andoh, A.; Sugimoto, M. Reduced Abundance of Butyrate-Producing Bacteria Species in the Fecal Microbial Community in Crohn’s Disease. Digestion 2016, 93, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Valido, E.; Bertolo, A.; Fränkl, G.P.; Itodo, O.A.; Pinheiro, T.; Pannek, J.; Kopp-Heim, D.; Glisic, M.; Stoyanov, J. Systematic review of the changes in the microbiome following spinal cord injury: Animal and human evidence. Spinal Cord 2022, 60, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Zheng, P.; Liu, Y.Y.; Zhong, X.G.; Wang, H.Y.; Guo, Y.J.; Xie, P. Sex differences in gut microbiota in patients with major depressive disorder. Neuropsychiatr. Dis. Treat. 2018, 14, 647–655. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Wang, X.; Wang, Z.; Zhang, J.; Jiang, R.; Wang, X.; Wang, K.; Liu, Z.; Xia, Z.; et al. Similar Fecal Microbiota Signatures in Patients with Diarrhea-Predominant Irritable Bowel Syndrome and Patients with Depression. Clin. Gastroenterol. Hepatol. 2016, 14, 1602–1611.e5. [Google Scholar] [CrossRef]
- Cheng, S.; Han, B.; Ding, M.; Wen, Y.; Ma, M.; Zhang, L.; Qi, X.; Cheng, B.; Li, P.; Kafle, O.P.; et al. Identifying psychiatric disorder-associated gut microbiota using microbiota-related gene set enrichment analysis. Brief. Bioinform. 2020, 21, 1016–1022. [Google Scholar] [CrossRef]
- Lai, W.T.; Deng, W.F.; Xu, S.X.; Zhao, J.; Xu, D.; Liu, Y.H.; Guo, Y.Y.; Wang, M.B.; He, F.S.; Ye, S.W.; et al. Shotgun metagenomics reveals both taxonomic and tryptophan pathway differences of gut microbiota in major depressive disorder patients. Psychol. Med. 2021, 51, 90–101. [Google Scholar] [CrossRef]
- Rong, H.; Xie, X.H.; Zhao, J.; Lai, W.T.; Wang, M.B.; Xu, D.; Liu, Y.H.; Guo, Y.Y.; Xu, S.X.; Deng, W.F.; et al. Similarly in depression, nuances of gut microbiota: Evidences from a shotgun metagenomics sequencing study on major depressive disorder versus bipolar disorder with current major depressive episode patients. J. Psychiatr. Res. 2019, 113, 90–99. [Google Scholar] [CrossRef]
- Joo, M.-K.; Ma, X.; Yoo, J.-W.; Shin, Y.-J.; Kim, H.-J.; Kim, D.-H. Patient-derived Enterococcus mundtii and its capsular polysaccharides cause depression through the downregulation of NF-κB-involved serotonin and BDNF expression. Microbes Infect. 2023, 25, 105116. [Google Scholar] [CrossRef]
- Aizawa, E.; Tsuji, H.; Asahara, T.; Takahashi, T.; Teraishi, T.; Yoshida, S.; Ota, M.; Koga, N.; Hattori, K.; Kunugi, H. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J. Affect. Disord. 2016, 202, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Ding, B.; Feng, C.; Yin, S.; Zhang, T.; Qi, X.; Lv, H.; Guo, X.; Dong, K.; Zhu, Y.; et al. Prevotella and Klebsiella proportions in fecal microbial communities are potential characteristic parameters for patients with major depressive disorder. J. Affect. Disord. 2017, 207, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Vinberg, M.; Ottesen, N.M.; Meluken, I.; Sørensen, N.; Pedersen, O.; Kessing, L.V.; Miskowiak, K.W. Remitted affective disorders and high familial risk of affective disorders associate with aberrant intestinal microbiota. Acta. Psychiatr. Scand. 2019, 139, 174–184. [Google Scholar] [CrossRef]
- Valles-Colomer, M.; Falony, G.; Darzi, Y.; Tigchelaar, E.F.; Wang, J.; Tito, R.Y.; Schiweck, C.; Kurilshikov, A.; Joos-sens, M.; Wijmenga, C.; et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 2019, 4, 623–632. [Google Scholar] [CrossRef]
- Chen, Y.H.; Bai, J.; Wu, D.; Yu, S.F.; Qiang, X.L.; Bai, H.; Wang, H.N.; Peng, Z.W. Association between fecal microbiota and generalized anxiety disorder: Severity and early treatment response. J. Affect. Disord. 2019, 259, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, S.; Zhang, M.; Ren, F.; Ren, Y.; Li, Y.; Liu, N.; Zhang, Y.; Zhang, Q.; Wang, R. Effects of Fermented Milk Containing Lacticaseibacillus paracasei Strain Shirota on Constipation in Patients with Depression: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021, 13, 2238. [Google Scholar] [CrossRef] [PubMed]
- Akkasheh, G.; Kashani-Poor, Z.; Tajabadi-Ebrahimi, M.; Jafari, P.; Akbari, H.; Taghizadeh, M.; Memarzadeh, M.R.; Asemi, Z.; Esmaillzadeh, A. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. Nutrition 2016, 32, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Liu, Q.; Xiao, L.; Xiong, L.S. Golden bifid might improve diarrhea-predominant irritable bowel syndrome via microbiota modulation. J. Health Popul. Nutr. 2022, 41, 21. [Google Scholar] [CrossRef]
- Tettamanzi, F.; Bagnardi, V.; Louca, P.; Nogal, A.; Monti, G.S.; Mambrini, S.P.; Lucchetti, E.; Maestrini, S.; Mazza, S.; Rodriguez-Mateos, A.; et al. A High Protein Diet Is More Effective in Improving Insulin Resistance and Glycemic Variability Compared to a Mediterranean Diet-A Cross-Over Controlled Inpatient Dietary Study. Nutrients 2021, 13, 4380. [Google Scholar] [CrossRef]
- Boolani, A.; Gallivan, K.M.; Ondrak, K.S.; Christopher, C.J.; Castro, H.F.; Campagna, S.R.; Taylor, C.M.; Luo, M.; Dowd, S.E.; Smith, M.L.; et al. Trait Energy and Fatigue May Be Connected to Gut Bacteria among Young Physically Active Adults: An Exploratory Study. Nutrients 2022, 14, 466. [Google Scholar] [CrossRef] [PubMed]
- Turpin, W.; Dong, M.; Sasson, G.; Raygoza Garay, J.A.; Espin-Garcia, O.; Lee, S.H.; Neustaeter, A.; Smith, M.I.; Leibovitzh, H.; Guttman, D.S.; et al. Mediterranean-Like Dietary Pattern Associations With Gut Microbiome Composition and Subclinical Gastrointestinal Inflammation. Gastroenterology 2022, 163, 685–698. [Google Scholar] [CrossRef]
- Wang, R.; Cai, Y.; Lu, W.; Zhang, R.; Shao, R.; Yau, S.Y.; Stubbs, B.; McIntyre, R.S.; Su, K.P.; Xu, G.; et al. Exercise effect on the gut microbiota in young adolescents with subthreshold depression: A randomized psychoeducation-controlled Trial. Psychiatry Res. 2023, 319, 115005. [Google Scholar] [CrossRef]
Variables | Mean ± SD or Number (Proportion) |
---|---|
Age (year) | 52.4 ± 15.2 |
Gender | Male 956 (43.6%); Female 1236 (56.4%) |
Height (cm) | 162.1 ± 8.9 |
Weight (kg) | 60.9 ± 12.2 |
Grip strength (kg) | 31.1 ± 9.3 |
Soluble Fiber Intake (g/daily) | 2.7 ± 1.2 |
Current or ex-smoker (n) | 336 (15.3%) |
Current or ex-drinker (n) | 1070 (48.8%) |
Depression (CES-D score ≧ 16) | 778 (35.5%) |
Gut Microbiota | Odds Ratio | p-Value | q-Value | Results from Previous Studies | |
---|---|---|---|---|---|
Targeting MDD | Targeting Depression | ||||
Eubacterium | 1.007↑ | 0.915 | 0.915 | ↑[34], ↑[25] | |
Paraprevotella | 0.993↓ | 0.851 | 0.875 | ↑[21] | ↑[35] |
Escherichia.Shigella | 0.991↓ | 0.812 | 0.858 | ↓[18] | ↓[35] |
Bacteroides | 0.971↓ | 0.757 | 0.823 | ↑[34], ↑[36], ↓[18], ↓[37], ↓[38], ↓[20] | ↑[35] |
Veillonella | 0.978↓ | 0.721 | 0.808 | ↑[34] | ↑[35] |
Desulfovibrio | 0.970↓ | 0.694 | 0.803 | ↑[34], ↑[36], ↑[38] | |
Enterococcus | 0.983↓ | 0.645 | 0.770 | ↑[39] | |
Bifidobacterium | 0.978↓ | 0.636 | 0.770 | ↑[34], ↑[19], ↑[37], ↑[38], ↓[40] | ↓[35] |
Streptococcus | 1.035↑ | 0.555 | 0.708 | ↑[19], ↑[41], ↑[38], ↑[20] | |
Erysipelotrichaceae incertae sedis | 1.058↑ | 0.453 | 0.598 | ↑[34], ↑[19], ↑[18], ↑[20] | |
Clostridium.XlVa | 0.932↓ | 0.436 | 0.597 | ↓[20] | |
Sutterella | 0.978↓ | 0.428 | 0.597 | ↓[34], ↓[19], ↓[20] | ↓[35] |
Clostridium.XI | 0.926↓ | 0.405 | 0.597 | ↑[19], ↑[41] | ↓[35] |
Parabacteroides | 0.935↓ | 0.400 | 0.597 | ↑[19], ↑[18] | ↑[42], ↓[35] |
Dialister | 0.971↓ | 0.396 | 0.597 | ↓[18], ↓[21] | ↑[35], ↓[43] |
Anaerostipes | 0.949↓ | 0.392 | 0.597 | ↑[34], ↑[20] | |
Butyricimonas | 0.960↓ | 0.347 | 0.597 | ↑[18] | ↓[35] |
Eggerthella | 0.949↓ | 0.304 | 0.563 | ↑[34], ↑[19], ↑[21], ↑[37], ↑[38], ↑[20] | |
Haemophilus | 0.959↓ | 0.291 | 0.563 | ↓[18], ↓[38] | ↑[35] |
Collinsella | 0.948↓ | 0.289 | 0.563 | ↑[20] | |
Flavonifractor | 0.904↓ | 0.207 | 0.449 | ↑[34], ↓[17], ↓[18], ↓[20] | ↓[35], ↓[43] |
Phascolarctobacterium | 0.950↓ | 0.136 | 0.315 | ↑[18], ↓[20] | ↑[43] |
Olsenella | 1.167↑ | 0.122 | 0.300 | ↑[34], ↑[37], ↑[20] | |
Subdoligranulum | 0.831↓ | 0.104 | 0.275 | ↓[44] | |
Ruminococcus | 0.952↓ | 0.053 | 0.151 | ↑[19], ↓[18] | ↓[35] |
Megamonas | 0.897↓ | 0.051 | 0.151 | ↑[18], ↓[19], ↓[20] | ↓[35] |
Prevotella | 0.942↓ | 0.025 * | 0.084 | ↑[41], ↓[19], ↓[18], ↓[21] | ↑[35] |
Roseburia | 0.909↓ | 0.015 * | 0.054 | ↑[34], ↑[19] | ↓[35] |
Faecalibacterium | 0.870↓ | 0.006 * | 0.026 * | ↑[34], ↓[17], ↓[18], ↓[20] | ↓[35], ↓[43] |
Lactobacillus | 1.112↑ | 0.005 * | 0.022 * | ↑[37], ↑[38], ↑[20] | ↑[43] |
Blautia | 0.476↓ | 0.002 * | 0.012 * | ↑[34], ↑[19], ↑[18], ↑[20], ↓[17] | ↓[35] |
Dorea | 0.764↓ | 0.000 * | 0.000 * | ↑[20], ↓[17] | |
Coprococcus | 0.796↓ | 0.000 * | 0.000 * | ↓[17], ↓[20] | ↓[35], ↓[43] |
Holdemania | 0.922↓ | 0.000 * | 0.000 * | ↑[19], ↑[21] | ↑[43] |
Oscillibacter | 0.830↓ | 0.000 * | 0.000 * | ↑[18], ↑[37], ↑[38] | ↓[35] |
Alistipes | 0.910↓ | 0.000 * | 0.000 * | ↑[18], ↓[20] | ↑[35] |
Mitsuokella | 0.925↓ | 0.000 * | 0.000 * | ↓[35] |
Gut Microbiota | IL-6 | Soluble Fiber Intake | ||||
---|---|---|---|---|---|---|
Beta | p | q | Beta | p | q | |
Alistipes | −0.041 | 0.298 | 0.798 | −0.015 | 0.124 | 0.417 |
Anaerostipes | −0.008 | 0.907 | 0.948 | 0.041 | 0.008 * | 0.138 |
Bacteroides | −0.093 | 0.383 | 0.798 | −0.020 | 0.425 | 0.585 |
Bifidobacterium | 0.087 | 0.084 | 0.798 | 0.010 | 0.399 | 0.585 |
Blautia | −0.128 | 0.310 | 0.798 | 0.042 | 0.178 | 0.483 |
Butyricimonas | −0.015 | 0.744 | 0.888 | −0.015 | 0.209 | 0.483 |
Clostridium.XI | −0.018 | 0.829 | 0.930 | 0.021 | 0.277 | 0.506 |
Clostridium.XlVa | 0.038 | 0.703 | 0.888 | −0.037 | 0.112 | 0.413 |
Collinsella | 0.058 | 0.080 | 0.798 | −0.021 | 0.010 * | 0.138 |
Coprococcus | 0.016 | 0.625 | 0.826 | 0.007 | 0.396 | 0.585 |
Desulfovibrio | −0.048 | 0.537 | 0.798 | −0.005 | 0.791 | 0.887 |
Dialister | −0.016 | 0.612 | 0.826 | −0.007 | 0.371 | 0.585 |
Dorea | −0.004 | 0.923 | 0.948 | 0.001 | 0.894 | 0.918 |
Eggerthella | 0.033 | 0.530 | 0.798 | −0.022 | 0.084 | 0.390 |
Enterococcus | −0.024 | 0.553 | 0.798 | 0.009 | 0.301 | 0.506 |
Erysipelotrichaceae incertae sedis | −0.098 | 0.045 * | 0.798 | −0.015 | 0.203 | 0.483 |
Escherichia.Shigella | 0.002 | 0.948 | 0.948 | −0.010 | 0.241 | 0.499 |
Eubacterium | −0.053 | 0.418 | 0.798 | −0.027 | 0.061 | 0.325 |
Faecalibacterium | −0.051 | 0.331 | 0.798 | 0.032 | 0.012 * | 0.138 |
Flavonifractor | −0.051 | 0.486 | 0.798 | −0.020 | 0.243 | 0.499 |
Haemophilus | −0.055 | 0.197 | 0.798 | 0.008 | 0.427 | 0.585 |
Holdemania | −0.038 | 0.516 | 0.798 | −0.003 | 0.829 | 0.890 |
Lactobacillus | −0.026 | 0.498 | 0.798 | −0.004 | 0.629 | 0.776 |
Megamonas | −0.004 | 0.893 | 0.948 | −0.002 | 0.842 | 0.890 |
Mitsuokella | 0.058 | 0.272 | 0.798 | −0.001 | 0.918 | 0.918 |
Olsenella | −0.043 | 0.509 | 0.798 | −0.031 | 0.046 * | 0.286 |
Oscillibacter | 0.040 | 0.455 | 0.798 | −0.032 | 0.015 * | 0.138 |
Parabacteroides | 0.030 | 0.549 | 0.798 | −0.028 | 0.023 * | 0.170 |
Paraprevotella | −0.020 | 0.561 | 0.798 | −0.012 | 0.197 | 0.483 |
Phascolarctobacterium | 0.009 | 0.782 | 0.904 | −0.009 | 0.298 | 0.506 |
Prevotella | −0.010 | 0.721 | 0.888 | −0.011 | 0.110 | 0.413 |
Roseburia | −0.034 | 0.468 | 0.798 | 0.014 | 0.201 | 0.483 |
Ruminococcus | −0.032 | 0.237 | 0.798 | −0.002 | 0.741 | 0.874 |
Streptococcus | −0.051 | 0.435 | 0.798 | 0.008 | 0.584 | 0.745 |
Subdoligranulum | 0.130 | 0.279 | 0.798 | −0.015 | 0.562 | 0.743 |
Sutterella | −0.020 | 0.525 | 0.798 | 0.009 | 0.267 | 0.506 |
Veillonella | −0.058 | 0.136 | 0.798 | 0.003 | 0.756 | 0.874 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Mori, M.; Wai, K.M.; Jiang, T.; Sugimura, Y.; Munakata, W.; Mikami, T.; Murashita, K.; Nakaji, S.; Ihara, K. The Association between Gut Microbiota and Depression in the Japanese Population. Microorganisms 2023, 11, 2286. https://doi.org/10.3390/microorganisms11092286
Yang Y, Mori M, Wai KM, Jiang T, Sugimura Y, Munakata W, Mikami T, Murashita K, Nakaji S, Ihara K. The Association between Gut Microbiota and Depression in the Japanese Population. Microorganisms. 2023; 11(9):2286. https://doi.org/10.3390/microorganisms11092286
Chicago/Turabian StyleYang, Yichi, Mone Mori, Kyi Mar Wai, Tao Jiang, Yoshikuni Sugimura, Wataru Munakata, Tatsuya Mikami, Koichi Murashita, Shigeyuki Nakaji, and Kazushige Ihara. 2023. "The Association between Gut Microbiota and Depression in the Japanese Population" Microorganisms 11, no. 9: 2286. https://doi.org/10.3390/microorganisms11092286
APA StyleYang, Y., Mori, M., Wai, K. M., Jiang, T., Sugimura, Y., Munakata, W., Mikami, T., Murashita, K., Nakaji, S., & Ihara, K. (2023). The Association between Gut Microbiota and Depression in the Japanese Population. Microorganisms, 11(9), 2286. https://doi.org/10.3390/microorganisms11092286