Achieving Discharge Limits in Single-Stage Domestic Wastewater Treatment by Combining Urban Waste Sources and Phototrophic Mixed Cultures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Biowastes
2.2. Inoculum
2.3. Experimental Design
2.3.1. Specific Phototrophic Activity (SPA) Tests
2.3.2. Semicontinuous Photobioreactors
2.4. Analytical Methods
2.5. Microbial Community Analysis
3. Results and Discussion
3.1. Specific Phototrophic Assay (SPA)
3.2. Semicontinuous Operation Using CSTR to Evaluate the Anaerobic and Aerobic Conditions: ORP Influence on the Phototrophic Mixed Culture
3.3. Semicontinuous Operation Using MBR to Evaluate the SRT and HRT Parameters
4. Implications and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mentes, M. Sustainable Development Economy and the Development of Green Economy in the European Union. Energy Sustain. Soc. 2023, 13, 32. [Google Scholar] [CrossRef]
- EUR-Lex-52020DC0098-ES-EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN (accessed on 24 October 2022).
- Rizzo, L.; Gernjak, W.; Krzeminski, P.; Malato, S.; McArdell, C.S.; Perez, J.A.S.; Schaar, H.; Fatta-Kassinos, D. Best Available Technologies and Treatment Trains to Address Current Challenges in Urban Wastewater Reuse for Irrigation of Crops in EU Countries. Sci. Total Environ. 2020, 710, 136312. [Google Scholar] [CrossRef] [PubMed]
- Poustie, A.; Yang, Y.; Verburg, P.; Pagilla, K.; Hanigan, D. Reclaimed Wastewater as a Viable Water Source for Agricultural Irrigation: A Review of Food Crop Growth Inhibition and Promotion in the Context of Environmental Change. Sci. Total Environ. 2020, 739, 139756. [Google Scholar] [CrossRef] [PubMed]
- Deviller, G.; Lundy, L.; Fatta-Kassinos, D. Recommendations to Derive Quality Standards for Chemical Pollutants in Reclaimed Water Intended for Reuse in Agricultural Irrigation. Chemosphere 2020, 240, 124911. [Google Scholar] [CrossRef] [PubMed]
- Pikaar, I.; Guest, J.; Ganigué, R.; Jensen, P.; Rabaey, K.; Seviour, T.; Trimmer, J.; van der Kolk, O.; Vaneeckhaute, C.; Verstraete, W. Resource Recovery from Water Principles and Application; IWA Publishing: London, UK, 2022; ISBN 9781780409566. [Google Scholar]
- BOE. Es-BOE-A-1998-24166 Real Decreto 2116/1998, de 2 de Octubre, Por El Que Se Modifica El Real Decreto 509/1996, de 15 de Marzo, de Desarrollo Del Real Decreto-Ley 11/1995, de 28 de Diciembre, Por El Que Se Establecen Las Normas Aplicables al Tratamiento de Las Aguas Residuales Urbanas. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-1998-24166 (accessed on 14 October 2022).
- Oehmen, A.; Lemos, P.C.; Carvalho, G.; Yuan, Z.; Keller, J.; Blackall, L.L.; Reis, M.A.M. Advances in Enhanced Biological Phosphorus Removal: From Micro to Macro Scale. Water Res. 2007, 41, 2271–2300. [Google Scholar] [CrossRef]
- Puyol, D.; Batstone, D.J.; Hülsen, T.; Astals, S.; Peces, M.; Krömer, J.O. Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects. Front. Microbiol. 2016, 7, 2106. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Qin, M.; Shu, L.; Zou, Y.; Wang, J.; Lv, Z.; Xu, F.; Wang, Q.; Zhao, C.; Zhang, H.; et al. Wastewater Treatment and Simultaneous Production of Algal Lipids in Sequencing Batch Reactors Containing a Microalgal-Bacterial Consortium. Int. Biodeterior. Biodegrad. 2022, 175, 105491. [Google Scholar] [CrossRef]
- Anbalagan, A.; Schwede, S.; Lindberg, C.F.; Nehrenheim, E. Influence of Hydraulic Retention Time on Indigenous Microalgae and Activated Sludge Process. Water Res. 2016, 91, 277–284. [Google Scholar] [CrossRef]
- Tanavarotai, K.; Kamyab, H.; Nor Anuar, A.; Khademi, T.; Yuzir, A.; Ashokkumar, V.; Rezania, S. Storage and Reactivation of Aerobic Granular Sludge: A Review. Fuel 2022, 330, 125536. [Google Scholar] [CrossRef]
- Hamid, Y.; Masłó, A. Impact of Uneven Flow Wastewater Distribution on the Technological Efficiency of a Sequencing Batch Reactor. Sustainability 2022, 14, 2405. [Google Scholar] [CrossRef]
- Bernal, S.; Drummond, J.; Castelar, S.; Gacia, E.; Ribot, M.; Martí, E. Wastewater Treatment Plant Effluent Inputs Induce Large Biogeochemical Changes during Low Flows in an Intermittent Stream but Small Changes in Day-Night Patterns. Sci. Total Environ. 2020, 714, 136733. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Lee, S.A.; Ko, S.R.; Oh, H.M.; Ahn, C.Y. Effects of Photoperiod on Nutrient Removal, Biomass Production, and Algal-Bacterial Population Dynamics in Lab-Scale Photobioreactors Treating Municipal Wastewater. Water Res. 2015, 68, 680–691. [Google Scholar] [CrossRef] [PubMed]
- Díaz, V.; Leyva-Díaz, J.C.; Almécija, M.C.; Poyatos, J.M.; del Mar Muñío, M.; Martín-Pascual, J. Microalgae Bioreactor for Nutrient Removal and Resource Recovery from Wastewater in the Paradigm of Circular Economy. Bioresour. Technol. 2022, 363, 127968. [Google Scholar] [CrossRef]
- Cho, H.U.; Park, J.M.; Kim, Y.M. Enhanced Microalgal Biomass and Lipid Production from a Consortium of Indigenous Microalgae and Bacteria Present in Municipal Wastewater under Gradually Mixotrophic Culture Conditions. Bioresour. Technol. 2017, 228, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, V.C.F.; Kessler, M.; Fradinho, J.C.; Oehmen, A.; Reis, M.A.M. Achieving Nitrogen and Phosphorus Removal at Low C/N Ratios without Aeration through a Novel Phototrophic Process. Sci. Total Environ. 2021, 793, 148501. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Zhi, R.; Zhang, G. Photosynthetic Bacteria Wastewater Treatment with the Production of Value-Added Products: A Review. Bioresour. Technol. 2020, 299, 122648. [Google Scholar] [CrossRef] [PubMed]
- Hülsen, T.; Batstone, D.J.; Keller, J. Phototrophic Bacteria for Nutrient Recovery from Domestic Wastewater. Water Res. 2014, 50, 18–26. [Google Scholar] [CrossRef]
- Imam, S.; Yilmaz, S.; Sohmen, U.; Gorzalski, A.S.; Reed, J.L.; Noguera, D.R.; Donohue, T.J. IRsp1095: A Genome-Scale Reconstruction of the Rhodobacter Sphaeroides Metabolic Network. BMC Syst. Biol. 2011, 5, 116. [Google Scholar] [CrossRef]
- Almeida, J.R.; Fradinho, J.C.; Carvalho, G.; Oehmen, A.; Reis, M.A.M. Dynamics of Microbial Communities in Phototrophic Polyhydroxyalkanoate Accumulating Cultures. Microorganisms 2022, 10, 351. [Google Scholar] [CrossRef]
- Almeida, J.R.; Serrano, E.; Fernandez, M.; Fradinho, J.C.; Oehmen, A.; Reis, M.A.M. Polyhydroxyalkanoates Production from Fermented Domestic Wastewater Using Phototrophic Mixed Cultures. Water Res. 2021, 197, 117101. [Google Scholar] [CrossRef]
- Allegue, L.D.; Ventura, M.; Melero, J.A.; Puyol, D. Unraveling PHA Production from Urban Organic Waste with Purple Phototrophic Bacteria via Organic Overload. Renew. Sustain. Energy Rev. 2022, 166, 112687. [Google Scholar] [CrossRef]
- Fradinho, J.C.; Reis, M.A.M.; Oehmen, A. Beyond Feast and Famine: Selecting a PHA Accumulating Photosynthetic Mixed Culture in a Permanent Feast Regime. Water Res. 2016, 105, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Lorini, L.; di Re, F.; Majone, M.; Valentino, F. High Rate Selection of PHA Accumulating Mixed Cultures in Sequencing Batch Reactors with Uncoupled Carbon and Nitrogen Feeding. New Biotechnol. 2020, 56, 140–148. [Google Scholar] [CrossRef] [PubMed]
- George, D.M.; Vincent, A.S.; Mackey, H.R. An Overview of Anoxygenic Phototrophic Bacteria and Their Applications in Environmental Biotechnology for Sustainable Resource Recovery. Biotechnol. Rep. 2020, 28, e00563. [Google Scholar] [CrossRef] [PubMed]
- Alloul, A.; Muys, M.; Hertoghs, N.; Kerckhof, F.M.; Vlaeminck, S.E. Cocultivating Aerobic Heterotrophs and Purple Bacteria for Microbial Protein in Sequential Photo- and Chemotrophic Reactors. Bioresour. Technol. 2021, 319, 124192. [Google Scholar] [CrossRef] [PubMed]
- Hülsen, T.; Hsieh, K.; Lu, Y.; Tait, S.; Batstone, D.J. Simultaneous Treatment and Single Cell Protein Production from Agri-Industrial Wastewaters Using Purple Phototrophic Bacteria or Microalgae—A Comparison. Bioresour. Technol. 2018, 254, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Spanoghe, J.; Ost, K.J.; van Beeck, W.; Vermeir, P.; Lebeer, S.; Vlaeminck, S.E. Purple Bacteria Screening for Photoautohydrogenotrophic Food Production: Are New H2-Fed Isolates Faster and Nutritionally Better than Photoheterotrophically Obtained Reference Species? New Biotechnol. 2022, 72, 38–47. [Google Scholar] [CrossRef]
- Cerruti, M.; Crosset-Perrotin, G.; Ananth, M.; Rombouts, J.L.; Weissbrodt, D.G.; Weissbrodt, D. Syntrophy between Fermentative and Purple Phototrophic Bacteria for Carbohydrate-Based Wastewater Treatment. bioRxiv 2021, 22, 101348. [Google Scholar] [CrossRef]
- Capson-Tojo, G.; Lin, S.; Batstone, D.J.; Hülsen, T. Purple Phototrophic Bacteria Are Outcompeted by Aerobic Heterotrophs in the Presence of Oxygen. Water Res. 2021, 194, 116941. [Google Scholar] [CrossRef]
- Capson-Tojo, G.; Batstone, D.J.; Grassino, M.; Vlaeminck, S.E.; Puyol, D.; Verstraete, W.; Kleerebezem, R.; Oehmen, A.; Ghimire, A.; Pikaar, I.; et al. Purple Phototrophic Bacteria for Resource Recovery: Challenges and Opportunities. Biotechnol. Adv. 2020, 43, 107567. [Google Scholar] [CrossRef]
- Hülsen, T.; Stegman, S.; Batstone, D.J.; Capson-Tojo, G. Naturally Illuminated Photobioreactors for Resource Recovery from Piggery and Chicken-Processing Wastewaters Utilising Purple Phototrophic Bacteria. Water Res. 2022, 214, 118194. [Google Scholar] [CrossRef] [PubMed]
- Hülsen, T.; Barry, E.M.; Lu, Y.; Puyol, D.; Keller, J.; Batstone, D.J. Domestic Wastewater Treatment with Purple Phototrophic Bacteria Using a Novel Continuous Photo Anaerobic Membrane Bioreactor. Water Res. 2016, 100, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Allegue, L.D.; Puyol, D.; Melero, J.A. Food Waste Valorization by Purple Phototrophic Bacteria and Anaerobic Digestion after Thermal Hydrolysis. Biomass Bioenergy 2020, 142, 105803. [Google Scholar] [CrossRef]
- Baird, R.; Eaton, A.D.; Rice, E.W.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Puyol, D.; Hülsen, T.; Padrino, B.; Batstone, D.J.; Martinez, F.; Melero, J.A. Exploring the Inhibition Boundaries of Mixed Cultures of Purple Phototrophic Bacteria for Wastewater Treatment in Anaerobic Conditions. Water Res. 2020, 183, 116057. [Google Scholar] [CrossRef]
- Montiel-Corona, V.; Buitrón, G. Polyhydroxyalkanoates from Organic Waste Streams Using Purple Non-Sulfur Bacteria. Bioresour. Technol. 2021, 323, 124610. [Google Scholar] [CrossRef]
- Nairn, C.; Rodríguez, I.; Segura, Y.; Molina, R.; González-Benítez, N.; Molina, M.C.; Simarro, R.; Melero, J.A.; Martínez, F.; Puyol, D. Alkalinity, and Not the Oxidation State of the Organic Substrate, Is the Key Factor in Domestic Wastewater Treatment by Mixed Cultures of Purple Phototrophic Bacteria. Resources 2020, 9, 88. [Google Scholar] [CrossRef]
- Cerruti, M.; Ouboter, H.T.; Chasna, V.; van Loosdrecht, M.C.M.; Picioreanu, C.; Weissbrodt, D.G. Effects of Light/Dark Diel Cycles on the Photoorganoheterotrophic Metabolism of Rhodopseudomonas Palustris for Differential Electron Allocation to PHAs and H2. bioRxiv 2020. [Google Scholar] [CrossRef]
- Yin, Q.; Sun, Y.; Li, B.; Feng, Z.; Wu, G. The r/K Selection Theory and Its Application in Biological Wastewater Treatment Processes. Sci. Total Environ. 2022, 824, 153836. [Google Scholar] [CrossRef]
- Winkler, M.K.H.; Boets, P.; Hahne, B.; Goethals, P.; Volcke, E.I.P. Effect of the Dilution Rate on Microbial Competition: R-Strategist Can Win over Kstrategist at Low Substrate Concentration. PLoS ONE 2017, 12, e0172785. [Google Scholar] [CrossRef]
- Hülsen, T.; Hsieh, K.; Batstone, D.J. Saline Wastewater Treatment with Purple Phototrophic Bacteria. Water Res. 2019, 160, 259–267. [Google Scholar] [CrossRef]
- Sepúlveda-Muñoz, C.A.; de Godos, I.; Muñoz, R. Wastewater Treatment Using Photosynthetic Microorganisms. Symmetry 2023, 15, 525. [Google Scholar] [CrossRef]
- Dalaei, P.; Ho, D.; Nakhla, G.; Santoro, D. Low Temperature Nutrient Removal from Municipal Wastewater by Purple Phototrophic Bacteria (PPB). Bioresour. Technol. 2019, 288, 121566. [Google Scholar] [CrossRef] [PubMed]
- Heider, J.; Fuchs, G. Thauera. In Bergey’s Manual of Systematics of Archaea and Bacteria; Wiley: Hoboken, NJ, USA, 2015; pp. 1–11. [Google Scholar]
- Alloul, A.; Blansaer, N.; Cabecas Segura, P.; Wattiez, R.; Vlaeminck, S.E.; Leroy, B. Dehazing Redox Homeostasis to Foster Purple Bacteria Biotechnology. Trends Biotechnol. 2023, 41, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Brock, T.D. Brock Biology of Microorganisms; Madigan, M.T., Ed.; Global ed.; Pearson: San Francisco, CA, USA, 2021; ISBN 9781292405063. [Google Scholar]
- Wu, Z.; Duan, H.; Li, K.; Ye, L. A Comprehensive Carbon Footprint Analysis of Different Wastewater Treatment Plant Configurations. Environ. Res. 2022, 214, 113818. [Google Scholar] [CrossRef]
- Alloul, A.; Cerruti, M.; Adamczyk, D.; Weissbrodt, D.G.; Vlaeminck, S.E. Operational Strategies to Selectively Produce Purple Bacteria for Microbial Protein in Raceway Reactors. Environ. Sci. Technol. 2021, 55, 8278–8286. [Google Scholar] [CrossRef]
- Schmieder, R.; Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011, 27, 863–864. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012; ISBN 3-900051-07-0. [Google Scholar]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
SCOD (mg/L) | TCOD (mg/L) | NH4+ (mgN/L) | PO43− (mgP/L) | VSS (mg/L) * | |
---|---|---|---|---|---|
Campaign 1: Days 1–39 | |||||
OFMSW hydrolysate (n = 9) | 67,000 (1000) | 78,000 (3000) | 59 (1) | 75 (4) | 58 (1) |
DWW Estiviel (n = 18) | 196 (6) | 270 (8) | 48 (1) | 5 (1) | 26 (4) |
Campaign 2: Days 40–60 | |||||
OFMSW hydrolysate (n = 9) | 62,000 (2000) | 78,000 (3000) | 37 (2) | 132 (2) | 58 (1) |
DWW Estiviel (n = 18) | 168 (3) | 270 (8) | 54 (1) | 6 (1) | 24 (2) |
Campaign 3: Days 61–147 | |||||
OFMSW hydrolysate (n = 9) | 51,000 (1000) | 57,000 (300) | 85 (4) | 130 (20) | 53 (1) |
DWW Estiviel (n = 18) | 106 (3) | 500 (22) | 48 (2) | 5 (1) | 90 (15) |
SPA source biowastes | |||||
OFMSW hydrolysate (n = 9) | 67,000 (1000) | 78,000 (3000) | 59 (1) | 75 (4) | 58 (1) |
DWW La Gavia (n = 4) | 155 (10) | 203 (20) | 65 (1) | 16 (1) | 69 (10) |
Inoculum (SPA and semicontinuous photobioreactors) | |||||
Inoculum of PPB (n = 3) | 330 (10) | 800 (20) | 6 (1) | 5 (1) | 368 (3) |
COD:N Ratio | SCOD (mg/L) | NH4+ (mgN/L) | PO43 (mgP/L) | VSS (mg/L) | TOC (mg/L) | pH |
---|---|---|---|---|---|---|
100:3 | 2080 ± 90 | 62 ± 1 | 11.6 ± 0.6 | 92.0 ± 0.0 | 890.5 ± 59.4 | 6.92 ± 0.02 |
100:4 | 1400 ± 40 | 53 ±1 | 8.5 ± 0.4 | 100 ± 10 | 587.2 ± 39.1 | 6.91 ± 0.02 |
100:5 | 1080 ± 50 | 59 ± 2 | 8 ± 2 | 104 ± 5 | 554.8 ± 37.0 | 6.9 ± 0.02 |
100:6 | 1190 ± 50 | 53 ± 1 | 8.0 ± 0.7 | 92 ± 5 | 478.8 ± 31.9 | 7.03 ± 0.02 |
100:7 | 1010 ± 60 | 53 ± 3 | 7.2 ± 0.2 | 88 ± 5 | 401.3 ± 26.8 | 7.04 ± 0.02 |
DWW (control) | 400 ± 90 | 54.8 ± 0.6 | 5.0 ± 0.9 | 86 ± 8 | 54.4 ± 3.6 | 7.55 ± 0.02 |
LF (control) | 1600 ± 90 | 11.4 ± 0.6 | 4.7 ± 0.1 | 41 ± 2 | 716.8 ± 47.8 | 4.46 ± 0.02 |
CSTR Mode | MBR Mode | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reactor | CSTR-1 and CSTR-2 | MBR-1 | MBR-2 | |||||||||||
Stage | I | II | III | IV | V-a | V-b | VI-a | VI-b | VI-c | VI-d | ||||
Period (d) | 01–15 | 15–40 | 40–62 | 62–96 | 96–118 | 118–145 | 96–111 | 111–118 | 118–125 | 125–145 | ||||
Time (d) | 15 | 25 | 22 | 34 | 22 | 27 | 15 | 7 | 7 | 20 | ||||
HRT (d) | 3 | 3 | 5 | 5 | 3.8 | 3.8 | 3 | 2.3 | 2.3 | 1.5 | ||||
SRT (d) | 3 | 3 | 5 | 5 | 5 | 5 | 4 | 3 | 3 | 2 | ||||
COD:N | 100:4.4 ± 1.7 | 100:6.6 ± 0.9 | 100:6.7 ± 0.7 | 100:5.8 ± 0.6 | 100:6.9 ± 0.6 | 100:5.8 ± 0.6 | 100:6.6 ± 0.8 | 100:6.9 ± 0.7 | 100:6.2 ± 1.4 | 100:5.4 ± 0.6 | ||||
OLR (g COD/L·d) | 0.41 (0.05) | 0.30 (0.07) | 0.21 (0.04) | 0.21 (0.05) | 0.23 (0.03) | 0.30 (0.04) | 0.29 (0.05) | 0.39 (0.02) | 0.40 (0.01) | 0.76 (0.09) | ||||
SLR (g COD/gVSS·d) * | 1.6 (0.6) | 1.6 (0.7) | 0.8 (0.3) | 1.0 (0.3) | 0.40 (0.09) | 0.49 (0.15) | 0.6 (0.2) | 1.0 (0.3) | 0.8 (0.5) | 0.6 (0.2) | 1.0 (0.1) | 1.17 (0.07) | 1.2 (0.3) | 1.2 (0.6) |
Inlet parameters (mg/L) | ||||||||||||||
SCOD | 1200 (40) | 970 (20) | 1010 (40) | 1100 (40) | 890 (20) | 1100 (30) | 890 (20) | 870 (30) | 910 (20) | 1210 (30) | ||||
NH4+-N | 32 (1) | 56 (1) | 54 (1) | 55 (1) | 51 (1) | 55 (2) | 50 (1) | 54 (2) | 57 (2) | 54 (2) | ||||
PO43−-P | 6 (1) | 7 (1) | 8 (1) | 9 (1) | 8 (1) | 8 (1) | 8 (1) | 7 (1) | 7 (1) | 9 (1) |
Ratio Test | COD:N: P Intake | Removal (%) | pH | Y X/S (mgVSS/mgCOD) | |||||
---|---|---|---|---|---|---|---|---|---|
COD | N | P | COD | N-NH4+ | P-PO43− | Initial | Final | ||
100:3 | 100 | 5.1 | 0.9 | 64.1 | 99.4 | 91.9 | 6.9 ± 0.1 | 6.9 ± 0.1 | 0.48 ± 0.01 |
100:4 | 100 | 7.4 | 1.2 | 58.6 | 98.8 | 100.0 | 6.9 ± 0.1 | 7.0 ± 0.1 | 0.68 ± 0.10 |
100:5 | 100 | 10.9 | 1.4 | 59.6 | 99.1 | 100.0 | 6.9 ± 0.1 | 6.9 ± 0.1 | 0.71 ± 0.03 |
100:6 | 100 | 6.4 | 1.0 | 74.2 | 98.8 | 100.0 | 7.0 ± 0.1 | 6.8 ± 0.0 | 0.46 ± 0.06 |
100:7 | 100 | 6.8 | 0.9 | 84.5 | 99.9 | 100.0 | 7.0 ± 0.1 | 6.9 ± 0.1 | 0.27 ± 0.09 |
DWW | 100 | 10.9 | 0.7 | 86.8 | 62.9 | 41.7 | 7.5 ± 0.1 | 7.8 ± 0.1 | 0.26 ± 0.05 |
LF | 100 | 1.4 | 0.3 | 30.6 | 52.4 | 28.7 | 4.5 ± 0.1 | 4.8 ± 0.1 | 0.21 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chacon-Aparicio, S.; Villamil, J.A.; Martinez, F.; Melero, J.A.; Molina, R.; Puyol, D. Achieving Discharge Limits in Single-Stage Domestic Wastewater Treatment by Combining Urban Waste Sources and Phototrophic Mixed Cultures. Microorganisms 2023, 11, 2324. https://doi.org/10.3390/microorganisms11092324
Chacon-Aparicio S, Villamil JA, Martinez F, Melero JA, Molina R, Puyol D. Achieving Discharge Limits in Single-Stage Domestic Wastewater Treatment by Combining Urban Waste Sources and Phototrophic Mixed Cultures. Microorganisms. 2023; 11(9):2324. https://doi.org/10.3390/microorganisms11092324
Chicago/Turabian StyleChacon-Aparicio, Sandra, John Alexander Villamil, Fernando Martinez, Juan Antonio Melero, Raul Molina, and Daniel Puyol. 2023. "Achieving Discharge Limits in Single-Stage Domestic Wastewater Treatment by Combining Urban Waste Sources and Phototrophic Mixed Cultures" Microorganisms 11, no. 9: 2324. https://doi.org/10.3390/microorganisms11092324
APA StyleChacon-Aparicio, S., Villamil, J. A., Martinez, F., Melero, J. A., Molina, R., & Puyol, D. (2023). Achieving Discharge Limits in Single-Stage Domestic Wastewater Treatment by Combining Urban Waste Sources and Phototrophic Mixed Cultures. Microorganisms, 11(9), 2324. https://doi.org/10.3390/microorganisms11092324