Phenotypic and Genotypic Assays to Evaluate Coagulase-Negative Staphylococci Biofilm Production in Bloodstream Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Bacterial Isolates
2.3. Phenotypic Assay
2.4. Genotypic Assays
2.4.1. DNA Extraction
2.4.2. PCR Assays
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Strategies to Mitigate Healthcare Personnel Staffing Shortages. For Disease Control and Prevention Website. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/mitigating-staff-shortages.html (accessed on 22 December 2020).
- Fakih, M.G.; Bufalino, A.; Sturm, L.; Huang, R.H.; Ottenbacher, A.; Saake, K.; Winegar, A.; Fogel, R.; Cacchione, J. Coronavirus disease 2019 (COVID-19) pandemic, central-line-associated bloodstream infection (CLABSI), and catheter-associated urinary tract infection (CAUTI): The urgent need to refocus on hardwiring prevention efforts. Infect. Control. Hosp. Epidemiol. 2021, 43, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Argemi, X.; Hansmann, Y.; Prola, K.; Prévost, G. Coagulase-Negative Staphylococci Pathogenomics. Int. J. Mol. Sci. 2019, 20, 1215. [Google Scholar] [CrossRef]
- Jain, A.; Agarwal, A. Biofilm production, a marker of pathogenic potential of colonizing and commensal staphylococci. J. Microbiol. Methods 2008, 76, 88–92. [Google Scholar] [CrossRef]
- von Eiff, C.; Peters, G.; Heilmann, C. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis. 2002, 2, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-Negative Staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef]
- Katsikogianni, M.; Missirlis, Y.F. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur. Cell Mater. 2004, 8, 37–57. [Google Scholar] [CrossRef]
- Li, P.; Yin, R.; Cheng, J.; Lin, J. Bacterial Biofilm Formation on Biomaterials and Approaches to Its Treatment and Prevention. Int. J. Mol. Sci. 2023, 24, 11680. [Google Scholar] [CrossRef]
- Berne, C.; Ellison, C.K.; Ducret, A.; Brun, Y.V. Bacterial adhesion at the single-cell level. Microb. Biofilms 2018, 16, 616–627. [Google Scholar] [CrossRef]
- Monzillo, V.; Corona, S.; Lanzarini, P.; Dalla Valle, C.; Marone, P. Chlorhexidine-silver sulfadiazine-impregnated central venous catheters: In Vitro antibacterial activity and impact on bacterial adhesion. New Microbiol. 2012, 35, 175–182. [Google Scholar]
- de Silva, G.D.I.; Kantzanou, M.; Justice, A.; Massey, R.C.; Wilkinson, A.R.; Day, N.P.J.; Peacock, S.J. The ica Operon and Biofilm Production in Coagulase-Negative Staphylococci Associated with Carriage and Disease in a Neonatal Intensive Care Unit. J. Clin. Microbiol. 2002, 40, 382–388. [Google Scholar] [CrossRef]
- Cafiso, V.; Bertuccio, T.; Santagati, M.; Campanile, F.; Amicosante, G.; Perilli, M.; Selan, L.; Artini, M.; Nicoletti, G.; Stefani, S. Presence of the ica operon in clinical isolates of Staphylococcus epidermidis and its role in biofilm production. Clin. Microbiol. Infect. 2004, 10, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Schilcher, K.; Horswill, A.R. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol. Mol. Biol. Rev. 2020, 84, e00026-19. [Google Scholar] [CrossRef] [PubMed]
- Büttner, H.; Mack, D.; Rohde, H. Structural basis of Staphylococcus epidermidis biofilm formation: Mechanisms and molecular interactions. Front. Cell Infect. Microbiol. 2015, 5, 14. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Nguyen, T.H.; Otto, M. The staphylococcal exopolysaccharide PIA—Biosynthesis and role in biofilm formation, colonization, and infection. Comput. Struct. Biotechnol. J. 2020, 18, 3324–3334, Erratum in Comput. Struct. Biotechnol. J. 2023, 21, 2035. [Google Scholar] [CrossRef]
- Paharik, A.E.; Horswill, A.R. The Staphylococcal Biofilm: Adhesins, regulation, and host response. Microbiol. Spectr. 2016, 4, 529–566. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Giardin, J.M.; Chamorro, I.O.; Ríos, L.V.; Aroca, J.J.; Arata, M.I.G.; López, J.V.S. Blood stream infections associated with central and peripheral venous catheters. BMC Infect. Dis. 2019, 19, 841. [Google Scholar] [CrossRef]
- Christensen, G.D.; Simpson, A.W.; Bisno, A.L.; Beachey, E.H. Adherence of Slime-Producing Strains of Staphylococcus epidermidis to Smooth Surfaces. Infect. Immun. 1982, 37, 318–326. [Google Scholar] [CrossRef]
- Manandhar, S.; Singh, A.; Varma, A.; Pandey, S.; Shrivastava, N. Phenotypic and genotypic characterization of biofilm producing clinical coagulase negative staphylococci from Nepal and their antibiotic susceptibility pattern. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 41. [Google Scholar] [CrossRef]
- Ziebuhr, W.; Krimmer, V.; Rachid, S.; Lößner, I.; Götz, F.; Hacker, J. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: Evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol. Microbiol. 2002, 32, 345–356. [Google Scholar] [CrossRef]
- Grzebyk, M.; Brzychczy-, W.M.; Piotrowska, A.; Krzyściak, P.; Heczko, P.B.; Bulanda, M. Fenotypowa ocena hydrofobowości powierzchni oraz zdolności do tworzenia biofilmu przez gronkowce koagulazo-ujemne izolowane z zakazeń od noworodków z bardzo mala masa urodzeniowa [henotypic evaluation of hydrophobicity and the ability to produce biofilm in coagulase-negative staphylococci isolated from infected very-low-birthweight newborns]. Med. Dosw. Mikrobiol. 2013, 65, 149–159. (In Polish) [Google Scholar]
- Li, S.; Guo, Y.; Zhao, C.; Chen, H.; Hu, B.; Chu, Y.; Zhang, Z.; Hu, Y.; Liu, Z.; Du, Y.; et al. In Vitro activities of tedizolid compared with other antibiotics against Gram-positive pathogens associated with hospital-acquired pneumonia, skin and soft tissue infection and bloodstream infection collected from 26 hospitals in China. J. Med. Microbiol. 2016, 65, 1215–1224. [Google Scholar] [CrossRef] [PubMed]
- Szczuka, E.; Krzymińska, S.; Kaznowski, A. Clonality, virulence and the occurrence of genes encoding antibiotic resistance among Staphylococcus warneri isolates from bloodstream infections. J. Med. Microbiol. 2016, 65, 828–836. [Google Scholar] [CrossRef] [PubMed]
- Lisowska-Łysiak, K.; Lauterbach, R.; Międzobrodzki, J.; Kosecka-Strojek, M. Epidemiology and Pathogenesis of Staphylococcus Bloodstream Infections in Humans: A Review. Pol. J. Microbiol. 2021, 70, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Arciola, C.R.; Campoccia, D.; Ravaioli, S.; Montanaro, L. Polysaccharide intercellular adhesin in biofilm: Structural and regulatory aspects. Front. Cell. Infect. Microbiol. 2015, 5, 7. [Google Scholar] [CrossRef]
- Moormeier, D.E.; Bose, J.L.; Horswill, A.R.; Bayles, K.W. Temporal and Stochastic Control of Staphylococcus aureus Biofilm Development. mBio 2014, 5, e01341-14. [Google Scholar] [CrossRef] [PubMed]
- Seng, R.; Kitti, T.; Thummeepak, R.; Kongthai, P.; Leungtongkam, U.; Wannalerdsakun, S.; Sitthisak, S. Biofilm formation of methicillin-resistant coagulase negative staphylococci (MR-CoNS) isolated from community and hospital environments. PLoS ONE 2017, 8, e0184172. [Google Scholar] [CrossRef]
- Klingenberg, C.; Aarag, E.; Rønnestad, A.; Sollid, J.E.; Abrahamsen, T.G.; Kjeldsen, G.; Flaegstad, T. Coagulase-negative staphylococcal sepsis in neonates. Association between antibiotic resistance, biofilm formation and the host inflammatory response. Pediatr. Infect. Dis. J. 2005, 24, 817–822. [Google Scholar] [CrossRef]
- Stefani, S. Basi Molecolari della Produzione di Biofilm in Staphylococcus spp. In Proceedings of the Biofilm Microbici I Workshop Nazionale, Roma, Italy, 20–21 June 2005; Istituto Superiore di Sanità: Rome, Italy, 2005. [Google Scholar]
- Bjarnsholt, T. The role of bacterial biofilms in chronic infections. APMIS Suppl. 2013, 121, 1–51. [Google Scholar] [CrossRef]
- Pierrat, X.; Wong, J.P.H.; Al-Mayyah, Z.; Persat, A. The Mammalian Membrane Microenvironment Regulates the Sequential Attachment of Bacteria to Host Cells. mBio. 2021, 12, e0139221. [Google Scholar] [CrossRef]
Gene Target | Sequences | bp | Reference |
---|---|---|---|
icaA | F5′-TCTCTTGCAGGAGCAATCAA | 188 | [19] |
R5′-TCAGGCACTAACATCCAGCA | |||
icaB | F5′-ATGGCTTAAAGCACACGACGC | 526 | [20] |
R5′-TATCGGCATCTGGTGTGACAG | |||
icaC | F5′-ATCATCGTGACACACTTACTAACG | 934 | [12] |
R5′-CTCTCTTAACATCATTCCGACGCC | |||
icaD | F5′-ATGGTCAAGCCCAGACAGAG | 198 | [19] |
R5′-CGTGTTTTCAACATTTAATGCAA |
Phenotypic Assay | Frequency | Range | Median (OD) | 95% CI for the Median | Complete Operon |
---|---|---|---|---|---|
Excellent producer | 49/89 (55.0%) | 0.240–3.50 | 0.68 | 0.46–1.21 | 33/49 (67.3%) |
Weak producer | 20/89 (22.5%) | 0.130–0.230 | 0.17 | 0.14–0.20 | 4/20 (20.0%) |
No producer | 20/89 (22.5%) | 0.06–0.120 | 0.09 | 0.1–0.1 | 5/20 (25.0%) |
Samples | Phenotypic Assay | Genotypic Assay | |||||
---|---|---|---|---|---|---|---|
Strain | Species | Average o.d. | Interpretation | icaA | icaD | icaB | icaC |
30,678 | S. epidermidis | 3.50 | EP | + | + | + | + |
29,789 | S. epidermidis | 3.50 | EP | + | + | + | + |
29,216 | S. epidermidis | 3.43 | EP | + | + | + | + |
30,667 | S. epidermidis | 3.33 | EP | + | + | + | + |
30,203 | S. epidermidis | 3.30 | EP | + | + | + | + |
30,383 | S. epidermidis | 2.37 | EP | + | + | + | + |
30,428 | S. epidermidis | 2.25 | EP | + | + | + | + |
30,371 | S. epidermidis | 2.24 | EP | + | + | + | + |
30,344 | S. epidermidis | 1.94 | EP | + | + | + | + |
30,710 | S. epidermidis | 1.78 | EP | + | + | + | + |
29,533 | S. epidermidis | 1.74 | EP | + | + | + | + |
30,385 | S. epidermidis | 1.65 | EP | + | + | + | + |
30,575 | S. epidermidis | 1.61 | EP | + | + | + | + |
29,383 | S. epidermidis | 1.59 | EP | + | + | + | + |
30,164 | S. epidermidis | 1.59 | EP | - | - | - | - |
29,317 | S. epidermidis | 1.52 | EP | + | + | + | + |
30,677 | S. epidermidis | 1.37 | EP | + | + | + | + |
30,077 | S. epidermidis | 1.23 | EP | + | + | + | + |
29,981 | S. epidermidis | 1.14 | EP | + | + | + | + |
30,455 | S. epidermidis | 1.02 | EP | - | - | - | - |
30,697 | S. epidermidis | 0.86 | EP | + | + | + | + |
29,581 | S. epidermidis | 0.82 | EP | + | + | + | + |
30,338 | S. epidermidis | 0.77 | EP | + | + | + | + |
29,412 | S. epidermidis | 0.73 | EP | + | + | + | + |
30,306 | S. epidermidis | 0.68 | EP | + | + | + | + |
30,740 | S. epidermidis | 0.67 | EP | + | + | + | + |
29,525 | S. epidermidis | 0.66 | EP | - | - | - | - |
30,440 | S. lugdunensis | 0.64 | EP | - | - | - | - |
30,418 | S. epidermidis | 0.63 | EP | - | - | - | - |
30,064 | S. epidermidis | 0.62 | EP | + | + | + | + |
29,954 | S. hominis | 0.51 | EP | - | - | - | - |
29,638 | S. hominis | 0.46 | EP | - | - | - | - |
29,993 | S. epidermidis | 0.43 | EP | + | + | + | + |
29,668 | S. epidermidis | 0.43 | EP | + | + | + | + |
29,743 | S. hominis | 0.43 | EP | - | - | - | - |
30,789 | S. epidermidis | 0.42 | EP | + | + | + | + |
30,607 | S. capitis | 0.39 | EP | - | - | - | - |
30,702 | S. hominis | 0.36 | EP | + | + | - | - |
30,478 | S. epidermidis | 0.34 | EP | + | + | + | + |
29,769 | S. hominis | 0.32 | EP | - | - | - | - |
29,540 | S. epidermidis | 0.29 | EP | + | + | + | + |
30,735 | S. haemolyticus | 0.28 | EP | - | - | - | - |
29,798 | S. epidermidis | 0.27 | EP | - | - | - | - |
29,726 | S. epidermidis | 0.27 | EP | + | + | + | + |
30,706 | S. epidermidis | 0.26 | EP | + | + | + | + |
30,530 | S. haemolyticus | 0.26 | EP | - | - | - | - |
30,242 | S. hominis | 0.25 | EP | - | - | - | - |
30,595 | S. epidermidis | 0.25 | EP | + | + | + | + |
30,239 | S. epidermidis | 0.24 | EP | - | - | - | - |
29,409 | S. epidermidis | 0.23 | WP | + | + | + | + |
30,359 | S. capitis | 0.22 | WP | - | - | - | - |
29,846 | S. epidermidis | 0.21 | WP | - | - | - | - |
29,655 | S. hominis | 0.21 | WP | - | - | - | - |
29,808 | S. epidermidis | 0.21 | WP | + | + | + | + |
28,995 | S. haemolyticus | 0.20 | WP | - | - | - | - |
30,244 | S. epidermidis | 0.20 | WP | - | - | - | - |
30,296 | S. haemolyticus | 0.18 | WP | - | - | - | - |
30,288 | S. hominis | 0.18 | WP | - | - | - | - |
30,417 | S. hominis | 0.17 | WP | + | - | - | - |
29,618 | S. epidermidis | 0.16 | WP | - | - | - | - |
29,972 | S. epidermidis | 0.15 | WP | + | + | + | + |
30,358 | S. haemolyticus | 0.15 | WP | - | - | - | - |
30,291 | S. epidermidis | 0.15 | WP | - | - | - | - |
30,319 | S. epidermidis | 0.14 | WP | - | - | - | - |
30,013 | S. hominis | 0.14 | WP | - | - | - | - |
30,773 | S. epidermidis | 0.13 | WP | + | + | + | + |
30,387 | S. haemolyticus | 0.13 | WP | - | - | - | - |
29,657 | S. epidermidis | 0.13 | WP | + | - | - | + |
29,378 | S. hominis | 0.13 | WP | - | - | - | - |
30,218 | S. epidermidis | 0.12 | NP | - | - | - | - |
29,852 | S. haemolyticus | 0.12 | NP | - | - | - | - |
30,539 | S. haemolyticus | 0.11 | NP | - | - | - | - |
29,797 | S. haemolyticus | 0.11 | NP | - | - | - | - |
30,814 | S. epidermidis | 0.10 | NP | - | - | - | - |
30,807 | S. capitis | 0.10 | NP | - | - | - | - |
29,834 | S. haemolyticus | 0.10 | NP | - | - | - | - |
29,313 | S. epidermidis | 0.10 | NP | + | + | + | + |
29,297 | S. epidermidis | 0.09 | NP | + | + | + | + |
29,205 | S. epidermidis | 0.09 | NP | - | - | - | - |
29,416 | S. epidermidis | 0.08 | NP | + | + | + | + |
29,522 | S. epidermidis | 0.08 | NP | + | + | + | + |
29,934 | S. capitis | 0.08 | NP | - | - | - | - |
29,363 | S. epidermidis | 0.07 | NP | + | + | + | + |
29,440 | S. hominis | 0.07 | NP | - | - | - | - |
29,147 | S. hominis | 0.07 | NP | - | - | - | - |
29,367 | S. haemolyticus | 0.07 | NP | - | - | - | - |
30,761 | S. capitis | 0.06 | NP | - | - | - | - |
30,318 | S. haemolyticus | 0.06 | NP | - | - | - | - |
29,059 | S. haemolyticus | 0.06 | NP | - | - | - | - |
Department | Total | S. epidermidis | S. hominis | S. haemolyticus | S. capitis | S. lugdunensis |
---|---|---|---|---|---|---|
General ICU | 49 | 36 | 9 | 4 | ||
Surgeries | 5 | 4 | 1 | |||
Pulmonology | 5 | 2 | 2 | 1 | ||
Hematology | 10 | 3 | 5 | 2 | ||
Oncologies | 9 | 6 | 1 | 2 | ||
Cardiology | 8 | 5 | 1 | 1 | 1 | |
Neonatal intensive care unit | 3 | 3 | ||||
Total | 89 | 56 | 13 | 13 | 5 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grassia, G.; Bagnarino, J.; Siciliano, M.; Barbarini, D.; Corbella, M.; Cambieri, P.; Baldanti, F.; Monzillo, V. Phenotypic and Genotypic Assays to Evaluate Coagulase-Negative Staphylococci Biofilm Production in Bloodstream Infections. Microorganisms 2024, 12, 126. https://doi.org/10.3390/microorganisms12010126
Grassia G, Bagnarino J, Siciliano M, Barbarini D, Corbella M, Cambieri P, Baldanti F, Monzillo V. Phenotypic and Genotypic Assays to Evaluate Coagulase-Negative Staphylococci Biofilm Production in Bloodstream Infections. Microorganisms. 2024; 12(1):126. https://doi.org/10.3390/microorganisms12010126
Chicago/Turabian StyleGrassia, Giulia, Jessica Bagnarino, Mariangela Siciliano, Daniela Barbarini, Marta Corbella, Patrizia Cambieri, Fausto Baldanti, and Vincenzina Monzillo. 2024. "Phenotypic and Genotypic Assays to Evaluate Coagulase-Negative Staphylococci Biofilm Production in Bloodstream Infections" Microorganisms 12, no. 1: 126. https://doi.org/10.3390/microorganisms12010126
APA StyleGrassia, G., Bagnarino, J., Siciliano, M., Barbarini, D., Corbella, M., Cambieri, P., Baldanti, F., & Monzillo, V. (2024). Phenotypic and Genotypic Assays to Evaluate Coagulase-Negative Staphylococci Biofilm Production in Bloodstream Infections. Microorganisms, 12(1), 126. https://doi.org/10.3390/microorganisms12010126