The Prevalence, Epidemiological, and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus (MRSA) in Macau (2017–2022)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Strain Isolation
2.2. SCCmec Typing
2.3. Multi-Locus Sequence Typing
2.4. Sequence Analysis
2.5. Epidemilogical Analysis
2.6. Autoregressive Integrated Moving Average (ARIMA) Modeling
2.7. Antimicrobial Susceptibility Testing
2.8. Statistical Analysis
3. Results
3.1. Overview of the Study Design
3.2. SCCmec (I~V) Gene Detection
3.3. Multi-Locus Sequence Typing of S. aureus Isolates
3.4. Molecular Typing of MRSA Strains in Macau
3.5. Epidemilogical Characteristics of MRSA Strains in Macau
3.6. Drug Resistance Characteristics of MRSA in Macau
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medina Cruz, D.; Mi, G.; Webster, T.J. Synthesis and characterization of biogenic selenium nanoparticles with antimicrobial properties made by Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa. J. Biomed. Mater. Res. A 2018, 106, 1400–1412. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G., Jr. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, A.; Linden, P.K.; Friedman, B. Incidence, prevalence, and management of MRSA bacteremia across patient populations. Crit. Care 2017, 21, 211. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Guo, Y.; Zhu, D.; Wang, F.; Jiang, X.; Fu, Y.; Xiaolong, Z. CHINET surveillance of bacterial resistance in China: 2018 report. Chin. J. Infect. Chemother. 2020, 20, 1–10. [Google Scholar]
- Wang, D.; Xie, K.; Zou, D.; Meng, M.; Xie, M. Inhibitory effects of silybin on the efflux pump of methicillin-resistant Staphylococcus aureus. Mol. Med. Rep. 2018, 18, 827–833. [Google Scholar] [PubMed]
- Lakhundi, S.; Zhang, K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef] [PubMed]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Hasmukharay, K.; Ngoi, S.T.; Saedon, N.I.; Tan, K.M.; Khor, H.M.; Chin, A.V.; Tan, M.P.; Kamarulzaman, A.; Idris, N.B.; Niek, W.K. Evaluation of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia: Epidemiology, clinical characteristics, and outcomes in the older patients in a tertiary teaching hospital in Malaysia. BMC Infect. Dis. 2023, 23, 241. [Google Scholar] [CrossRef]
- Tribuddharata, C.; Pummangurab, C.; Srifuengfunga, M.; Pipobwatthanac, P.; Thuncharoonc, H.; Rodjunb, V.; Chongtrakoola, P.; Srifuengfungb, S. Prevalence and antimicrobial susceptibility of methicillin-resistant Staphylococcus aureus clones: A study at Taksin Hospital, Bangkok, Thailand. Sci. Asia 2022, 48, 159–164. [Google Scholar] [CrossRef]
- Yang, W.; Ding, L.; Han, R.; Yin, D.; Wu, S.; Yang, Y.; Zhu, D.; Guo, Y.; Hu, F. Current status and trends of antimicrobial resistance among clinical isolates in China: A retrospective study of CHINET from 2018 to 2022. One Health Adv. 2023, 1, 8. [Google Scholar] [CrossRef]
- Holland, T.L.; Arnold, C.; Fowler, V.G. Clinical management of Staphylococcus aureus bacteremia: A review. JAMA 2014, 312, 1330–1341. [Google Scholar] [CrossRef] [PubMed]
- Moller, J.K.; Larsen, A.R.; Ostergaard, C.; Moller, C.H.; Kristensen, M.A.; Larsen, J. International travel as source of a hospital outbreak with an unusual meticillin-resistant Staphylococcus aureus clonal complex 398, Denmark, 2016. Euro Surveill. 2019, 24, 1800680. [Google Scholar] [CrossRef] [PubMed]
- Frost, I.; Van Boeckel, T.P.; Pires, J.; Craig, J.; Laxminarayan, R. Global geographic trends in antimicrobial resistance: The role of international travel. J. Travel Med. 2019, 26, taz036. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Liu, L.; Wei, J.; Xu, B. Progress in the prevalence, classification and drug resistance mechanisms of methicillin-resistant Staphylococcus aureus. Infect. Drug Resist. 2023, 16, 3271–3292. [Google Scholar] [CrossRef] [PubMed]
- Hasanpour, A.H.; Sepidarkish, M.; Mollalo, A.; Ardekani, A.; Almukhtar, M.; Mechaal, A.; Hosseini, S.R.; Bayani, M.; Javanian, M.; Rostami, A. The global prevalence of methicillin-resistant Staphylococcus aureus colonization in residents of elderly care centers: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2023, 12, 4. [Google Scholar] [CrossRef]
- You, J.H.S.; Choi, K.W.; Wong, T.Y.; Ip, M.; Ming, W.K.; Wong, R.Y.; Chan, S.N.; Tse, H.T.; Chau, C.T.S.; Lee, N.L.S. Disease burden, characteristics, and outcomes of methicillin-resistant Staphylococcus aureus bloodstream infection in Hong Kong. Asia Pac. J. Public Health 2017, 29, 451–461. [Google Scholar] [CrossRef]
- Deurenberg, R.H.; Vink, C.; Kalenic, S.; Friedrich, A.; Bruggeman, C.; Stobberingh, E. The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 2007, 13, 222–235. [Google Scholar] [CrossRef]
- Ito, T.; Katayama, Y.; Hiramatsu, K. Cloning and nucleotide sequence determination of the entire mec DNA of pre-methicillin-resistant Staphylococcus aureus N315. Antimicrob. Agents Chemother. 1999, 43, 1449–1458. [Google Scholar] [CrossRef]
- Liu, M.C.-J.; Cao, H.; Lau, A.; Chow, K.-H.; Lai, E.L.-y.; Tse, C.W.-S.; Wu, A.K.-L.; Ho, P.-L. Structures of SCC mec elements in methicillin-resistant Staphylococcus lugdunensis are closely related to those harboured by community-associated methicillin-resistant Staphylococcus aureus. J. Med. Microbiol. 2019, 68, 1367–1372. [Google Scholar] [CrossRef]
- Uehara, Y. Current status of Staphylococcal cassette chromosome mec (SCCmec). Antibiotics 2022, 11, 86. [Google Scholar] [CrossRef]
- Valsesia, G.; Rossi, M.; Bertschy, S.; Pfyffer, G.E. Emergence of SCCmec type IV and SCCmec type V methicillin-resistant Staphylococcus aureus containing the Panton-Valentine leukocidin genes in a large academic teaching hospital in central Switzerland: External invaders or persisting circulators? J. Clin. Microbiol. 2010, 48, 720–727. [Google Scholar] [CrossRef] [PubMed]
- Rossato, A.M.; Primon-Barros, M.; Rocha, L.D.L.; Reiter, K.C.; Dias, C.A.G.; d’Azevedo, P.A. Resistance profile to antimicrobials agents in methicillin-resistant Staphylococcus aureus isolated from hospitals in South Brazil between 2014–2019. Rev. Soc. Bras. Med. Trop. 2020, 53, e20200431. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.-Y.; Choo, Q.-C.; Chew, C.-H. Predominance of three closely related methicillin-resistant Staphylococcus aureus clones carrying a unique ccrC-positive SCC mec type III and the emergence of spa t304 and t690 SCC mec type IV pvl+ MRSA Isolates in Kinta Valley, Malaysia. Microb. Drug Resist. 2017, 23, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Alon, D.; Abd-Elkadir, F.; Chowers, M.; Paitan, Y. MRSA SCC mec epidemiology in Israel: Development and implementation of an MRSA SCC mec typing strategy. Eur. J. Clin. Microbiol. 2011, 30, 1443–1452. [Google Scholar] [CrossRef]
- Mitsumoto-Kaseida, F.; Murata, M.; Toyoda, K.; Morokuma, Y.; Kiyosuke, M.; Kang, D.; Furusyo, N. Clinical and pathogenic features of SCCmec type II and IV methicillin-resistant Staphylococcus aureus in Japan. J. Infect. Chemother. 2017, 23, 90–95. [Google Scholar] [CrossRef]
- Liu, J.; Huang, T.; Soteyome, T.; Miao, J.; Yu, G.; Chen, D.; Ye, C.; Yang, L.; Xu, Z. Antimicrobial Resistance, SCC mec, Virulence and Genotypes of MRSA in Southern China for 7 Years: Filling the Gap of Molecular Epidemiology. Antibiotics 2023, 12, 368. [Google Scholar] [CrossRef]
- Boye, K.; Bartels, M.D.; Andersen, I.S.; Moller, J.A.; Westh, H. A new multiplex PCR for easy screening of methicillin-resistant Staphylococcus aureus SCCmec types I-V. Clin. Microbiol. Infect. 2007, 13, 725–727. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017; pp. 106–112. [Google Scholar]
- Tegegne, H.A.; Madec, J.-Y.; Haenni, M. Is methicillin-susceptible Staphylococcus aureus (MSSA) CC398 a true animal-independent pathogen? J. Glob. Antimicrob. Resist. 2022, 29, 120–123. [Google Scholar] [CrossRef]
- Pang, R.; Wu, S.; Zhang, F.; Huang, J.; Wu, H.; Zhang, J.; Li, Y.; Ding, Y.; Zhang, J.; Chen, M. The genomic context for the evolution and transmission of community-associated Staphylococcus aureus ST59 through the food chain. Front. Microbiol. 2020, 11, 422. [Google Scholar] [CrossRef]
- Effelsberg, N.; Stegger, M.; Peitzmann, L.; Altinok, O.; Coombs, G.; Pichon, B.; Kearns, A.; Randad, P.; Heaney, C.; Bletz, S. Global epidemiology and evolutionary history of Staphylococcus aureus ST45. J. Clin. Microbiol. 2020, 59, e02198-20. [Google Scholar] [CrossRef]
- Park, S.G.; Lee, H.S.; Park, J.Y.; Lee, H. Molecular epidemiology of Staphylococcus aureus in skin and soft tissue infections and bone and joint infections in Korean children. J. Korean Med. Sci. 2019, 34, e315. [Google Scholar] [CrossRef] [PubMed]
- Oosthuysen, W.; Orth, H.; Lombard, C.; Sinha, B.; Wasserman, E. Population structure analyses of Staphylococcus aureus at Tygerberg Hospital, South Africa, reveals a diverse population, a high prevalence of Panton–Valentine leukocidin genes, and unique local methicillin-resistant S. aureus clones. Clin. Microbiol. Infect. 2014, 20, 652–659. [Google Scholar] [CrossRef]
- Xing, L.; Chen, Y.; Ling, X.; Wu, D.; Sun, L.; Lin, J.; Chen, Y. Genomic characterization of livestock-associated methicillin-resistant Staphylococcus aureus ST7 Isolates from a case of human bacteremia in China. Infect. Drug Resist. 2022, 15, 7449–7457. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [PubMed]
- Garoy, E.Y.; Gebreab, Y.B.; Achila, O.O.; Tekeste, D.G.; Kesete, R.; Ghirmay, R.; Kiflay, R.; Tesfu, T. Methicillin-resistant Staphylococcus aureus (MRSA): Prevalence and antimicrobial sensitivity pattern among patients—A multicenter study in Asmara, Eritrea. Can. J. Infect. Dis. Med. Microbiol. 2019, 2019, 8321834. [Google Scholar] [CrossRef] [PubMed]
- Otarigho, B.; Falade, M.O. Computational screening of approved drugs for inhibition of the antibiotic resistance gene mecA in methicillin-resistant Staphylococcus aureus (MRSA) strains. BioTech 2023, 12, 25. [Google Scholar] [CrossRef] [PubMed]
- Khairullah, A.R.; Rehman, S.; Sudjarwo, S.A.; Effendi, M.H.; Ramandinianto, S.C.; Gololodo, M.A.; Widodo, A.; Riwu, K.H.P.; Kurniawati, D.A. Detection of mecA gene and methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk and risk factors from farms in Probolinggo, Indonesia. F1000Research 2022, 11, 722. [Google Scholar] [CrossRef]
- Lee, C.Y.; Fang, Y.P.; Chang, Y.F.; Wu, T.H.; Yang, Y.Y.; Huang, Y.C. Comparison of molecular epidemiology of bloodstream methicillin-resistant Staphylococcus aureus isolates between a new and an old hospital in central Taiwan. Int. J. Infect. Dis. 2019, 79, 162–168. [Google Scholar] [CrossRef]
- Wang, B.; Xu, Y.; Zhao, H.; Wang, X.; Rao, L.; Guo, Y.; Yi, X.; Hu, L.; Chen, S.; Han, L.; et al. Methicillin-resistant Staphylococcus aureus in China: A multicentre longitudinal study and whole-genome sequencing. Emerg. Microbes Infect. 2022, 11, 532–542. [Google Scholar] [CrossRef]
- Mainous, A.G.; Rooks, B.J.; Carek, P.J. Methicillin-resistant Staphylococcus aureus colonization and mortality risk among community adults aged 40–85. J. Am. Board Fam. Med. 2021, 34, 439–441. [Google Scholar] [CrossRef]
- Ma, M.; Chu, M.; Tao, L.; Li, J.; Li, X.; Huang, H.; Qu, K.; Wang, H.; Li, L.; Du, T. First report of oxacillin susceptible mec A-positive Staphylococcus aureus in a Children’s hospital in kunming, China. Infect. Drug Resist. 2021, 14, 2597–2606. [Google Scholar] [CrossRef] [PubMed]
- Alyahawi, A.; Alkaf, A.; Alhomidi, A.M. Prevalence of methicillin resistant staphylococcus aureus (MRSA) and antimicrobial susceptibility patterns at a private hospital in Sana’a, Yemen. Univers. J. Pharm. Res. 2018, 3, 4–9. [Google Scholar]
- Cassone, M.; Mantey, J.; Gontjes, K.J.; Lansing, B.J.; Gibson, K.E.; Wang, J.; Mody, L. Seasonal patterns in incidence and antimicrobial resistance of common bacterial pathogens in nursing home patients and their rooms. Front. Public Health 2021, 9, 671428. [Google Scholar] [CrossRef] [PubMed]
- Van De Griend, P.; Herwaldt, L.A.; Alvis, B.; DeMartino, M.; Heilmann, K.; Doern, G.; Winokur, P.; Vonstein, D.D.; Diekema, D. Community-associated methicillin-resistant Staphylococcus aureus, Iowa, USA. Emerg. Infect. Dis. 2009, 15, 1582–1589. [Google Scholar] [CrossRef]
- Yousefi, M.; Fallah, F.; Arshadi, M.; Pourmand, M.R.; Hashemi, A.; Pourmand, G. Identification of tigecycline- and vancomycin-resistant Staphylococcus aureus strains among patients with urinary tract infection in Iran. New Microbes New Infect. 2017, 19, 8–12. [Google Scholar] [CrossRef]
Isolate | arcC | aroE | glpF | gmk | pta | tpi | yqiL | ST | Clonal Complex |
---|---|---|---|---|---|---|---|---|---|
S1_MSSA | 13 | 13 | 1 | 1 | 12 | 11 | 13 | 15 | CC15 |
S2_MSSA | 2 | 2 | 2 | 2 | 6 | 3 | 2 | 30 | CC30 |
S3_ATCC25923 | 1 | 4 | 1 | 4 | 12 | 1 | 10 | 5 | CC5 |
S4_MRSA | 19 | 23 | 15 | 2 | 19 | 20 | 15 | 59 | |
S5_MRSA | 10 | 14 | 8 | 6 | 10 | 3 | 2 | 45 | CC45 |
S6_MSSA | 2 | 2 | 2 | 2 | 6 | 3 | 2 | 30 | CC30 |
S7_MSSA | 5 | 4 | 1 | 4 | 4 | 6 | 3 | 7 | |
S8_MRSA | 2 | 2 | 2 | 2 | 6 | 3 | 2 | 30 | CC30 |
S9_MSSA | 3 | 35 | 19 | 2 | 20 | 26 | 39 | 398 | |
S10_MRSA | 10 | 14 | 8 | 6 | 10 | 3 | 2 | 45 | CC45 |
S11_MRSA | 10 | 14 | 8 | 6 | 10 | 3 | 2 | 45 | CC45 |
S12_MRSA | 10 | 14 | 8 | 6 | 10 | 3 | 2 | 45 | CC45 |
Patient Characteristics | MSSA (N = 321) | MRSA (N = 183) | p |
---|---|---|---|
63.7% | 36.3% | ||
Period (%) | |||
2017.09–2018.04 | 121 (37.7) | 52 (28.4) | 0.018 |
2018.09–2019.04 | 64 (19.9) | 32 (17.5) | |
2019.09–2020.04 | 25 (7.8) | 23 (12.6) | |
2020.09–2021.04 | 42 (13.1) | 18 (9.8) | |
2021.09–2022.04 | 69 (21.5) | 58 (31.7) | |
Season (%) | |||
Spring | 151 (54.9) | 81 (47.1) | 0.131 |
Winter | 124 (45.1) | 91 (52.9) | |
Gender (%) | |||
Female | 116 (41.9) | 68 (37.2) | 0.361 |
Male | 161 (58.1) | 115 (62.8) | |
Age (mean ± SD) | 47.2 (31.9) | 62.2 (28.4) | <0.001 |
Age (Group) (%) | |||
[0, 1) | 41 (14.8) | 9 (4.9) | <0.001 |
[1, 6) | 17 (6.1) | 6 (3.3) | |
[13, 18) | 5 (1.8) | 1 (0.5) | |
[18, 40) | 42 (15.2) | 23 (12.6) | |
[30, 60) | 45 (16.2) | 22 (12.0) | |
[6, 13) | 7 (2.5) | 3 (1.6) | |
[60, 80) | 62 (22.4) | 46 (25.1) | |
[80, -) | 58 (20.9) | 73 (39.9) | |
Inpatient (%) | |||
Inpatient | 158 (64.0) | 122 (76.7) | 0.009 |
Outpatient | 89 (36.0) | 37 (23.3) |
MRSA Type | Inpatient | Outpatient | p | |
---|---|---|---|---|
(N = 280) | (N = 126) | |||
69.0% | 31.0% | |||
SCCmec-I (%) | Negative | 279 (99.6) | 126 (100.0) | 1 |
Positive | 1 (0.4) | 0 (0.0) | ||
SCCmec-II (%) | Negative | 262 (93.6) | 119 (94.4) | 0.908 |
Positive | 18 (6.4) | 7 (5.6) | ||
SCCmec-III (%) | Negative | 255 (91.1) | 123 (97.6) | 0.028 |
Positive | 25 (8.9) | 3 (2.4) | ||
SCCmec-IV (%) | Negative | 259 (92.5) | 117 (92.9) | 1 |
Positive | 21 (7.5) | 9 (7.1) | ||
SCCmec-V (%) | Negative | 260 (92.9) | 123 (97.6) | 0.091 |
Positive | 20 (7.1) | 3 (2.4) |
Antimicrobial | S. aureus (SA) (N = 321) | MRSA (N = 183) | p | |
---|---|---|---|---|
Cefoxitin (%) | Resistant | 6 (1.9) | 179 (99.4) | <0.001 |
Sensitive | 313 (98.1) | 1 (0.6) | ||
Benzylpenicillin (%) | Resistant | 247 (77.4) | 178 (99.4) | <0.001 |
Sensitive | 72 (22.6) | 1 (0.6) | ||
Oxacillin (%) | Resistant | 5 (1.6) | 175 (97.8) | <0.001 |
Sensitive | 314 (98.4) | 4 (2.2) | ||
Gentamicin (%) | Intermedia | 7 (2.2) | 17 (9.5) | <0.001 |
Resistant | 18 (5.6) | 52 (29.1) | ||
Sensitive | 294 (92.2) | 110 (61.5) | ||
Ciprofloxacin (%) | Resistant | 132 (41.4) | 99 (55.3) | 0.004 |
Sensitive | 187 (58.6) | 80 (44.7) | ||
Levofloxacin (%) | Intermedia | 11 (3.4) | 14 (7.8) | <0.001 |
Resistant | 123 (38.6) | 93 (51.7) | ||
Sensitive | 185 (58.0) | 73 (40.6) | ||
Moxifloxacin (%) | Intermedia | 10 (3.1) | 33 (18.3) | <0.001 |
Resistant | 7 (2.2) | 67 (37.2) | ||
Sensitive | 302 (94.7) | 80 (44.4) | ||
Erythromycin (%) | Intermedia | 1 (0.3) | 2 (1.1) | <0.001 |
Resistant | 103 (32.4) | 125 (69.4) | ||
Sensitive | 214 (67.3) | 53 (29.4) | ||
Clindamycin (%) | Intermedia | 0 (0.0) | 1 (0.6) | <0.001 |
Resistant | 94 (29.5) | 115 (63.9) | ||
Sensitive | 225 (70.5) | 64 (35.6) | ||
Quinupristin (%) | Resistant | 2 (0.6) | 1 (0.6) | 1.000 |
Sensitive | 317 (99.4) | 179 (99.4) | ||
Linezolid (%) | Resistant | 1 (0.3) | 0 (0.0) | 1.000 |
Sensitive | 317 (99.7) | 179 (100.0) | ||
Vancomycin (%) | Resistant | 4 (1.3) | 3 (1.7) | 1.000 |
Sensitive | 315 (98.7) | 177 (98.3) | ||
Tetracycline (%) | Intermedia | 1 (0.3) | 0 (0.0) | 0.020 |
Resistant | 54 (17.0) | 49 (27.2) | ||
Sensitive | 263 (82.7) | 131 (72.8) | ||
Tigecycline (%) | Resistant | 1 (0.3) | 0 (0.0) | 1.000 |
Sensitive | 318 (99.7) | 179 (100.0) | ||
Nitrofurantoin (%) | Intermedia | 2 (0.6) | 5 (2.8) | 0.111 |
Resistant | 1 (0.3) | 0 (0.0) | ||
Sensitive | 316 (99.1) | 175 (97.2) | ||
Rifampicin (%) | Intermedia | 3 (0.9) | 2 (1.1) | 0.125 |
Resistant | 121 (37.9) | 52 (28.9) | ||
Sensitive | 195 (61.1) | 126 (70.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, A.; Ng, H.M.; Jiao, H.; Li, K.; Ye, Q. The Prevalence, Epidemiological, and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus (MRSA) in Macau (2017–2022). Microorganisms 2024, 12, 148. https://doi.org/10.3390/microorganisms12010148
Xing A, Ng HM, Jiao H, Li K, Ye Q. The Prevalence, Epidemiological, and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus (MRSA) in Macau (2017–2022). Microorganisms. 2024; 12(1):148. https://doi.org/10.3390/microorganisms12010148
Chicago/Turabian StyleXing, Abao, Hoi Man Ng, Huining Jiao, Kefeng Li, and Qianhong Ye. 2024. "The Prevalence, Epidemiological, and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus (MRSA) in Macau (2017–2022)" Microorganisms 12, no. 1: 148. https://doi.org/10.3390/microorganisms12010148
APA StyleXing, A., Ng, H. M., Jiao, H., Li, K., & Ye, Q. (2024). The Prevalence, Epidemiological, and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus (MRSA) in Macau (2017–2022). Microorganisms, 12(1), 148. https://doi.org/10.3390/microorganisms12010148