Chip-Based Molecular Evaluation of a DNA Extraction Protocol for Candida Species from Positive Blood Cultures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting and Samples
2.2. Development of a DNA Extraction Protocol for Candida Species
2.3. Testing Extracted DNA with the MM YBL Chip Assay
2.4. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quindós, G.; Marcos-Arias, C.; San-Millán, R.; Mateo, E.; Eraso, E. The continuous changes in the aetiology and epidemiology of invasive candidiasis: From familiar Candida albicans to multiresistant Candida auris. Int. Microbiol. 2018, 21, 107–119. [Google Scholar] [CrossRef] [PubMed]
- McCarty, T.P.; White, C.M.; Pappas, P.G. Candidemia and invasive candidiasis. Infect. Dis. Clin. N. Am. 2021, 35, 389–413. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Primers 2018, 4, 18026. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, S.; Chhillar, A.K.; Sharma, N.; Choudhary, P.; Punia, A.; Balhara, M.; Kaushik, K.; Parmar, V.S. Candida auris and nosocomial infection. Curr. Drug Targets 2020, 21, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Nett, J.E.; Andes, D.R. Contributions of the biofilm matrix to Candida pathogenesis. J. Fungi 2020, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Sachivkina, N.; Podoprigora, I.; Bokov, D. Morphological characteristics of Candida albicans, Candida krusei, Candida guilliermondii, and Candida glabrata biofilms, and response to farnesol. Vet. World 2021, 14, 1608–1614. [Google Scholar] [CrossRef] [PubMed]
- Nett, J.E. Future directions for anti-biofilm therapeutics targeting Candida. Expert Rev. Anti-Infect. Ther. 2014, 12, 375–382. [Google Scholar] [CrossRef]
- Sachivkina, N.; Vasilieva, E.; Lenchenko, E.; Kuznetsova, O.; Karamyan, A.; Ibragimova, A.; Zhabo, N.; Molchanova, M. Reduction in pathogenicity in yeast-like fungi by farnesol in quail model. Animals 2022, 12, 489. [Google Scholar] [CrossRef]
- Mizusawa, M.; Carroll, K.C. Updates on the profile of GenMark’s ePlex blood culture identification fungal pathogen panel. Expert. Rev. Mol. Diagn. 2023, 23, 475–484. [Google Scholar] [CrossRef]
- Menu, E.; Landier, J.; Prudent, E.; Ranque, S.; L’Ollivier, C. Evaluation of 11 DNA automated extraction protocols for the detection of the 5 main Candida species from artificially spiked blood. J. Fungi 2021, 7, 228. [Google Scholar] [CrossRef]
- Codreanu, S.I.; Ciurea, C.N. Candida spp. DNA extraction in the age of molecular diagnosis. Microorganisms 2023, 11, 818. [Google Scholar] [CrossRef] [PubMed]
- Wickes, B.L.; Romanelli, A.M. Diagnostic mycology: Xtreme challenges. J. Clin. Microbiol. 2020, 58, e01345-19. [Google Scholar] [CrossRef] [PubMed]
- Menchinelli, G.; Liotti, F.M.; Fiori, B.; De Angelis, G.; D’Inzeo, T.; Giordano, L.; Posteraro, B.; Sabbatucci, M.; Sanguinetti, M.; Spanu, T. In vitro evaluation of BACT/ALERT® VIRTUO®, BACT/ALERT 3D®, and BACTEC™ FX automated blood culture systems for detection of microbial pathogens using simulated human blood samples. Front. Microbiol. 2019, 10, 221. [Google Scholar] [CrossRef]
- Posteraro, B.; Menchinelli, G.; Ivagnes, V.; Cortazzo, V.; Liotti, F.M.; Falasca, B.; Fiori, B.; D’Inzeo, T.; Spanu, T.; De Angelis, G.; et al. Efficient recovery of Candida auris and five other medically important Candida species from blood cultures containing clinically relevant concentrations of antifungal agents. Microbiol. Spectr. 2023, 11, e0410422. [Google Scholar] [CrossRef]
- Robert, M.G.; Cornet, M.; Hennebique, A.; Rasamoelina, T.; Caspar, Y.; Pondérand, L.; Bidart, M.; Durand, H.; Jacquet, M.; Garnaud, C.; et al. MALDI-TOF MS in a medical mycology laboratory: On stage and backstage. Microorganisms 2021, 9, 1283. [Google Scholar] [CrossRef]
- Fiori, B.; D’Inzeo, T.; Giaquinto, A.; Menchinelli, G.; Liotti, F.M.; De Maio, F.; De Angelis, G.; Quaranta, G.; Nagel, D.; Tumbarello, M.; et al. Optimized use of the MALDI BioTyper system and the FilmArray BCID panel for direct identification of microbial pathogens from positive blood cultures. J. Clin. Microbiol. 2016, 54, 576–584. [Google Scholar] [CrossRef]
- De Angelis, G.; Menchinelli, G.; Torelli, R.; De Carolis, E.; Posteraro, P.; Sanguinetti, M.; Posteraro, B. Different detection capabilities by mycological media for Candida isolates from mono- or dual-species cultures. PLoS ONE 2020, 15, e0226467. [Google Scholar] [CrossRef]
- Spata, M.O.; Castagna, M.E.; Conoci, S. Image data analysis in qPCR: A method for smart analysis of DNA amplification. Sens. Bio-Sens. Res. 2015, 6, 79–84. [Google Scholar] [CrossRef]
- Cereda, M.; Cocci, A.; Cucchi, D.; Raia, L.; Pirola, D.; Bruno, L.; Ferrari, P.; Pavanati, V.; Calisti, G.; Ferrara, F.; et al. Q3: A compact device for quick, high precision qPCR. Sensors 2018, 18, 2583. [Google Scholar] [CrossRef]
- Peri, A.M.; Harris, P.N.A.; Paterson, D.L. Culture-independent detection systems for bloodstream infection. Clin. Microbiol. Infect. 2022, 28, 195–201. [Google Scholar] [CrossRef]
- Ramanan, P.; Bryson, A.L.; Binnicker, M.J.; Pritt, B.S.; Patel, R. Syndromic panel-based testing in clinical microbiology. Clin. Microbiol. Rev. 2017, 31, e00024-17. [Google Scholar] [CrossRef] [PubMed]
- Alifax. Welcome Inside Innovation. Available online: https://www.alifax.com (accessed on 25 October 2023).
- Bandehpour, M.; Dehghani, N.; Jaliani, H.Z.; Asadi-Saghandi, A. Modified phenol/chloroform-free DNA isolation from yeast and other fungi by non-enzymatic salting out method. Curr. Protoc. 2023, 3, e749. [Google Scholar] [CrossRef] [PubMed]
Positive BC Samples for Candida Species (n = 125) 1 | Testing Results for DNAs from Candida-Positive (n = 125) or Candida-Negative (n = 30) BC Samples 2 | |||||
---|---|---|---|---|---|---|
Type of BC (No. of Candida Isolates) | DNA Concentration (Mean ± SD) Expressed as ng/μL | CFU Count (Mean ± SD) Expressed as Number × 105/mL | TP/TP + FN | Positive Percent Agreement (95% CI) | TN/TN + FP | Negative Percent Agreement (95% CI) |
C. albicans | ||||||
Clinical (24) | 29.1 ± 13.5 | 67.0 ± 44.0 | 24/24 + 0 | 100.0 (86.9–100.0) | 68/68 + 0 | 100.0 (94.7–100.0) |
Simulated (7) | 47.2 ± 14.1 | 121.9 ± 26.9 | 7/7 + 0 | 100.0 (64.6–100.0) | 56/56 + 0 | 100.0 (93.6–100.0) |
Combined (31) | 32.7 ± 15.3 | 79.4 ± 46.6 | 31/31 + 0 | 100.0 (89.0–100.0) | 124/124 + 0 | 100.0 (97.0–100.0) |
C. auris | ||||||
Clinical (0) | NA | NA | NA | NA | NA | NA |
Simulated (7) | 44.6 ± 10.6 | 98.3 ± 47.9 | 7/7 + 0 | 100.0 (64.6–100.0) | 56/56 + 0 | 100.0 (93.6–100.0) |
Combined (7) | 44.6 ± 10.6 | 98.3 ± 47.9 | 7/7 + 0 | 100.0 (64.6–100.0) | 56/56 + 0 | 100.0 (93.6–100.0) |
C. dubliniensis | ||||||
Clinical (0) | NA | NA | NA | NA | NA | NA |
Simulated (7) | 42.5 ± 18.3 | 122.7 ± 29.4 | 7/7 + 0 | 100.0 (64.6–100.0) | 56/56 + 0 | 100.0 (93.6–100.0) |
Combined (7) | 42.5 ± 18.3 | 122.7 ± 29.4 | 7/7 + 0 | 100.0 (64.6–100.0) | 56/56 + 0 | 100.0 (93.6–100.0) |
C. glabrata | ||||||
Clinical (12) | 25.9 ± 17.4 | 76.3 ± 41.0 | 12/12 + 0 | 100.0 (75.8–100.0) | 80/80 + 0 | 100.0 (95.4–100.0) |
Simulated (7) | 54.2 ± 10.1 | 139.3 ± 29.7 | 7/7 + 0 | 100.0 (64.6–100.0) | 56/56 + 0 | 100.0 (93.6–100.0) |
Combined (19) | 36.3 ± 20.4 | 99.5 ± 48.0 | 19/19 + 0 | 100.0 (83.2–100.0) | 136/136 + 0 | 100.0 (97.3–100.0) |
C. guilliermondii | ||||||
Clinical (0) | NA | NA | NA | NA | NA | NA |
Simulated (7) | 48.8 ± 10.4 | 133.1 ± 22.5 | 7/7 + 0 | 100.0 (64.6–100.0) | 56/56 + 0 | 100.0 (93.6–100.0) |
Combined (7) | 48.8 ± 10.4 | 133.1 ± 22.5 | 7/7 + 0 | 100.0 (64.6–100.0) | 56/56 + 0 | 100.0 (93.6–100.0) |
C. krusei | ||||||
Clinical (2) | 21.0 ± 2.1 | 77.0 ± 7.1 | 2/2 + 0 | 100.0 (34.2–100.0) | 90/90 + 0 | 100.0 (95.9–100.0) |
Simulated (7) | 53.1 ± 18.1 | 93.6 ± 20.7 | 7/7 + 0 | 100.0 (64.6–100.0) | 56/56 + 0 | 100.0 (93.6–100.0) |
Combined (9) | 46.0 ± 21.2 | 89.9 ± 19.5 | 9/9 + 0 | 100.0 (70.0–100.0) | 146/146 + 0 | 100.0 (97.4–100.0) |
C. lusitaniae | ||||||
Clinical (5) | 13.3 ± 8.2 | 54.7 ± 49.8 | 5/5 + 0 | 100.0 (56.6–100.0) | 87/87 + 0 | 100.0 (93.7–100.0) |
Simulated (7) | 32.6 ± 10.6 | 129.4 ± 35.7 | 7/7 + 0 | 100.0 (64.6–100.0) | 56/56 + 0 | 100.0 (93.6–100.0) |
Combined (12) | 24.6 ± 13.6 | 98.3 ± 55.5 | 12/12 + 0 | 100.0 (75.8–100.0) | 143/143 + 0 | 100.0 (97.4–100.0) |
C. parapsilosis | ||||||
Clinical (20) | 28.2 ± 18.1 | 56.3 ± 48.0 | 20/20 + 0 | 100.0 (83.9–100.0) | 72/72 + 0 | 100.0 (94.9–100.0) |
Simulated (7) | 49.5 ± 25.3 | 113.1 ± 24.3 | 7/7 + 0 | 100.0 (64.6–100.0) | 56/56 + 0 | 100.0 (93.6–100.0) |
Combined (27) | 33.7 ± 21.8 | 71.0 ± 49.6 | 27/27 + 0 | 100.0 (87.5–100.0) | 128/128 + 0 | 100.0 (97.1–100.0) |
C. tropicalis | ||||||
Clinical (3) | 21.2 ± 5.6 | 50.5 ± 78.5 | 3/3 + 1 | 75.0 (30.0–95.4) | 89/89 + 0 | 100.0 (95.9–100.0) |
Simulated (7) | 47.4 ± 20.7 | 114.9 ± 28.2 | 7/7 + 0 | 100.0 (64.6–100.0) | 56/56 + 0 | 100.0 (93.6–100.0) |
Combined (10) | 37.9 ± 21.0 | 91.5 ± 58.1 | 10/10 + 1 | 90.9 (62.3–100.0) | 145/145 + 0 | 100.0 (97.4–100.0) |
PCR Ct Values (Expressed as Mean ± SD) 1 for DNAs Extracted from Candida-Positive BC Samples with the | |||
---|---|---|---|
In-House Protocol | Commercial Protocol | p Value | |
Simulated samples (no. of isolates) for | |||
C. albicans (7) | 23.4 ± 0.8 | 24.7 ± 2.2 | 0.21 |
C. auris (7) | 22.5 ± 1.4 | 22.0 ± 0.7 | 0.17 |
C. dubliniensis (7) | 24.3 ± 2.5 | 25.2 ± 1.0 | 0.01 |
C. glabrata (7) | 16.2 ± 1.1 | 19.6 ± 1.2 | 0.63 |
C. guilliermondii (7) | 16.2 ± 1.1 | 19.2 ± 1.5 | 0.64 |
C. krusei (7) | 22.6 ± 0.8 | 24.2 ± 1.1 | 0.36 |
C. lusitaniae (7) | 24.1 ± 0.5 | 26.3 ± 3.2 | 0.00 |
C. parapsilosis (7) | 23.0 ± 1.1 | 23.6 ± 0.8 | 0.22 |
C. tropicalis (7) | 24.9 ± 0.6 | 25.9 ± 0.5 | 0.33 |
Total species (56) | 22.2 ± 3.0 | 23.4 ± 2.9 | 0.60 |
Clinical samples (no. of isolates) for | |||
C. albicans (24) | 22.0 ± 3.7 | 22.6 ± 3.4 | 0.72 |
C. glabrata (12) | 16.1 ± 0.8 | 18.9 ± 0.8 | 0.85 |
C. krusei (2) | 22.2 ± 0.6 | 23.7 ± 0.7 | NA |
C. lusitaniae (5) | 26.6 ± 3.4 | 27.4 ± 1.2 | 0.22 |
C. parapsilosis (20) | 21.5 ± 2.5 | 22.3 ± 2.1 | 0.57 |
C. tropicalis (3) | 23.3 ± 0.6 | 25.1 ± 2.0 | 0.14 |
Total species (66) | 21.2 ± 3.9 | 23.2 ± 2.6 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivagnes, V.; Menchinelli, G.; Liotti, F.M.; De Carolis, E.; Torelli, R.; De Lorenzis, D.; Recine, C.; Sanguinetti, M.; D’Inzeo, T.; Posteraro, B. Chip-Based Molecular Evaluation of a DNA Extraction Protocol for Candida Species from Positive Blood Cultures. Microorganisms 2024, 12, 81. https://doi.org/10.3390/microorganisms12010081
Ivagnes V, Menchinelli G, Liotti FM, De Carolis E, Torelli R, De Lorenzis D, Recine C, Sanguinetti M, D’Inzeo T, Posteraro B. Chip-Based Molecular Evaluation of a DNA Extraction Protocol for Candida Species from Positive Blood Cultures. Microorganisms. 2024; 12(1):81. https://doi.org/10.3390/microorganisms12010081
Chicago/Turabian StyleIvagnes, Vittorio, Giulia Menchinelli, Flora Marzia Liotti, Elena De Carolis, Riccardo Torelli, Desy De Lorenzis, Cinzia Recine, Maurizio Sanguinetti, Tiziana D’Inzeo, and Brunella Posteraro. 2024. "Chip-Based Molecular Evaluation of a DNA Extraction Protocol for Candida Species from Positive Blood Cultures" Microorganisms 12, no. 1: 81. https://doi.org/10.3390/microorganisms12010081
APA StyleIvagnes, V., Menchinelli, G., Liotti, F. M., De Carolis, E., Torelli, R., De Lorenzis, D., Recine, C., Sanguinetti, M., D’Inzeo, T., & Posteraro, B. (2024). Chip-Based Molecular Evaluation of a DNA Extraction Protocol for Candida Species from Positive Blood Cultures. Microorganisms, 12(1), 81. https://doi.org/10.3390/microorganisms12010081