Host–Pathogen Interactions during Shiga Toxin-Producing Escherichia coli Adherence and Colonization in the Bovine Gut: A Comprehensive Review
Abstract
:1. Introduction
2. STEC Colonization of the Bovine Gut
2.1. STEC Prevalence in the Bovine Gut
2.2. Modes of Transmission from Bovines to Humans and the Potential Risks to Human Health
3. Bovine Host Factors Influencing STEC Colonization
3.1. Characteristics of Bovine Gastrointestinal Tract
3.2. Immune Responses and Other Host Factors That Influence STEC Colonization of the Bovine Gut
4. Role of STEC Virulence Factors in Bovine Colonization
4.1. Initial Adherence through Adhesins and Fimbriae/Pili
4.2. Manipulation of Host Cells via Type III Secretion System (T3SS) Effectors
4.3. Damage and Evasion through Shiga Toxins (Stxs)
4.4. Tissue Penetration and Immune Evasion via Autotransporters
Virulence Factor | Role in Bovine Gut Colonization | References |
---|---|---|
Shiga Toxins | ||
Stx1 | Modulates the local immune response and contributes to the persistence of bacteria by dampening inflammatory signals and immune cell activation. | [12] |
Stx2 | Restricts epithelial cell proliferation within bovine crypts without inducing cell death and helps the bacteria maintain its niche within the gut, facilitating long-term colonization and shedding in cattle. | [12] |
Adhesins | ||
Eae (Intimin) | Essential for strong adherence and colonization of the bovine gut epithelium by forming attaching and effacing (A/E) lesions. | [52] |
Iha (IrgA homolog adhesin) | Supports adhesion and persistence under iron-limited conditions in the bovine gut. | [54] |
Saa (STEC agglutinating adhesin) | Promotes strong adhesion to epithelial cells through autoagglutination, thereby facilitating the persistence and establishment of the bacteria within the host intestine. | [55,66] |
Efa1/LifA (E. coli factor for adherence) | Enhances colonization by inhibiting the bovine immune response and aiding in bacterial adherence. | [65] |
Type 1 fimbriae | Promotes initial attachment and colonization of the bovine gut by adhering to mannose-containing receptors on host cells. | [67] |
F9 fimbriae | Contributes to colonization and persistence in the bovine gut by facilitating adhesion. | [3] |
Long polar fimbriae (LPF) | Serves as a key factor in maintaining long-term colonization and persistence in the bovine gut. | [68] |
Curli fimbriae | Enhances environmental persistence and colonization through biofilm formation in the bovine gut. | [69] |
E. coli YcbQ laminin-binding fimbriae (ELF) | Supports colonization by adhering to laminin in the bovine extracellular matrix. | [70] |
Autotransporters | ||
OmpA (Outer membrane protein A) | Modulates adherence of the bacteria to the rectoanal junction squamous epithelial cells, facilitating the interaction of other adhesins involved in the colonization process. | [71] |
EspP (E. coli-secreted protein P) | Enhances colonization by degrading bovine host defenses through proteolytic activity. | [61] |
EhaA-B-J | Contributes to stable colonization through adherence and biofilm formation in the bovine gut. | [52] |
Type III Secretion System Effectors | ||
EspF | Disrupts tight junctions and alters the host cell cytoskeleton, which facilitates bacterial adherence and invasion and evasion of the host immune response, ultimately promoting bacterial survival and persistence within the bovine intestine. | [57] |
Tir (Translocated intimin receptor) | Serves as a receptor for intimin, facilitating intimate adherence and the formation of attaching and effacing lesions in the bovine intestinal epithelium. | [3,45] |
Map (Mitochondrial-associated protein) | Enhances bacterial survival and colonization by modulating host cell responses in the bovine gut. | [72] |
EspG and EspG2 | Disrupt the host cell microtubule network, leading to cytoskeletal alterations that enhance bacterial adherence and persistence. | [58] |
NleB (Non-LEE-encoded effector B) | Is involved in initial adherence and plays a significant role in enhancing bacterial survival and persistence within the bovine gut by modulating host cell processes, such as the inhibition of apoptosis, thus promoting long-term colonization. | [45] |
EspA, EspB, EspD | Form translocon pores and inject other effector proteins into the host cells, leading to the formation of attaching and effacing (A/E) lesions, which are essential for stable bacterial attachment and colonization in the bovine intestine. | [73] |
NleH1 and NleH2 (Non-LEE-encoded effector1 and 2) | Inhibit the NF-κB signaling pathway, which dampens pro-inflammatory cytokine production, thereby creating a more favorable environment for STEC colonization and persistence. | [59] |
5. Molecular Insights into STEC–Bovine Host Interactions
6. Bovine Gut Microbiota and STEC Colonization
7. Future Directions and Challenges
7.1. Challenges and Limitations
7.2. Future Directions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pennsylvania State University Extension. Gut Health in Cattle. Available online: https://extension.psu.edu/gut-health-in-cattle (accessed on 24 March 2024).
- Smith, J.L.; Fratamico, P.M.; Gunther, N.W. Shiga Toxin-Producing Escherichia coli. Adv. Appl. Microbiol. 2014, 86, 145–197. [Google Scholar] [CrossRef] [PubMed]
- Sapountzis, P.; Segura, A.; Desvaux, M.; Forano, E. An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin-Producing Escherichia coli. Microorganisms 2020, 8, 877. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). National Shiga Toxin-Producing Escherichia coli (STEC) Surveillance Overview; US Department of Health and Human Services, CDC: Atlanta, Georgia, 2012.
- World Health Organization. Diarrhoeal Disease. Available online: https://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease (accessed on 23 March 2024).
- Terajima, J.; Izumiya, H.; Hara-Kudo, Y.; Ohnishi, M. Shiga Toxin (Verotoxin)-Producing Escherichia coli and Foodborne Disease: A Review. Food Saf. 2017, 5, 35–53. [Google Scholar] [CrossRef]
- Frenzen, P.D.; Drake, A.; Angulo, F.J.; Emerging Infections Program FoodNet Working Group. Economic Cost of Illness Due to Escherichia coli O157 Infections in the United States. J. Food Prot. 2005, 68, 2623–2630. [Google Scholar] [CrossRef]
- Lee, K.S.; Jeong, Y.J.; Lee, M.S. Escherichia coli Shiga Toxins and Gut Microbiota Interactions. Toxins 2021, 13, 416. [Google Scholar] [CrossRef]
- Vasco, K.; Nohomovich, B.; Singh, P.; Venegas-Vargas, C.; Mosci, R.E.; Rust, S.; Bartlett, P.; Norby, B.; Grooms, D.; Zhang, L.; et al. Characterizing the Cattle Gut Microbiome in Farms with a High and Low Prevalence of Shiga Toxin-Producing Escherichia coli. Microorganisms 2021, 9, 1737. [Google Scholar] [CrossRef]
- Mir, R.A.; Weppelmann, T.A.; Elzo, M.; Ahn, S.; Driver, J.D.; Jeong, K.C. Colonization of Beef Cattle by Shiga Toxin-Producing Escherichia coli During the First Year of Life: A Cohort Study. PLoS ONE 2016, 11, e0148518. [Google Scholar] [CrossRef] [PubMed]
- Cáceres, M.E.; Etcheverría, A.I.; Fernández, D.; Rodríguez, E.M.; Padola, N.L. Variation in the Distribution of Putative Virulence and Colonization Factors in Shiga Toxin-Producing Escherichia coli Isolated from Different Categories of Cattle. Front. Cell. Infect. Microbiol. 2017, 7, 147. [Google Scholar] [CrossRef] [PubMed]
- Menge, C. The Role of Escherichia coli Shiga Toxins in STEC Colonization of Cattle. Toxins 2020, 12, 607. [Google Scholar] [CrossRef]
- Hussein, H.S.; Sakuma, T. Prevalence of Shiga Toxin-Producing Escherichia coli in Dairy Cattle and Their Products. J. Dairy Sci. 2005, 88, 450–465. [Google Scholar] [CrossRef]
- Sajeena, T.A.M.; Kalyanikutty, S. Pathogenic Factors of Shiga Toxigenic Escherichia coli. J. Pure Appl. Microbiol. 2024, 18, 46–63. [Google Scholar] [CrossRef]
- Auvray, F.; Bièche-Terrier, C.; Um, M.M.; Dupouy, V.; Nzuzi, N.; David, L.; Allais, L.; Drouet, M.; Oswald, E.; Bibbal, D.; et al. Prevalence and Characterization of the Seven Major Serotypes of Shiga Toxin-Producing Escherichia coli (STEC) in Veal Calves Slaughtered in France. Vet. Microbiol. 2023, 282, 109754. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Tyler, P.J.; Starnes, J.; Bratcher, C.L.; Rankins, D.; McCaskey, T.A.; Wang, L. Correlation Analysis of Shiga Toxin-Producing Escherichia coli Shedding and Faecal Bacterial Composition in Beef Cattle. J. Appl. Microbiol. 2013, 115, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Baines, D.; Erb, S. Characterization of Shiga Toxin-Producing Escherichia coli Infections in Beef Feeder Calves and the Effectiveness of a Prebiotic in Alleviating Shiga Toxin-Producing Escherichia coli Infections. Ir. Vet. J. 2013, 66, 17. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.Y.; Yoon, J.; Hovde, C.J. A Brief Overview of Escherichia coli O157 and Its Plasmid O157. J. Microbiol. Biotechnol. 2010, 20, 5–14. [Google Scholar] [CrossRef]
- Free, A.L.; Duoss, H.A.; Bergeron, L.V.; Shields-Menard, S.A.; Ward, E.; Callaway, T.R.; Carroll, J.A.; Schmidt, T.B.; Donaldson, J.R. Survival of O157 and Non-O157 Serogroups of Escherichia coli in Bovine Rumen Fluid and Bile Salts. Foodborne Pathog. Dis. 2012, 9, 1010–1014. [Google Scholar] [CrossRef]
- Ekiri, A.B.; Landblom, D.; Doetkott, D.; Olet, S.; Shelver, W.L.; Khaitsa, M.L. Isolation and Characterization of Shiga Toxin-Producing Escherichia coli Serogroups O26, O45, O103, O111, O113, O121, O145, and O157 Shed from Range and Feedlot Cattle from Postweaning to Slaughter. J. Food Prot. 2014, 77, 1052–1061. [Google Scholar] [CrossRef]
- Venegas-Vargas, C.; Henderson, S.; Khare, A.; Mosci, R.E.; Lehnert, J.D.; Singh, P.; Ouellette, L.M.; Norby, B.; Funk, J.A.; Rust, S.; et al. Factors Associated with Shiga Toxin-Producing Escherichia coli Shedding by Dairy and Beef Cattle. Appl. Environ. Microbiol. 2016, 82, 5049–5056. [Google Scholar] [CrossRef]
- Blankenship, H.M.; Carbonell, S.; Mosci, R.E.; McWilliams, K.; Pietrzen, K.; Benko, S.; Gatesy, T.; Grooms, D.; Manning, S.D. Genetic and Phenotypic Factors Associated with Persistent Shedding of Shiga Toxin-Producing Escherichia coli by Beef Cattle. Appl. Environ. Microbiol. 2020, 86, e01292-20. [Google Scholar] [CrossRef]
- Newton, H.J.; Pearson, J.S.; Badea, L.; Kelly, M.; Lucas, M.; Holloway, G.; Wagstaff, K.M.; Dunstone, M.A.; Sloan, J.; Whisstock, J.C.; et al. The Type III Effectors NleE and NleB from Enteropathogenic Escherichia coli and OspZ from Shigella Block Nuclear Translocation of NF-κB p65. PLoS Pathog. 2010, 6, e1000898. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Annual Epidemiological Report for 2021: Shiga Toxin-Producing Escherichia coli (STEC) Infections. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/AER%20STEC%20-%202021.pdf (accessed on 11 August 2024).
- Ballem, A.; Gonçalves, S.; Garcia-Meniño, I.; Flament-Simon, S.C.; Blanco, J.E.; Fernandes, C.; Saavedra, M.J.; Pinto, C.; Oliveira, H.; Blanco, J.; et al. Prevalence and Serotypes of Shiga Toxin-Producing Escherichia coli (STEC) in Dairy Cattle from Northern Portugal. PLoS ONE 2020, 15, e0244713. [Google Scholar] [CrossRef] [PubMed]
- Hoyle, D.V.; Keith, M.; Williamson, H.; Macleod, K.; Mathie, H.; Handel, I.; Currie, C.; Holmes, A.; Allison, L.; McLean, R.; et al. Prevalence and Epidemiology of Non-O157 Escherichia coli Serogroups O26, O103, O111, and O145 and Shiga Toxin Gene Carriage in Scottish Cattle, 2014–2015. Appl. Environ. Microbiol. 2021, 87, e03142-20. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, L.F.; Gonçalves, E.M.; Vaz, T.M.; Irino, K.; Guth, B.E. Distinct Pathotypes of O113 Escherichia coli Strains Isolated from Humans and Animals in Brazil. J. Clin. Microbiol. 2007, 45, 2028–2030. [Google Scholar] [CrossRef]
- Elmonir, W.; Shalaan, S.; Tahoun, A. Prevalence, Antimicrobial Resistance, and Genotyping of Shiga Toxin-Producing Escherichia coli in Foods of Cattle Origin, Diarrheic Cattle, and Diarrheic Humans in Egypt. Gut Pathog. 2021, 13, 8. [Google Scholar] [CrossRef] [PubMed]
- Capps, K.M.; Ludwig, J.B.; Shridhar, P.B.; Shi, X.; Roberts, E.; DebRoy, C.; Cernicchiaro, N.; Phebus, R.K.; Bai, J.; Nagaraja, T.G. Identification, Shiga Toxin Subtypes and Prevalence of Minor Serogroups of Shiga Toxin-Producing Escherichia coli in Feedlot Cattle Feces. Sci. Rep. 2021, 11, 8601. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, M.S.; Kim, J.H. Recent Updates on Outbreaks of Shiga Toxin-Producing Escherichia coli and Its Potential Reservoirs. Front. Cell Infect. Microbiol. 2020, 10, 273. [Google Scholar] [CrossRef]
- Conrad, C.; Stanford, K.; McAllister, T.; Thomas, J.; Reuter, T. Shiga Toxin-Producing Escherichia coli and Current Trends in Diagnostics. Anim. Front. 2016, 6, 37–43. [Google Scholar] [CrossRef]
- Díaz, L.; Gutierrez, S.; Moreno-Switt, A.I.; Hervé, L.P.; Hamilton-West, C.; Padola, N.L.; Navarrete, P.; Reyes-Jara, A.; Meng, J.; González-Escalona, N.; et al. Diversity of Non-O157 Shiga Toxin-Producing Escherichia coli Isolated from Cattle from Central and Southern Chile. Animals 2021, 11, 2388. [Google Scholar] [CrossRef]
- Ray, R.; Singh, P. Prevalence and Implications of Shiga Toxin-Producing E. coli in Farm and Wild Ruminants. Pathogens 2022, 11, 1332. [Google Scholar] [CrossRef]
- World Health Organization. E. coli. Available online: https://www.who.int/news-room/fact-sheets/detail/e-coli (accessed on 12 March 2024).
- Hunt, J.M. Shiga Toxin-Producing Escherichia coli (STEC). Clin. Lab. Med. 2010, 30, 21–45. [Google Scholar] [CrossRef]
- Vachon, M.S.; Khalid, M.; Tarr, G.A.M.; Hedberg, C.; Brown, J.A. Farm Animal Contact Is Associated with Progression to Hemolytic Uremic Syndrome in Patients with Shiga Toxin-Producing Escherichia coli—Indiana, 2012–2018. One Health 2020, 11, 100175. [Google Scholar] [CrossRef] [PubMed]
- Joseph, A.; Cointe, A.; Mariani Kurkdjian, P.; Rafat, C.; Hertig, A. Shiga Toxin-Associated Hemolytic Uremic Syndrome: A Narrative Review. Toxins 2020, 12, 67. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Thaker, H.; Wang, C.; Xu, Z.; Dong, M. Diagnosis and Treatment for Shiga Toxin-Producing Escherichia coli Associated Hemolytic Uremic Syndrome. Toxins 2023, 15, 10. [Google Scholar] [CrossRef]
- Kudva, I.T.; Biernbaum, E.N.; Cassmann, E.D.; Palmer, M.V. Bovine Rectoanal Junction In Vitro Organ Culture Model System to Study Shiga Toxin-Producing Escherichia coli Adherence. Microorganisms 2023, 11, 1289. [Google Scholar] [CrossRef]
- Kudva, I.T.; Dean-Nystrom, E.A. Bovine Recto-Anal Junction Squamous Epithelial (RSE) Cell Adhesion Assay for Studying Escherichia coli O157 Adherence. J. Appl. Microbiol. 2011, 111, 1283–1294. [Google Scholar] [CrossRef] [PubMed]
- Segura, A.; Bertin, Y.; Durand, A. Transcriptional Analysis Reveals Specific Niche Factors and Response to Environmental Stresses of Enterohemorrhagic Escherichia coli O157 in Bovine Digestive Contents. BMC Microbiol. 2021, 21, 284. [Google Scholar] [CrossRef]
- Barth, S.A.; Weber, M.; Schaufler, K.; Berens, C.; Geue, L.; Menge, C. Metabolic Traits of Bovine Shiga Toxin-Producing Escherichia coli (STEC) Strains with Different Colonization Properties. Toxins 2020, 12, 414. [Google Scholar] [CrossRef]
- Castro, V.S.; Ngo, S.; Stanford, K. Influence of Temperature and pH on Induction of Shiga Toxin Stx1a in Escherichia coli. Front. Microbiol. 2023, 14, 1181027. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.A.; Menge, C.; Casey, T.A.; Laegreid, W.; Bosworth, B.T.; Dean-Nystrom, E.A. Bovine Immune Response to Shiga-Toxigenic Escherichia coli O157. Clin. Vaccine Immunol. 2006, 13, 1322–1327. [Google Scholar] [CrossRef]
- Misyurina, O.; Asper, D.J.; Deng, W.; Finlay, B.B.; Rogan, D.; Potter, A.A. The Role of Tir, EspA, and NleB in the Colonization of Cattle by Shiga Toxin Producing Escherichia coli O26. Can. J. Microbiol. 2010, 56, 739–747. [Google Scholar] [CrossRef]
- Gaytán, M.O.; Martínez-Santos, V.I.; Soto, E.; González-Pedrajo, B. Type Three Secretion System in Attaching and Effacing Pathogens. Front. Cell Infect. Microbiol. 2016, 6, 129. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Guo, Z.; Duan, Q.; Hardwidge, P.R.; Zhu, G. Escherichia coli Type III Secretion System 2: A New Kind of T3SS? Vet. Res. 2014, 45, 32. [Google Scholar] [CrossRef] [PubMed]
- Coburn, B.; Sekirov, I.; Finlay, B.B. Type III Secretion Systems and Disease. Clin. Microbiol. Rev. 2007, 20, 535–549. [Google Scholar] [CrossRef]
- Hotinger, J.A.; Pendergrass, H.A.; May, A.E. Molecular Targets and Strategies for Inhibition of the Bacterial Type III Secretion System (T3SS); Inhibitors Directly Binding to T3SS Components. Biomolecules 2021, 11, 316. [Google Scholar] [CrossRef]
- Cobbold, R.N.; Desmarchelier, P.M. In Vitro Studies on the Colonization of Bovine Colonic Mucosa by Shiga-Toxigenic Escherichia coli (STEC). Epidemiol. Infect. 2004, 132, 87–94. [Google Scholar] [CrossRef]
- Kaper, J.; Nataro, J.; Mobley, H. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Farfan, M.J.; Torres, A.G. Molecular Mechanisms That Mediate Colonization of Shiga Toxin-Producing Escherichia coli Strains. Infect. Immun. 2012, 80, 903–913. [Google Scholar] [CrossRef] [PubMed]
- McWilliams, B.D.; Torres, A.G. EHEC Adhesins. Microbiol. Spectr. 2014, 2, EHEC00032013. [Google Scholar] [CrossRef]
- Rashid, R.A.; Tarr, P.I.; Moseley, S.L. Expression of the Escherichia coli IrgA Homolog Adhesin Is Regulated by the Ferric Uptake Regulation Protein. Microb. Pathog. 2006, 41, 207–217. [Google Scholar] [CrossRef]
- Paton, A.W.; Srimanote, P.; Woodrow, M.C.; Paton, J.C. Characterization of Saa, a Novel Autoagglutinating Adhesin Produced by Locus of Enterocyte Effacement-Negative Shiga-Toxigenic Escherichia coli Strains That Are Virulent for Humans. Infect. Immun. 2001, 69, 6999–7009. [Google Scholar] [CrossRef]
- Fedorchuk, C.; Kudva, I.T.; Kariyawasam, S. The Escherichia coli O157 Carbon Starvation-Inducible Lipoprotein Slp Contributes to Initial Adherence In Vitro via the Human Polymeric Immunoglobulin Receptor. PLoS ONE 2019, 14, e0216791. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, J.M.; Brady, M.J.; Riley, K.N.; Ho, T.D.; Campellone, K.G.; Herman, I.M.; Donohue-Rolfe, A.; Tzipori, S.; Waldor, M.K.; Leong, J.M. EspFU, a Type III-Translocated Effector of Actin Assembly, Fosters Epithelial Association and Late-Stage Intestinal Colonization by Escherichia coli O157. Cell. Microbiol. 2008, 10, 836–847. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.K.; Smollett, K.; Cleary, J.; Garmendia, J.; Straatman-Iwanowska, A.; Frankel, G.; Knutton, S. Enteropathogenic Escherichia coli Type III Effectors EspG and EspG2 Disrupt the Microtubule Network of Intestinal Epithelial Cells. Infect. Immun. 2005, 73, 4385–4390. [Google Scholar] [CrossRef]
- Royan, S.V.; Jones, R.M.; Koutsouris, A.; Roxas, J.L.; Falzari, K.; Weflen, A.W.; Kim, A.; Bellmeyer, A.; Turner, J.R.; Neish, A.S.; et al. Enteropathogenic Escherichia coli Non-LEE Encoded Effectors NleH1 and NleH2 Attenuate NF-κB Activation. Mol. Microbiol. 2010, 78, 1232–1245. [Google Scholar] [CrossRef] [PubMed]
- Kavaliauskiene, S.; Dyve Lingelem, A.B.; Skotland, T.; Sandvig, K. Protection Against Shiga Toxins. Toxins 2017, 9, 44. [Google Scholar] [CrossRef]
- Dziva, F.; Mahajan, A.; Cameron, P.; Currie, C.; McKendrick, I.J.; Wallis, T.S.; Smith, D.G.E.; Stevens, M.P. EspP, a Type V-Secreted Serine Protease of Enterohaemorrhagic Escherichia coli O157, Influences Intestinal Colonization of Calves and Adherence to Bovine Primary Intestinal Epithelial Cells. FEMS Microbiol. Lett. 2007, 271, 258–264. [Google Scholar] [CrossRef]
- Dautin, N. Serine Protease Autotransporters of Enterobacteriaceae (SPATEs): Biogenesis and Function. Toxins 2010, 2, 1179–1206. [Google Scholar] [CrossRef]
- Ta, A.; Vasudevan, S.O.; Wright, S.S.; Kumari, P.; Havira, M.S.; Surendran Nair, M.; Rathinam, V.A.; Vanaja, S.K. A Bacterial Autotransporter Impairs Innate Immune Responses by Targeting the Transcription Factor TFE3. Nat. Commun. 2023, 14, 1–17. [Google Scholar] [CrossRef]
- Xing, Y.; Clark, J.R.; Chang, J.D.; Chirman, D.M.; Green, S.; Zulk, J.J.; Jelinski, J.; Patras, K.A.; Maresso, A.W. Broad Protective Vaccination Against Systemic Escherichia coli with Autotransporter Antigens. PLoS Pathog. 2023, 19, e1011082. [Google Scholar] [CrossRef]
- Stevens, M.P.; van Diemen, P.M.; Frankel, G.; Phillips, A.D.; Wallis, T.S. Efa1 Influences Colonization of the Bovine Intestine by Shiga Toxin-Producing Escherichia coli Serotypes O5 and O111. Infect. Immun. 2002, 70, 5158–5166. [Google Scholar] [CrossRef]
- Padola, N.L.; Etcheverría, A.I. Shiga Toxin-Producing Escherichia coli in Human, Cattle, and Foods. Strategies for Detection and Control. Front. Cell. Infect. Microbiol. 2014, 4, 89. [Google Scholar] [CrossRef] [PubMed]
- Katani, R.; Kudva, I.T.; Srinivasan, S.; Stasko, J.B.; Schilling, M.; Li, L.; Cote, R.; DebRoy, C.; Arthur, T.M.; Sokurenko, E.V.; et al. Strain and Host-Cell Type Dependent Role of Type 1 Fimbriae Genes in the Adherence Phenotype of Super-Shedder Strains of Escherichia coli O157. Int. J. Med. Microbiol. 2021, 11, 1–11. [Google Scholar] [CrossRef]
- Galli, L.; Torres, A.G.; Rivas, M. Identification of the Long Polar Fimbriae Gene Variants in the Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli Strains Isolated from Humans and Cattle in Argentina. FEMS Microbiol. Lett. 2010, 308, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Sheng, H.; Xue, Y.; Zhao, W.; Hovde, C.J.; Minnich, S.A. Escherichia coli O157 Curli Fimbriae Promote Biofilm Formation, Epithelial Cell Invasion, and Persistence in Cattle. Microorganisms 2020, 8, 580. [Google Scholar] [CrossRef] [PubMed]
- Samadder, P.; Xicohtencatl-Cortes, J.; Saldaña, Z.; Jordan, D.; Tarr, P.I.; Kaper, J.B.; Girón, J.A. The Escherichia coli ycbQRST Operon Encodes Fimbriae with Laminin-Binding and Epithelial Cell Adherence Properties in Shiga-Toxigenic Escherichia coli O157. Environ. Microbiol. 2009, 11, 1815–1826. [Google Scholar] [CrossRef]
- Kudva, I.T.; Krastins, B.; Torres, A.G.; Griffin, R.W.; Sheng, H.; Sarracino, D.A.; Hovde, C.J.; Calderwood, S.B.; John, M. The Escherichia coli O157 Cattle Immunoproteome Includes Outer Membrane Protein A (OmpA), a Modulator of Adherence to Bovine Rectoanal Junction Squamous Epithelial (RSE) Cells. Proteomics 2015, 15, 1829–1842. [Google Scholar] [CrossRef]
- Wong, A.R.; Pearson, J.S.; Bright, M.D.; Munera, D.; Robinson, K.S.; Lee, S.F.; Frankel, G.; Hartland, E.L. Enteropathogenic and Enterohemorrhagic Escherichia coli: Even More Subversive Elements. Mol. Microbiol. 2011, 80, 1420–1438. [Google Scholar] [CrossRef]
- Tristão, L.C.; Gonzalez, A.G.; Coutinho, C.A.; Cerqueira, A.M.; Gomes, M.J.; Irino, K.; Guth, B.E.; Andrade, J.R. Virulence Markers and Genetic Relationships of Shiga Toxin-Producing Escherichia coli Strains from Serogroup O111 Isolated from Cattle. Vet. Microbiol. 2007, 119, 358–365. [Google Scholar] [CrossRef]
- Stromberg, Z.R.; Masonbrink, R.E.; Mellata, M. Transcriptomic Analysis of Shiga Toxin-Producing Escherichia coli During Initial Contact with Cattle Colonic Explants. Microorganisms 2020, 8, 1662. [Google Scholar] [CrossRef]
- Edison, L.K.; Kudva, I.T.; Kariyawasam, S. Comparative Transcriptome Analysis of Shiga Toxin-Producing Escherichia coli O157 on Bovine Rectoanal Junction Cells and Human Colonic Epithelial Cells During Initial Adherence. Microorganisms 2023, 11, 2562. [Google Scholar] [CrossRef]
- Tiwari, S.K.; van der Putten, B.C.L.; Fuchs, T.M.; Vinh, T.N.; Bootsma, M.; Oldenkamp, R.; La Ragione, R.; Matamoros, S.; Hoa, N.T.; Berens, C.; et al. Genome-Wide Association Reveals Host-Specific Genomic Traits in Escherichia coli. BMC Biol. 2023, 21, 76. [Google Scholar] [CrossRef] [PubMed]
- Barth, S.A.; Menge, C.; Eichhorn, I.; Semmler, T.; Wieler, L.H.; Pickard, D.; Belka, A.; Berens, C.; Geue, L. The Accessory Genome of Shiga Toxin-Producing Escherichia coli Defines a Persistent Colonization Type in Cattle. Appl. Environ. Microbiol. 2016, 82, 5455–5464. [Google Scholar] [CrossRef] [PubMed]
- Ducarmon, Q.R.; Zwittink, R.D.; Hornung, B.V.H.; van Schaik, W.; Young, V.B.; Kuijper, E.J. Gut Microbiota and Colonization Resistance Against Bacterial Enteric Infection. Microbiol. Mol. Biol. Rev. 2019, 83, e00007-19. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Bai, Y.; Zha, L.; Ullah, N.; Ullah, H.; Shah, S.R.; Sun, H.; Zhang, C. Mechanism of the Gut Microbiota Colonization Resistance and Enteric Pathogen Infection. Front. Cell. Infect. Microbiol. 2021, 11, 716299. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.V. Chemical Mechanisms of Colonization Resistance by the Gut Microbial Metabolome. ACS Chem. Biol. 2020, 15, 1119–1126. [Google Scholar] [CrossRef]
- Giordano, M.; Baldassarre, M.E.; Palmieri, V.; Torres, D.D.; Carbone, V.; Santangelo, L.; Gentile, F.; Panza, R.; Di Mauro, F.; Capozza, M.; et al. Management of STEC Gastroenteritis: Is There a Role for Probiotics? Int. J. Environ. Res. Public Health 2019, 16, 1649. [Google Scholar] [CrossRef]
- Gupta, S.; Allen-Vercoe, E.; Petrof, E.O. Fecal Microbiota Transplantation: In Perspective. Ther. Adv. Gastroenterol. 2016, 9, 229–239. [Google Scholar] [CrossRef]
- Hyla, K.; Dusza, I.; Skaradzińska, A. Recent Advances in the Application of Bacteriophages Against Common Foodborne Pathogens. Antibiotics 2022, 11, 1536. [Google Scholar] [CrossRef]
- Emencheta, S.C.; Olovo, C.V.; Eze, O.C.; Kalu, C.F.; Berebon, D.P.; Onuigbo, E.B.; Vila, M.M.D.C.; Balcão, V.M.; Attama, A.A. The Role of Bacteriophages in the Gut Microbiota: Implications for Human Health. Pharmaceutics 2023, 15, 2416. [Google Scholar] [CrossRef]
- Mazhar, M.; Zhu, Y.; Qin, L. The Interplay of Dietary Fibers and Intestinal Microbiota Affects Type 2 Diabetes by Generating Short-Chain Fatty Acids. Foods 2023, 12, 1023. [Google Scholar] [CrossRef]
- Mühlen, S.; Dersch, P. Treatment Strategies for Infections with Shiga Toxin-Producing Escherichia coli. Front. Cell. Infect. Microbiol. 2020, 10, 533924. [Google Scholar] [CrossRef] [PubMed]
- Galarce, N.; Sánchez, F.; Escobar, B.; Lapierre, L.; Cornejo, J.; Alegría-Morán, R.; Neira, V.; Martínez, V.; Johnson, T.; Fuentes-Castillo, D.; et al. Genomic Epidemiology of Shiga Toxin-Producing Escherichia coli Isolated from the Livestock-Food-Human Interface in South America. Animals 2021, 11, 1845. [Google Scholar] [CrossRef] [PubMed]
STEC Serogroup | Prevalence in Cattle | Key Virulence Factors | Associated Diseases in Human | References |
---|---|---|---|---|
O157 | High | Stx1, Stx2, Eae, HlyA | Hemorrhagic colitis, Hemolytic uremic syndrome (HUS) | [4,23,24,25] |
O26 | Moderate | Stx1, Stx2, Eae | Hemorrhagic colitis, HUS | [25,26,27] |
O45 | Low | Stx1, Stx2, Eae | Diarrhea, Hemorrhagic colitis | [28,29] |
O103 | High | Stx1, Eae | Diarrhea, Hemorrhagic colitis | [25,26] |
O111 | Moderate | Stx1, Stx2, Eae | Hemorrhagic colitis, HUS | [27,28,30] |
O121 | Low | Stx2, Eae | Diarrhea, Hemorrhagic colitis | [27,28,31] |
O145 | Low | Stx1, Stx2, Eae | Diarrhea, Hemorrhagic colitis | [26,29,32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edison, L.K.; Kudva, I.T.; Kariyawasam, S. Host–Pathogen Interactions during Shiga Toxin-Producing Escherichia coli Adherence and Colonization in the Bovine Gut: A Comprehensive Review. Microorganisms 2024, 12, 2009. https://doi.org/10.3390/microorganisms12102009
Edison LK, Kudva IT, Kariyawasam S. Host–Pathogen Interactions during Shiga Toxin-Producing Escherichia coli Adherence and Colonization in the Bovine Gut: A Comprehensive Review. Microorganisms. 2024; 12(10):2009. https://doi.org/10.3390/microorganisms12102009
Chicago/Turabian StyleEdison, Lekshmi K., Indira T. Kudva, and Subhashinie Kariyawasam. 2024. "Host–Pathogen Interactions during Shiga Toxin-Producing Escherichia coli Adherence and Colonization in the Bovine Gut: A Comprehensive Review" Microorganisms 12, no. 10: 2009. https://doi.org/10.3390/microorganisms12102009
APA StyleEdison, L. K., Kudva, I. T., & Kariyawasam, S. (2024). Host–Pathogen Interactions during Shiga Toxin-Producing Escherichia coli Adherence and Colonization in the Bovine Gut: A Comprehensive Review. Microorganisms, 12(10), 2009. https://doi.org/10.3390/microorganisms12102009