Development of a Triplex qPCR Assay Based on the TaqMan Probe for the Detection of Haemophilus parasuis, Streptococcus suis Serotype 2 and Pasteurella multocida
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pathogenic Nucleic Acids and Clinical Samples
2.2. Primers and TaqMan Probes
2.3. Preparation of Standard Plasmid
2.4. Establishment and Optimization of the Triplex qPCR System
2.5. Establishment of a Standard Curve
2.6. Specificity of the Triplex qPCR
2.7. Sensitivity of the Triplex qPCR
2.8. Repeatability of the Triplex qPCR
2.9. Detection of Clinical Samples by Triplex qPCR
2.10. Statistical Analysis
3. Results
3.1. Optimization of Triplex qPCR
3.2. Establishment of a Standard Curve
3.3. Specificity Analysis
3.4. Sensitivity Analysis
3.5. Repeatability Analysis
3.6. Clinical Sample Detection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Opriessnig, T.; Giménez-Lirola, L.G.; Halbur, P.G. Polymicrobial respiratory disease in pigs. Anim. Health Res. Rev. 2011, 12, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Pirolo, M.; Espinosa-Gongora, C.; Bogaert, D.; Guardabassi, L. The porcine respiratory microbiome: Recent insights and future challenges. Anim. Microbiome 2021, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Bai, J.; Li, J.X.; Zhang, G.L.; Song, Y.H.; Li, Y.F.; Wang, X.W.; Jiang, P. Molecular cloning, sequencing, and expression of the outer membrane protein P2 gene of Haemophilus parasuis. Res. Vet. Sci. 2012, 93, 736–742. [Google Scholar] [CrossRef]
- Jiang, R.; Xiang, M.; Chen, W.; Zhang, P.; Wu, X.; Zhu, G.; Tu, T.; Jiang, D.; Yao, X.; Luo, Y.; et al. Biofilm characteristics and transcriptomic analysis of Haemophilus parasuis. Vet. Microbiol. 2021, 258, 109073. [Google Scholar] [CrossRef]
- Oliveira, S.; Pijoan, C. Haemophilus parasuis: New trends on diagnosis, epidemiology and control. Vet. Microbiol. 2004, 99, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, C.; Aragon, V.; Zhou, X.; Zou, M.; Wu, C.; Shen, Z. Investigation of Haemophilus parasuis from healthy pigs in China. Vet. Microbiol. 2019, 231, 40–44. [Google Scholar] [CrossRef]
- Lawrence, P.K.; Wiener, B.L.; Kolander-Bremer, T.; Bey, R.F.; Stine, D.L.; Kittichotirat, W.; Bumgarner, R.E. Genome-Wide As-sociation Studies of Virulent and Avirulent Haemophilus parasuis Serotype 4 Strains. Genome Announc. 2014, 2, e00884-14. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Y.; Tang, H.; Wang, Y.; Sun, X. Prevalence of Streptococcus suis in pigs in China during 2000–2021: A systematic review and meta-analysis. One Health 2023, 16, 100513. [Google Scholar] [CrossRef]
- Brizuela, J.; Roodsant, T.J.; Hasnoe, Q.; van der Putten, B.; Kozakova, J.; Slotved, H.C.; van der Linden, M.; de Beer-Schuurman, I.; Sadowy, E.; Saez-Nieto, J.A.; et al. Molecular Epidemiology of Underreported Emerging Zoonotic Pathogen Streptococcus suis in Europe. Emerg. Infect. Dis. 2024, 30, 413–422. [Google Scholar] [CrossRef]
- Uruen, C.; Garcia, C.; Fraile, L.; Tommassen, J.; Arenas, J. How Streptococcus suis escapes antibiotic treatments. Vet. Res. 2022, 53, 91. [Google Scholar] [CrossRef]
- Guo, G.; Du, D.; Yu, Y.; Zhang, Y.; Qian, Y.; Zhang, W. Pan-genome analysis of Streptococcus suis serotype 2 revealed genomic diversity among strains of different virulence. Transbound Emerg. Dis. 2021, 68, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Hatrongjit, R.; Fittipaldi, N.; Gottschalk, M.; Kerdsin, A. Tools for Molecular Epidemiology of Streptococcus suis. Pathogens 2020, 9, 81. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fan, Q.; Wang, Y.; Yi, L.; Wang, Y. Rethinking the control of Streptococcus suis infection: Biofilm formation. Vet. Microbiol. 2024, 290, 110005. [Google Scholar] [CrossRef] [PubMed]
- Okwumabua, O.; Persaud, P.J.S. Cloning and Characterization of the Gene Encoding the Glutamate Dehydrogenase of Strep-tococcus suis Serotype 2. Clin. Diagn. Lab. Immunol. 2001, 2, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Mostaan, S.; Ghasemzadeh, A.; Sardari, S.; Shokrgozar, M.A.; Nikbakht, B.G.; Abolhassani, M.; Ehsani, P.; Asadi, K.M. Pasteurella multocida Vaccine Candidates: A Systematic Review. Avicenna J. Med. Biotechnol. 2020, 12, 140–147. [Google Scholar]
- Peng, Z.; Wang, X.; Zhou, R.; Chen, H.; Wilson, B.A.; Wu, B. Pasteurella multocida: Genotypes and Genomics. Microbiol. Mol. Biol. R 2019, 83, e00014-19. [Google Scholar] [CrossRef]
- Liu, S.; Lin, L.; Yang, H.; Wu, W.; Guo, L.; Zhang, Y.; Wang, F.; Wang, X.; Song, W.; Hua, L.; et al. Pasteurella multocida capsular: Lipopolysaccharide types D:L6 and A:L3 remain to be the main epidemic genotypes of pigs in China. Anim. Dis. 2021, 1, 26. [Google Scholar] [CrossRef]
- Prajapati, A.; Yogisharadhya, R.; Mohanty, N.N.; Mendem, S.K.; Chanda, M.M.; Siddaramappa, S.; Shivachandra, S.B. Com-parative genome analysis of Pasteurella multocida strains of porcine origin. Genome 2024, 67, 13–23. [Google Scholar] [CrossRef]
- Sun, D.; Wang, J.; Wu, R.; Wang, C.; He, X.; Zheng, J.; Yang, H. Development of a novel LAMP diagnostic method for visible detection of swine Pasteurella multocida. Vet. Res. Commun. 2010, 34, 649–657. [Google Scholar] [CrossRef]
- Haimi-Hakala, M.; Halli, O.; Laurila, T.; Raunio-Saarnisto, M.; Nokireki, T.; Laine, T.; Nykasenoja, S.; Pelkola, K.; Segales, J.; Sibila, M.; et al. Etiology of acute respiratory disease in fattening pigs in Finland. Porcine Health Manag. 2017, 3, 19. [Google Scholar] [CrossRef]
- Sun, Q.; Yu, X.; He, D.; Ku, X.; Hong, B.; Zeng, W.; Zhang, H.; He, Q. Investigation and analysis of etiology associated with porcine respiratory disease complex in China from 2017 to 2021. Front. Vet. Sci. 2022, 9, 960033. [Google Scholar] [CrossRef] [PubMed]
- Espy, M.J.; Uhl, J.R. Real-Time PCR in Clinical Microbiology: Applications for Routine Laboratory Testing. Clin. Microbiol. Rev. 2006, 1, 165–256. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.J.; Osborn, A.M. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. Fems. Microbiol. Ecol. 2009, 67, 6–20. [Google Scholar] [CrossRef]
- Ginzinger, D.G. Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream. Exp. Hematol. 2002, 30, 503–512. [Google Scholar] [CrossRef]
- Clewley, J.P.; Arnold, C. MEGALIGN. The multiple alignment module of LASERGENE. Methods Mol. Biol. 1997, 70, 119–129. [Google Scholar]
- Alicia Rodríguez, M.R.J.J. PCR Primer Design; Humana Press: Totowa, NJ, USA, 2015; pp. 31–56. [Google Scholar]
- GB/T 34750-2017; Detection Methods for Haemophilus parasuis. Standards Press of China: Beijing, China, 2017. (In Chinese)
- GB/T 19915.9-2005; Detection Method of the Hemolysin Gene for Streptococcus suis Type 2 by PCR. Standards Press of China: Beijing, China, 2005. (In Chinese)
- NY/T 564-2016; Diagnostic Techniques for Swine Pasteurellosis. Standards Press of China: Beijing, China, 2016. (In Chinese)
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Saade, G.; Deblanc, C.; Bougon, J.; Marois-Crehan, C.; Fablet, C.; Auray, G.; Belloc, C.; Leblanc-Maridor, M.; Gagnon, C.A.; Zhu, J.; et al. Coinfections and their molecular consequences in the porcine respiratory tract. Vet. Res. 2020, 51, 80. [Google Scholar] [CrossRef] [PubMed]
- Kang, I.; Kim, D.; Han, K.; Seo, H.W.; Oh, Y.; Park, C.; Lee, J.; Gottschalk, M.; Chae, C. Optimized protocol for multiplex nested polymerase chain reaction to detect and differentiate Haemophilus parasuis, Streptococcus suis, and Mycoplasma hyorhinis in for-malin-fixed, paraffin-embedded tissues from pigs with polyserositis. Can. J. Vet. Res. 2012, 76, 195–200. [Google Scholar]
- Oliveira, S.; Galina, L.; Pijoan, C. Development of a PCR test to diagnose Haemophilus parasuis infections. J. Vet. Diagn. Investig. 2001, 13, 495–501. [Google Scholar] [CrossRef]
- Sun, X.; Blackall, P.J.; Daniel, P.; Chandra, K.; Jenkin, S.; Turni, C. An improved multiplex PCR for Actinobacillus pleuropneumoniae, Glaesserella australis and Pasteurella multocida. J. Microbiol. Meth. 2021, 191, 106360. [Google Scholar] [CrossRef]
- Han, Q.; Wang, J.; Li, R.; Han, Q.; Yuan, W.; Wang, J. Development of a recombinase polymerase amplification assay for rapid detection of Haemophilus parasuis in tissue samples. Vet. Med. Sci. 2020, 6, 894–900. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhu, J.; Ren, H.; Zhu, S.; Zhao, P.; Zhang, F.; Lv, H.; Hu, D.; Hao, L.; Geng, M.; et al. Rapid visual detection of highly pathogenic Streptococcus suis serotype 2 isolates by use of loop-mediated isothermal amplification. J. Clin. Microbiol. 2013, 51, 3250–3256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Sun, Z.; Shi, K.; Yang, D.; Bian, Z.; Li, Y.; Gou, H.; Jiang, Z.; Yang, N.; Chu, P.; et al. RPA-CRISPR/Cas12a-Based De-tection of Haemophilus parasuis. Animals 2023, 13, 3317. [Google Scholar] [CrossRef]
- Wang, L.; Sun, J.; Zhao, J.; Bai, J.; Zhang, Y.; Zhu, Y.; Zhang, W.; Wang, C.; Langford, P.R.; Liu, S.; et al. A CRISPR-Cas12a-based platform facilitates the detection and serotyping of Streptococcus suis serotype 2. Talanta 2024, 267, 125202. [Google Scholar] [CrossRef] [PubMed]
- Mackay, I.M. Real-time PCR in the microbiology laboratory. Clin. Microbiol. Infect. 2004, 10, 190–212. [Google Scholar] [CrossRef]
- Dekker, N.; Daemen, I.; Verstappen, K.; de Greeff, A.; Smith, H.; Duim, B. Simultaneous Quantification and Differentiation of Streptococcus suis Serotypes 2 and 9 by Quantitative Real-Time PCR, Evaluated in Tonsillar and Nasal Samples of Pigs. Pathogens 2016, 5, 46. [Google Scholar] [CrossRef]
- Scherrer, S.; Frei, D.; Wittenbrink, M.M. A novel quantitative real-time polymerase chain reaction method for detecting toxigenic Pasteurella multocida in nasal swabs from swine. Acta Vet. Scand. 2016, 58, 83. [Google Scholar] [CrossRef]
- Turni, C.; Pyke, M.; Blackall, P.J. Validation of a real-time PCR for Haemophilus parasuis. J. Appl. Microbiol. 2010, 108, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Jin, M.; Gao, M.; Wang, H.; Fan, Q.; Grenier, D.; Sun, L.; Wang, S.; Wang, Y. Specific quantitative detection of Streptococcus suis and Actinobacillus pleuropneumoniae in co-infection and mixed biofilms. Front. Cell. Infect. Microbiol. 2022, 12, 898412. [Google Scholar] [CrossRef]
- Goto, Y.; Fukunari, K.; Tada, S.; Ichimura, S.; Chiba, Y.; Suzuki, T. A multiplex real-time RT-PCR system to simultaneously diagnose 16 pathogens associated with swine respiratory disease. J. Appl. Microbiol. 2023, 134, lxad263. [Google Scholar] [CrossRef]
Name | Sequence (5′-3′) | Product Size (bp) | Reference |
---|---|---|---|
HPS-P2-F | GGTCTTAAATATGTCAACGCTCCA | 108 | This study |
HPS-P2-R | CGCCAGTTCTTACGAAGTCAA | ||
HPS-P2-P | FAM-TGATGGTGGTCATGGTGTT-MGB | ||
SS-gdh-F | GAACTACGATGGCAAGGCTGAT | 70 | |
SS-gdh-R | AGCTTGTTTGCCGTTGATCTC | ||
SS-gdh-P | VIC-TGCCCTTCCATGTGCGACTCAAAA-BHQ1 | ||
Pm-Kmt1-F | GGGCRGAGTTTGGTGTGTTG | 77 | |
Pm-Kmt1-R | GCTGAGTAATAAATAACGTCCAATCAGT | ||
Pm-Kmt1-P | CY5-CCAATCTGCTTCCTTGACAACGGCG-BHQ1 | ||
HPS F1 | TCGGTGATGAGGAAGGGTGA | 820 | Chinese national standard (GB/T34750-2017) [27] |
HPS R1 | TCGTCACCCTCTGTATGCAC | ||
HPS F2 | AGGGTGGTGTTTTAATAGAGCAC | 312 | |
HPS R2 | CACATGAGCGTCAGTATTTTCC | ||
SS F | CCCAAGTTCAAGCCGCATTTA | 495 | Chinese national standard (GB/T 19915.9-2005) [28] |
SS R | GAAGATTGCGAGCATTTCCTG | ||
Pm F | ATCCGCTATTTACCCAGTGG | 460 | Chinese agricultural industry standard (NY/T 564-2016) [29] |
Pm R | GCTGTAAACGAACTCGCCAC |
Reagent | Volume (μL) |
---|---|
Premix Ex Taq (Probe qPCR) (2×) | 10 |
HPS-P2-F (10 μM) | 0.3 |
HPS-P2-R (10 μM) | 0.3 |
HPS-P2-P (10 μM) | 0.6 |
SS-gdh-F (10 μM) | 0.6 |
SS-gdh-R (10 μM) | 0.6 |
SS-gdh-P (10 μM) | 0.8 |
Pm-Kmt1-F (10 μM) | 0.6 |
Pm-Kmt1-R (10 μM) | 0.6 |
Pm-Kmt1-P (10 μM) | 0.8 |
ROX Reference Dye | 0.4 |
RNase-free water | 1.4 |
Template | 3 |
Total volume | 20 |
Pathogen | Concentration (Copies/µL) | Repeat Times | Positive Number | Positive Rate | 80% Positive Rate |
---|---|---|---|---|---|
H. parasuis | 100 | 24 | 24 | 100% | >80% |
50 | 24 | 20 | 83% | >80% | |
10 | 24 | 15 | 63% | <80% | |
S. suis serotype 2 | 100 | 24 | 24 | 100% | >80% |
50 | 24 | 22 | 92% | >80% | |
10 | 24 | 19 | 79% | <80% | |
P. multocida | 100 | 24 | 24 | 100% | >80% |
50 | 24 | 20 | 83% | >80% | |
10 | 24 | 12 | 50% | <80% |
Intra-Assay | Inter-Assay | ||||||
---|---|---|---|---|---|---|---|
Pathogen | Concentration (Copies/µL) | Mean Ct Value | SD | CV (%) | Mean Ct Value | SD | CV (%) |
H. parasuis | 106 | 21.66 | 0.04 | 0.17% | 21.67 | 0.07 | 0.31% |
105 | 25.12 | 0.06 | 0.26% | 25.15 | 0.07 | 0.27% | |
104 | 28.47 | 0.03 | 0.11% | 28.50 | 0.07 | 0.26% | |
103 | 31.94 | 0.03 | 0.10% | 31.96 | 0.18 | 0.56% | |
S. suis serotype 2 | 106 | 22.81 | 0.07 | 0.32% | 22.78 | 0.09 | 0.39% |
105 | 26.13 | 0.04 | 0.14% | 26.16 | 0.06 | 0.24% | |
104 | 29.44 | 0.04 | 0.13% | 29.45 | 0.05 | 0.16% | |
103 | 32.71 | 0.14 | 0.44% | 32.67 | 0.18 | 0.54% | |
P. multocida | 106 | 22.48 | 0.07 | 0.32% | 22.56 | 0.11 | 0.50% |
105 | 25.92 | 0.03 | 0.12% | 25.95 | 0.03 | 0.11% | |
104 | 29.15 | 0.03 | 0.11% | 29.21 | 0.07 | 0.23% | |
103 | 32.39 | 0.10 | 0.32% | 32.39 | 0.16 | 0.49% |
Methods | Pathogen | Throat Swab Samples | Nasal Swab Samples | ||||
---|---|---|---|---|---|---|---|
Number | Positive/Total Number | Positive Rate | Number | Positive/Total Number | Positive Rate | ||
Triplex qPCR (in this study) | H. parasuis | 54 | 52/54 | 96% | 54 | 54/54 | 100% |
S. suis serotype 2 | 54/54 | 100% | 42/54 | 78% | |||
P. multocida | 4/54 | 7% | 2/54 | 4% | |||
nested PCR (GB/T34750-2017) [27] | H. parasuis | 50/54 | 93% | 53/54 | 98% | ||
PCR (GB/T 19915.9-2005) [28] | S. suis serotype 2 | 15/54 | 28% | 1/54 | 2% | ||
PCR (NY/T 564-2016) [29] | P. multocida | 1/54 | 2% | 0/54 | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Zhang, Y.; Luo, T.; Li, C.; Yu, H.; Wang, W.; Zhang, H.; Chen, H.; Xia, C.; Gao, C. Development of a Triplex qPCR Assay Based on the TaqMan Probe for the Detection of Haemophilus parasuis, Streptococcus suis Serotype 2 and Pasteurella multocida. Microorganisms 2024, 12, 2017. https://doi.org/10.3390/microorganisms12102017
Li K, Zhang Y, Luo T, Li C, Yu H, Wang W, Zhang H, Chen H, Xia C, Gao C. Development of a Triplex qPCR Assay Based on the TaqMan Probe for the Detection of Haemophilus parasuis, Streptococcus suis Serotype 2 and Pasteurella multocida. Microorganisms. 2024; 12(10):2017. https://doi.org/10.3390/microorganisms12102017
Chicago/Turabian StyleLi, Kaili, Yu Zhang, Tingyu Luo, Changwen Li, Haibo Yu, Wei Wang, He Zhang, Hongyan Chen, Changyou Xia, and Caixia Gao. 2024. "Development of a Triplex qPCR Assay Based on the TaqMan Probe for the Detection of Haemophilus parasuis, Streptococcus suis Serotype 2 and Pasteurella multocida" Microorganisms 12, no. 10: 2017. https://doi.org/10.3390/microorganisms12102017
APA StyleLi, K., Zhang, Y., Luo, T., Li, C., Yu, H., Wang, W., Zhang, H., Chen, H., Xia, C., & Gao, C. (2024). Development of a Triplex qPCR Assay Based on the TaqMan Probe for the Detection of Haemophilus parasuis, Streptococcus suis Serotype 2 and Pasteurella multocida. Microorganisms, 12(10), 2017. https://doi.org/10.3390/microorganisms12102017