Overview of Antimicrobial Resistant ESKAPEE Pathogens in Food Sources and Their Implications from a One Health Perspective
Abstract
:1. Introduction
2. Current Antibiotics for ESKAPEE Pathogens, Alternatives and Their Mechanisms of Action
3. Mechanisms of Antimicrobial Resistance in ESKAPEE Pathogens
4. ESKAPEE Pathogens in Food and Water Sources
4.1. Prevalence of ESKAPEE Pathogens in Food Sources
4.2. Prevalence of ESKAPEE Pathogens in Water Sources
5. Consequences to Public Health of MDR in ESKAPEE Pathogens
6. Combating Antimicrobial Resistance in Food Production
7. Surveillance of ESKAPEE Pathogens in Clinical and Food Settings
8. Conclusions and Looking Towards the Future
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024.
- World Health Organization. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 29 July 2024).
- Naddaf, M. 40 Million Deaths by 2050: Toll of Drug-Resistant Infections to Rise by 70%. Nature 2024, 633, 747–748. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A Review on Antibiotic Resistance: Alarm Bells Are Ringing. Cureus 2017, 9, e1403. [Google Scholar] [CrossRef] [PubMed]
- Hubeny, J.; Korzeniewska, E.; Ciesielski, S.; Płaza, G.; Harnisz, M. The Resistome of ESKAPEE Pathogens in Untreated and Treated Wastewater: A Polish Case Study. Biomolecules 2022, 12, 1160. [Google Scholar] [CrossRef]
- World Health Organization. Antimicrobial Resistance: Accelerating National and Global Responses WHO Strategic and Operational Priorities to Address Drug-Resistant Bacterial Infections in the Human Health Sector, 2025–2035. Available online: https://www.woah.org/app/uploads/2021/03/en-amr-strategy-2022-final- (accessed on 31 July 2024).
- Mittal, A.K.; Bhardwaj, R.; Mishra, P.; Rajput, S.K. Antimicrobials Misuse/Overuse: Adverse Effect, Mechanism, Challenges and Strategies to Combat Resistance. Open Biotechnol. J. 2020, 14, 107–112. [Google Scholar] [CrossRef]
- O’Connor, M.N.; Gallagher, P.; Omahony, D. Inappropriate Prescribing: Criteria, Detection and Prevention. Drugs Aging 2012, 29, 437–452. [Google Scholar] [CrossRef]
- Xu, C.; Kong, L.; Gao, H.; Cheng, X.; Wang, X. A Review of Current Bacterial Resistance to Antibiotics in Food Animals. Front. Microbiol. 2022, 13, 822689. [Google Scholar] [CrossRef]
- Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.R.M.; Mitra, S.; Emran, T.B.; Dhama, K.; Ripon, M.K.H.; Gajdács, M.; Sahibzada, M.U.K.; et al. Antibiotic Resistance in Microbes: History, Mechanisms, Therapeutic Strategies and Future Prospects. J. Infect. Public. Health 2021, 14, 1750–1766. [Google Scholar] [CrossRef]
- Dasgupta, A. Advances in Antibiotic Measurement. In Advances in Clinical Chemistry; Elsevier: Amsterdam, The Netherlands, 2012; Volume 56, pp. 75–104. [Google Scholar] [CrossRef]
- Song, X.; Li, F.; Zhang, M.; Xia, Y.; Ai, L.; Wang, G. Effect of D-Ala-Ended Peptidoglycan Precursors on the Immune Regulation of Lactobacillus plantarum Strains. Front. Immunol. 2022, 12, 825825. [Google Scholar] [CrossRef]
- Balli, E.P.; Venetis, C.A.; Miyakis, S. Systematic Review and Meta-Analysis of Linezolid versus Daptomycin for Treatment of Vancomycin-Resistant Enterococcal Bacteremia. Antimicrob. Agents Chemother. 2014, 58, 734–739. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, N.; Rai, R.; Vaidya, P.; Desai, A.; Bhowmick, T.; Weinstein, M.P. Comparison of Linezolid and Daptomycin for the Treatment of Vancomycin-Resistant Enterococcal Bacteremia. Ther. Adv. Infect. Dis. 2019, 6, 2049936119828964. [Google Scholar] [CrossRef] [PubMed]
- Heidary, M.; Khosravi, A.D.; Khoshnood, S.; Nasiri, M.J.; Soleimani, S.; Goudarzi, M. Daptomycin. J. Antimicrob. Chemother. 2018, 73, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Elshamy, A.A.; Aboshanab, K.M. A Review on Bacterial Resistance to Carbapenems: Epidemiology, Detection and Treatment Options. Future Sci. OA 2020, 6, FSO438. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.S.; Dwibedy, S.K.; Padhy, I. Polymyxins, the Last-Resort Antibiotics: Mode of Action, Resistance Emergence, and Potential Solutions. J. Biosci. 2021, 46, 85. [Google Scholar] [CrossRef]
- Mondal, A.H.; Khare, K.; Saxena, P.; Debnath, P.; Mukhopadhyay, K.; Yadav, D. A Review on Colistin Resistance: An Antibiotic of Last Resort. Microorganisms 2024, 12, 772. [Google Scholar] [CrossRef]
- Wang, J.; Pan, Y.; Shen, J.; Xu, Y. The Efficacy and Safety of Tigecycline for the Treatment of Bloodstream Infections: A Systematic Review and Meta-Analysis. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 24. [Google Scholar] [CrossRef]
- Walker, M.M.; Roberts, J.A.; Rogers, B.A.; Harris, P.N.A.; Sime, F.B. Current and Emerging Treatment Options for Multidrug Resistant Escherichia coli Urosepsis: A Review. Antibiotics 2022, 11, 1821. [Google Scholar] [CrossRef]
- Craig, W.A.; Andes, D.R. Cephalosporins. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases; W.B. Saunders: Philadelphia, PA, USA, 2015; Volume 1, pp. 278–292. ISBN 9996096742. [Google Scholar]
- Hooper, D.C.; Jacoby, G.A. Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a025320. [Google Scholar] [CrossRef]
- Abebe, A.A.; Birhanu, A.G. Methicillin Resistant Staphylococcus aureus: Molecular Mechanisms Underlying Drug Resistance Development and Novel Strategies to Combat. Infect. Drug Resist. 2023, 16, 7641–7662. [Google Scholar] [CrossRef]
- Oniciuc, E.-A.; Nicolau, A.I.; Hernández, M.; Rodríguez-Lázaro, D. Presence of Methicillin-Resistant Staphylococcus aureus in the Food Chain. Trends Food Sci. Technol. 2017, 61, 49–59. [Google Scholar] [CrossRef]
- Reygaert, W.C. An Overview of the Antimicrobial Resistance Mechanisms of Bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Santajit, S.; Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. Biomed. Res. Int. 2016, 2016, 2475067. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Wang-Kan, X.; Neuberger, A.; van Veen, H.W.; Pos, K.M.; Piddock, L.J.V.; Luisi, B.F. Multidrug Efflux Pumps: Structure, Function and Regulation. Nat. Rev. Microbiol. 2018, 16, 523–539. [Google Scholar] [CrossRef]
- Jamal, Z.; Gholami, M.; Ebrahimzadeh, M.A.; Goli, H.R. The Role of MexCD-OprJ and MexEF-OprN Efflux Systems in the Multiple Antibiotic Resistance of Pseudomonas aeruginosa Isolated from Clinical Samples. Curr. Microbiol. 2023, 80, 221. [Google Scholar] [CrossRef]
- Patil, A.; Banerji, R.; Kanojiya, P.; Saroj, S.D. Foodborne ESKAPE Biofilms and Antimicrobial Resistance: Lessons Learned from Clinical Isolates. Pathog. Glob. Health 2021, 115, 339–356. [Google Scholar] [CrossRef]
- Economou, V.; Gousia, P. Agriculture and Food Animals as a Source of Antimicrobial-Resistant Bacteria. Infect. Drug Resist. 2015, 8, 49–61. [Google Scholar] [CrossRef]
- Marutescu, L.G.; Jaga, M.; Postolache, C.; Barbuceanu, F.; Milita, N.M.; Romascu, L.M.; Schmitt, H.; de Roda Husman, A.M.; Sefeedpari, P.; Glaeser, S.; et al. Insights into the Impact of Manure on the Environmental Antibiotic Residues and Resistance Pool. Front. Microbiol. 2022, 13, 965132. [Google Scholar] [CrossRef]
- Verraes, C.; Van Boxstael, S.; Van Meervenne, E.; Van Coillie, E.; Butaye, P.; Catry, B.; de Schaetzen, M.A.; Van Huffel, X.; Imberechts, H.; Dierick, K.; et al. Antimicrobial Resistance in the Food Chain: A Review. Int. J. Environ. Res. Public. Health 2013, 10, 2643–2669. [Google Scholar] [CrossRef]
- Pesavento, G.; Calonico, C.; Ducci, B.; Magnanini, A.; Lo Nostro, A. Prevalence and Antibiotic Resistance of Enterococcus spp. Isolated from Retail Cheese, Ready-to-Eat Salads, Ham, and Raw Meat. Food Microbiol. 2014, 41, 1–7. [Google Scholar] [CrossRef]
- Sanlibaba, P.; Tezel, B.U.; Senturk, E. Antimicrobial Resistance of Enterococcus Species Isolated from Chicken in Turkey. Food Sci. Anim. Resour. 2018, 38, 391–402. [Google Scholar] [CrossRef]
- Chajęcka-Wierzchowska, W.; Zadernowska, A.; García-Solache, M. Ready-to-Eat Dairy Products as a Source of Multidrug-Resistant Enterococcus Strains: Phenotypic and Genotypic Characteristics. J. Dairy. Sci. 2020, 103, 4068–4077. [Google Scholar] [CrossRef]
- Rahimi, E. Enterotoxigenicity of Staphylococcus aureus Isolated from Traditional and Commercial Dairy Products Marketed in Iran. Braz. J. Microbiol. 2013, 44, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Huang, J.; Wu, Q.; Zhang, J.; Zhang, F.; Yang, X.; Wu, H.; Zeng, H.; Chen, M.; Ding, Y.; et al. Staphylococcus aureus Isolated from Retail Meat and Meat Products in China: Incidence, Antibiotic Resistance and Genetic Diversity. Front. Microbiol. 2018, 9, 2767. [Google Scholar] [CrossRef]
- Herve, D.T.; Kumar, G. Prevalence of Staphylococcus aureus in Retail Chicken Meat Samples in Jalandhar, Punjab. Res. J. Pharm. Technol. 2017, 10, 281–285. [Google Scholar] [CrossRef]
- Gundogan, N.; Citak, S.; Yalcin, E. Virulence Properties of Extended Spectrum β-Lactamase-Producing Klebsiella Species in Meat Samples. J. Food Prot. 2011, 74, 559–564. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, H.; Qin, L.; Pang, Z.; Qin, T.; Ren, H.; Pan, Z.; Zhou, J. Frequency, Antimicrobial Resistance and Genetic Diversity of Klebsiella pneumoniae in Food Samples. PLoS ONE 2016, 11, e0153561. [Google Scholar] [CrossRef] [PubMed]
- Kone, A.; Adingra, A.A.; Kambire, O.; Koffi-Nevry, A.R. Prevalence of Klebsiella pneumoniae Isolated from Public Universities’ Restaurants of Abidjan, Côte d’Ivoire. J. Appl. Biol. Biotechnol. 2022, 10, 206–212. [Google Scholar] [CrossRef]
- Askari, N.; Momtaz, H.; Tajbakhsh, E. Prevalence and Phenotypic Pattern of Antibiotic Resistance of Acinetobacter baumannii Isolated from Different Types of Raw Meat Samples in Isfahan, Iran. Vet. Med. Sci. 2020, 6, 147–153. [Google Scholar] [CrossRef]
- Mohamed, H.M.A.; Abd-Elhafeez, H.H.; Al-Jabr, O.A.; El-Zamkan, M.A. Characterization of Acinetobacter baumannii Isolated from Raw Milk. Biology 2022, 11, 1845. [Google Scholar] [CrossRef]
- Rezaloo, M.; Motalebi, A.; Mashak, Z.; Anvar, A. Prevalence, Antimicrobial Resistance, and Molecular Description of Pseudomonas aeruginosa Isolated from Meat and Meat Products. J. Food Qual. 2022, 2022, 9899338. [Google Scholar] [CrossRef]
- Ibrahim, M.M.E.; Elsaied, E.I.; Aal, S.F.A.A.E.; Bayoumi, M.A. Prevalence of Pseudomonas aeruginosa in Milk and Some Dairy Products with Reduction Trials by Some Natural Preservatives. J. Adv. Vet. Res. 2022, 12, 434–438. [Google Scholar]
- Allydice-Francis, K.; Brown, P.D. Diversity of Antimicrobial Resistance and Virulence Determinants in Pseudomonas aeruginosa Associated with Fresh Vegetables. Int. J. Microbiol. 2012, 2012, 426241. [Google Scholar] [CrossRef]
- Ruiz-Roldán, L.; Rojo-Bezares, B.; Lozano, C.; López, M.; Chichón, G.; Torres, C.; Sáenz, Y. Occurrence of Pseudomonas spp. in Raw Vegetables: Molecular and Phenotypical Analysis of Their Antimicrobial Resistance and Virulence-Related Traits. Int. J. Mol. Sci. 2021, 22, 12626. [Google Scholar] [CrossRef]
- Elsherbeny, S.M.; Rizk, D.E.; Al-Ashmawy, M.; Barwa, R. Prevalence and Antimicrobial Susceptibility of Enterobacteriaceae Isolated from Ready-to-Eat Foods Retailed in Damietta, Egypt. Egypt. J. Basic Appl. Sci. 2024, 11, 116–134. [Google Scholar] [CrossRef]
- Edris, S.N.; Hamad, A.; Awad, D.A.B.; Sabeq, I.I. Prevalence, Antibiotic Resistance Patterns, and Biofilm Formation Ability of Enterobacterales Recovered from Food of Animal Origin in Egypt. Vet. World 2023, 16, 403–413. [Google Scholar] [CrossRef]
- Menck-Costa, M.F.; Baptista, A.A.S.; Sanches, M.S.; dos Santos, B.Q.; Cicero, C.E.; Kitagawa, H.Y.; Justino, L.; Medeiros, L.P.; de Souza, M.; Rocha, S.P.D.; et al. Resistance and Virulence Surveillance in Escherichia coli Isolated from Commercial Meat Samples: A One Health Approach. Microorganisms 2023, 11, 2712. [Google Scholar] [CrossRef]
- Sarba, E.J.; Wirtu, W.; Gebremedhin, E.Z.; Borena, B.M.; Marami, L.M. Occurrence and Antimicrobial Susceptibility Patterns of Escherichia coli and Escherichia coli O157 Isolated from Cow Milk and Milk Products, Ethiopia. Sci. Rep. 2023, 13, 16018. [Google Scholar] [CrossRef]
- Datta, S.; Ishikawa, M.; Chudhakorn, S.; Charaslertrangsi, T. Prevalence and Antimicrobial Characteristics of Escherichia coli in Selected Vegetables and Herbs in Bangkok, Thailand. J. Food Prot. 2024, 87, 100229. [Google Scholar] [CrossRef]
- Hollenbeck, B.L.; Rice, L.B. Intrinsic and Acquired Resistance Mechanisms in Enterococcus. Virulence 2012, 3, 421–569. [Google Scholar] [CrossRef]
- Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance in Enterococci. Expert. Rev. Anti Infect. Ther. 2014, 12, 1221–1236. [Google Scholar] [CrossRef] [PubMed]
- Venkateswaran, P.; Vasudevan, S.; David, H.; Shaktivel, A.; Shanmugam, K.; Neelakantan, P.; Solomon, A.P. Revisiting ESKAPE Pathogens: Virulence, Resistance, and Combating Strategies Focusing on Quorum Sensing. Front. Cell Infect. Microbiol. 2023, 13, 1159798. [Google Scholar] [CrossRef] [PubMed]
- Bencardino, D.; Amagliani, G.; Brandi, G. Carriage of Staphylococcus aureus among Food Handlers: An Ongoing Challenge in Public Health. Food Control 2021, 130, 108362. [Google Scholar] [CrossRef]
- Lowy, F.D. Antimicrobial Resistance: The Example of Staphylococcus aureus. J. Clin. Investig. 2003, 111, 1265–1273. [Google Scholar] [CrossRef]
- Trzcinski, K.; Cooper, B.S.; Hryniewicz, W.; Dowson, C.G. Expression of Resistance to Tetracyclines in Strains of Methicillin-Resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2000, 45, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Diab, M.; Hamze, M.; Bonnet, R.; Saras, E.; Madec, J.Y.; Haenni, M. OXA-48 and CTX-M-15 Extended-Spectrum Beta-Lactamases in Raw Milk in Lebanon: Epidemic Spread of Dominant Klebsiella pneumoniae Clones. J. Med. Microbiol. 2017, 66, 1688–1691. [Google Scholar] [CrossRef]
- Geetha, P.V.; Aishwarya, K.V.L.; Mariappan, S.; Sekar, U.; Geetha, P.V.; Aishwarya, K.V.L.; Mariappan, S.; Sekar, U. Fluoroquinolone Resistance in Clinical Isolates of Klebsiella pneumoniae. J. Lab. Physicians 2020, 12, 121–125. [Google Scholar] [CrossRef]
- Kim, S.H.; Wei, C.I.; Tzou, Y.M.; Haejung, A.N. Multidrug-Resistant Klebsiella pneumoniae Isolated from Farm Environments and Retail Products in Oklahoma. J. Food Prot. 2005, 68, 2022–2029. [Google Scholar] [CrossRef]
- Li, Y.; Kumar, S.; Zhang, L.; Wu, H.; Wu, H. Characteristics of Antibiotic Resistance Mechanisms and Genes of Klebsiella pneumoniae. Open Med. 2023, 18, 20230707. [Google Scholar] [CrossRef]
- Ababneh, Q.; Al-Rousan, E.; Jaradat, Z. Fresh Produce as a Potential Vehicle for Transmission of Acinetobacter baumannii. Int. J. Food Contam. 2022, 9, 5. [Google Scholar] [CrossRef]
- Kyriakidis, I.; Vasileiou, E.; Pana, Z.D.; Tragiannidis, A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens 2021, 10, 373. [Google Scholar] [CrossRef] [PubMed]
- Laborda, P.; Lolle, S.; Hernando-Amado, S.; Alcalde-Rico, M.; Aanæs, K.; Martínez, J.L.; Molin, S.; Johansen, H.K. Mutations in the Efflux Pump Regulator MexZ Shift Tissue Colonization by Pseudomonas aeruginosa to a State of Antibiotic Tolerance. Nat. Commun. 2024, 15, 2584. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Luo, Y.F.; Williams, B.J.; Blackwell, T.S.; Xie, C.M. Structure and Function of OprD Protein in Pseudomonas aeruginosa: From Antibiotic Resistance to Novel Therapies. Int. J. Med. Microbiol. 2012, 302, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.; Cahill, N.; Burgess, C.; Cummins, E.; Leonard, F.; Hooban, B.; Chique, C.; Tyrrell, C.; Wang, S.; Monahan, C.; et al. Antimicrobial Resistance and the Environment-Sources, Persistence, Transmission and Risk Management (AREST); Environmental Protection Agency: Wexford, Ireland, 2017. [Google Scholar]
- Gotkowska-Płachta, A. The Prevalence of Virulent and Multidrug-Resistant Enterococci in River Water and in Treated and Untreated Municipal and Hospital Wastewater. Int. J. Environ. Res. Public. Health 2021, 18, 563. [Google Scholar] [CrossRef] [PubMed]
- Jannati, E.; Khademi, F.; Manouchehrifar, M.; Maleki, D.; Amirmozaffari, N.; Nikbin, V.S.; Arzanlou, M. Antibiotic Resistance and Virulence Potentials of E. faecalis and E. faecium in Hospital Wastewater: A Case Study in Ardabil, Iran. J. Water Health 2023, 21, 1277–1290. [Google Scholar] [CrossRef]
- Adesoji, A.T.; Onuh, J.P.; Bagu, J.; Itohan, S.A. Prevalence and Antibiogram Study of Staphylococcus aureus Isolated from Clinical and Selected Drinking Water of Dutsin-Ma, Katsina State, Nigeria. Afr. Health Sci. 2019, 19, 1385–1392. [Google Scholar] [CrossRef]
- Akya, A.; Chegenelorestani, R.; Shahvaisi-Zadeh, J.; Bozorgomid, A. Antimicrobial Resistance of Staphylococcus aureus Isolated from Hospital Wastewater in Kermanshah, Iran. Risk Manag. Health Policy 2020, 13, 1035–1042. [Google Scholar] [CrossRef]
- Aromolaran, O.; Amodu, O.A. Antibiotic Susceptibility Pattern of Klebsiella pneumoniae and Pseudomonas aeruginosa Isolated from Some Drinking Wells in Ondo Town Southwest Nigeria. J. Appl. Sci. Environ. Manag. 2021, 25, 59–63. [Google Scholar] [CrossRef]
- Alawi, M.; Smyth, C.; Drissner, D.; Zimmerer, A.; Leupold, D.; Müller, D.; Do, T.T.; Velasco-Torrijos, T.; Walsh, F. Private and Well Drinking Water Are Reservoirs for Antimicrobial Resistant Bacteria. NPJ Antimicrob. Resist. 2024, 2, 7. [Google Scholar] [CrossRef]
- Howard, A.; O’Donoghue, M.; Feeney, A.; Sleator, R.D. Acinetobacter baumannii . Virulence 2012, 3, 243–250. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, L.; Cai, J.; Zhu, H.; Li, J.; Yu, Y.; Xu, Y.; Shi, G.; Feng, Y. Clinical Characteristics of Respiratory Tract Infection Caused by Klebsiella pneumoniae in Immunocompromised Patients: A Retrospective Cohort Study. Front. Cell Infect. Microbiol. 2023, 13, 1137664. [Google Scholar] [CrossRef] [PubMed]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [PubMed]
- Denissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. Prevalence of ESKAPE Pathogens in the Environment: Antibiotic Resistance Status, Community-Acquired Infection and Risk to Human Health. Int. J. Hyg. Environ. Health 2022, 244, 114006. [Google Scholar] [CrossRef] [PubMed]
- Araten, A.H.; Brooks, R.S.; Choi, S.D.W.; Esguerra, L.L.; Savchyn, D.; Wu, E.J.; Leon, G.; Sniezek, K.J.; Brynildsen, M.P. Cephalosporin Resistance, Tolerance, and Approaches to Improve Their Activities. J. Antibiot. 2023, 77, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Akpaka, P.E.; Vaillant, A.; Wilson, C.; Jayaratne, P. Extended Spectrum Beta-Lactamase (ESBL) Produced by Gram-Negative Bacteria in Trinidad and Tobago. Int. J. Microbiol. 2021, 2021, 5582755. [Google Scholar] [CrossRef]
- Okeke, I.N.; de Kraker, M.E.A.; Van Boeckel, T.P.; Kumar, C.K.; Schmitt, H.; Gales, A.C.; Bertagnolio, S.; Sharland, M.; Laxminarayan, R. The Scope of the Antimicrobial Resistance Challenge. Lancet 2024, 403, 2426–2438. [Google Scholar] [CrossRef]
- Ali Alghamdi, B.; Al-Johani, I.; Al-Shamrani, J.M.; Musamed Alshamrani, H.; Al-Otaibi, B.G.; Almazmomi, K.; Yusnoraini Yusof, N. Antimicrobial Resistance in Methicillin-Resistant Staphylococcus aureus. Saudi J. Biol. Sci. 2023, 30, 103604. [Google Scholar] [CrossRef]
- Garoy, E.Y.; Gebreab, Y.B.; Achila, O.O.; Tekeste, D.G.; Kesete, R.; Ghirmay, R.; Kiflay, R.; Tesfu, T. Methicillin-Resistant Staphylococcus aureus (MRSA): Prevalence and Antimicrobial Sensitivity Pattern among Patients- A Multicenter Study in Asmara, Eritrea. Can. J. Infect. Dis. Med. Microbiol. 2019, 2019, 8321834. [Google Scholar] [CrossRef]
- Ventola, C.L. The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharm. Ther. 2015, 40, 277. [Google Scholar]
- Kritsotakis, E.I.; Lagoutari, D.; Michailellis, E.; Georgakakis, I.; Gikas, A. Burden of Multidrug and Extensively Drug-Resistant ESKAPEE Pathogens in a Secondary Hospital Care Setting in Greece. Epidemiol. Infect. 2022, 150, e170. [Google Scholar] [CrossRef]
- Food and Agriculture Organization; World Health Organization. Joint FAO/WHO Expert Meeting in Collaboration with OIE on Foodborne Antimicrobial Resistance: Role of the Environment, Crops and Biocides—Meeting; Food and Agriculture Organization: Italy, Rome, 2019.
- Food and Agriculture Organization. Available online: https://www.fao.org/antimicrobial-resistance/resources/infarm-system/en/ (accessed on 31 July 2024).
- BioRender. Available online: www.biorender.com (accessed on 20 September 2024).
- European Commission. Issues Impacting the Development of EU Organic Aquaculture-Working Document; European Commission: Brussels, Belgium, 2023.
- European Commission Combatting Antimicrobial Resistance on Farms Thanks to CAP Support. Available online: https://agriculture.ec.europa.eu/news/combatting-antimicrobial-resistance-farms-thanks-cap-support-2023-04-26_en (accessed on 31 July 2024).
- European Commission. Council Directive 91/676/EEC Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources; European Commission: Brussels, Belgium, 2022.
- European Commission. Farm to Fork Strategy; European Commission: Brussels, Belgium, 2020.
- Imran, A.; Shehzadi, U.; Islam, F.; Afzaal, M.; Ali, R.; Ali, Y.A.; Chauhan, A.; Biswas, S.; Khurshid, S.; Usman, I.; et al. Bacteriophages and Food Safety: An Updated Overview. Food Sci. Nutr. 2023, 11, 3621–3630. [Google Scholar] [CrossRef] [PubMed]
- Połaska, M.; Sokołowska, B. Bacteriophages—A New Hope or a Huge Problem in the Food Industry. AIMS Microbiol. 2019, 5, 324–346. [Google Scholar] [CrossRef]
- Food Safety Authority of Ireland. Available online: www.fsai.ie (accessed on 31 July 2024).
- Regulation-852/2004 on the Hygiene of Foodstuffs. Available online: https://eur-lex.europa.eu/eli/reg/2004/852/oj (accessed on 31 July 2024).
- Ancillotti, M.; Nilsson, E.; Nordvall, A.C.; Oljans, E. The Status Quo Problem and the Role of Consumers against Antimicrobial Resistance. Front. Sustain. Food Syst. 2022, 6, 1–5. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. European Antimicrobial Resistance Surveillance Network (EARS-Net). Available online: https://www.ecdc.europa.eu/en/about-us/networks/disease-networks-and-laboratory-networks/ears-net-data (accessed on 31 July 2024).
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022; World Health Organization: Geneva, Switzerland, 2022.
- Health Service Executive. Available online: www.hse.ie (accessed on 31 July 2024).
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2021–2022. EFSA J. 2024, 22, e8583. [Google Scholar] [CrossRef]
- Schrijver, R.; Stijntjes, M.; Rodríguez-Baño, J.; Tacconelli, E.; Babu Rajendran, N.; Voss, A. Review of Antimicrobial Resistance Surveillance Programmes in Livestock and Meat in EU with Focus on Humans. Clin. Microbiol. Infect. 2018, 24, 577–590. [Google Scholar] [CrossRef]
- Varona, O.M.; Chaintarli, K.; Muller-Pebody, B.; Anjum, M.F.; Eckmanns, T.; Norström, M.; Boone, I.; Tenhagen, B.A. Monitoring Antimicrobial Resistance and Drug Usage in the Human and Livestock Sector and Foodborne Antimicrobial Resistance in Six European Countries. Infect. Drug Resist. 2020, 13, 957–993. [Google Scholar] [CrossRef]
Organism Target | Alternative Treatments | Resistance Determinants Encountered | Food Contamination | Reference |
---|---|---|---|---|
E. faecium | Linezolid, daptomycin, tigecyclines | Beta-lactams: PBP4/5 point mutations; altered cell wall; destruction of beta-lactam ring; production of beta-lactamases. Glycopeptides: Modified peptidoglycan cross-link target, which is encoded by vanA, vanB, vanD, vanC, vanE, and vanG genes. Aminoglycosides: low cell wall permeability; ribosome mutations, aminoglycoside-associated enzymes like Aph(2″), Ant(3″), Ant(6″). Macrolides, Lincosamides, Streptogramins, Pleuromutilins (MLSPs): ABC efflux pumps-streptogramin resistance: msrC gene; altered ribosomes-ermB gene which modifies 23S rRNA; rRNA point mutations contributing to linezolid resistance. Tetracyclines: efflux pumps due to tetM and tetL genes. Phenicols: cat genes leading to inactivation of chloramphenicol. | Beef, poultry, pork, cheese, fermented milk | [28,35,36,37,55,56,57] |
S. aureus | Vancomycin, linezolid, daptomycin | Beta-lactams:mecA and mecC genes through an altered PBP2a target; production of beta-lactamases: blaZ gene involved. Aminoglycosides: aac, aph and ant genes through acetylating and/or phosphorylating enzymes (e.g. Ant(4′)-IA, Aph(3′)-III). Tetracyclines: efflux pumps; tetK, tetM, tetL genes; ribosomal safeguarding; chromosomal or transposon-located tetM or tetO elements. Glycopeptides: drug inactivation, vanA gene role through modified targets. Phenicols: cat genes leading to inactivation of chloramphenicol. MLSPs: different enzymes involved in the modification of the drug. | Cheese, dairy products, raw meat, frozen meat, RTE meat | [38,39,57,58,59,60] |
K. pneumoniae | Polymyxins, ceftazidime-avibactam, tigecyclines | Beta-lactams: enzymatic drug inactivation or modification due to the production of ESBLs and carbapenemases, alteration of PBPs (pbp2 and pbp4). Aminoglycosides: increased efflux pump expression; involvement of aminoglycoside-modifying enzymes (AMEs). Fluoroquinolones: qnrA, qnrB, and qnrS genes through plasmid-mediated mechanisms; efflux pumps expressing genes, including qepA and oqxAB. Polymyxins: mgrB, phoPQ, pmrA, and pmrD genes. Phenicols: cat genes leading to inactivation of chloramphenicol. Tigecyclines: efflux pump systems such as AcrAB-TolC and OqxAB, 16S rRNA (e.g., rrs gene) or ribosomal proteins (e.g., rpsJ gene). | Turkey, fish, cattle and chicken meats, milk, raw fresh vegetables | [41,42,43,57,61,62,63,64] |
A. baumannii | Polymyxins, tigecyclines, carbapenems | Beta-lactams: inactivation of antibiotic target; increase of efflux pumps (ade gene cluster), production of different beta-lactamases such as IMP, VIM, NDM, SIM; resistance genes such as blaOXA-23, blaOXA-51, blaOXA-58, blaTEM and blaCTX-M; alterations in outer membrane proteins. Aminoglycosides: AAC(6′)-Ib and ANT(2″)-Ia enzymes; efflux pumps; AdeABC and AdeIJK. Sulfonamides: sul1 and sul2; efflux pumps, MexAB-OprM. Tetracyclines: efflux pumps, AdeABC; tetA and tetB genes. Phenicols: inactivation of chloramphenicol by the action of chloramphenicol acyltransferase enzymes. Polymyxins: mcr-1 gene harbouring colistin resistance, LPS lipid A modification; mutations of the lpxA, lpxC, and lpxD genes, lpsB, lptD, and vacJ expression. | Fruits and vegetables, raw milk, meat products | [19,44,45,57,65,66] |
P. aeruginosa | Polymyxins, ceftolozane-tazobactam, cefiderocol | Beta-lactams: chromosomal AmpC synthesis with porin modification; efflux pumps encoded by mexA-mexB-oprM and mexXY genes. Carbapenems: deficiency of the OprD protein leading to reduced permeability; carbapenem hydrolysing non-metallo-beta-lactamases such as KPC, SME, GES, IMI-1. Aminoglycosides: AMEs (aac(6′)-Ib, aphA1, and aadB genes). Phenicols: cat genes leading to inactivation of chloramphenicol. Tetracyclines: efflux pumps (tetR, lysR, marR, and araC genes). | Milk and dairy products, fruits and vegetables, cold chain meat products | [28,47,48,57,67,68] |
Enterobacter spp. | Ceftazidime-avibactam, polymyxins, tigecyclines | Beta-lactams: production of different enzymes such as VIM, OXA, MBL-1, and KPC, AmpC; alteration of PBPs (pbp3 gene). Aminoglycosides: ribosomal modification due to rmtE gene. Phenicols: efflux pumps AcrAB–TolC and eefABC. Tetracyclines: AcrAB–TolC and eefABC efflux pumps. | Yoghurt, cheese, beef, chicken, milk | [28,50,51] |
E. coli | Ceftazidime-avibactam, polymyxins, tigecyclines | Beta-lactams:blaCTX-M, ESBLs ability to hydrolyse cephalosporins, monobactams and classical penicillins. Polymyxins:mcr-1 gene harbouring colistin resistance. Fosfomycins:fosA3 resistance gene | Animal origin foods, lettuce | [20,22,52,54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oyenuga, N.; Cobo-Díaz, J.F.; Alvarez-Ordóñez, A.; Alexa, E.-A. Overview of Antimicrobial Resistant ESKAPEE Pathogens in Food Sources and Their Implications from a One Health Perspective. Microorganisms 2024, 12, 2084. https://doi.org/10.3390/microorganisms12102084
Oyenuga N, Cobo-Díaz JF, Alvarez-Ordóñez A, Alexa E-A. Overview of Antimicrobial Resistant ESKAPEE Pathogens in Food Sources and Their Implications from a One Health Perspective. Microorganisms. 2024; 12(10):2084. https://doi.org/10.3390/microorganisms12102084
Chicago/Turabian StyleOyenuga, Naomi, José Francisco Cobo-Díaz, Avelino Alvarez-Ordóñez, and Elena-Alexandra Alexa. 2024. "Overview of Antimicrobial Resistant ESKAPEE Pathogens in Food Sources and Their Implications from a One Health Perspective" Microorganisms 12, no. 10: 2084. https://doi.org/10.3390/microorganisms12102084
APA StyleOyenuga, N., Cobo-Díaz, J. F., Alvarez-Ordóñez, A., & Alexa, E. -A. (2024). Overview of Antimicrobial Resistant ESKAPEE Pathogens in Food Sources and Their Implications from a One Health Perspective. Microorganisms, 12(10), 2084. https://doi.org/10.3390/microorganisms12102084