Efficacy of Streptococcus salivarius Blis K12 in the Prevention of Upper Respiratory Tract Infections in Physically Active Individuals: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Randomization
2.3. Participants
2.4. Product Characteristic
2.5. Instruments
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Veiga, P.; Suez, J.; Derrien, M.; Elinav, E. Moving from Probiotics to Precision Probiotics. Nat. Microbiol. 2020, 5, 878–880. [Google Scholar] [CrossRef] [PubMed]
- Di Pierro, F.; Adami, T.; Rapacioli, G.; Giardini, N.; Streitberger, C. Clinical Evaluation of the Oral Probiotic Streptococcus salivarius K12 in the Prevention of Recurrent Pharyngitis and/or Tonsillitis Caused by Streptococcus pyogenes in Adults. Expert Opin. Biol. Ther. 2013, 13, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Babina, K.; Salikhova, D.; Polyakova, M.; Svitich, O.; Samoylikov, R.; Ahmad El-Abed, S.; Zaytsev, A.; Novozhilova, N. The Effect of Oral Probiotics (Streptococcus salivarius K12) on the Salivary Level of Secretory Immunoglobulin A, Salivation Rate, and Oral Biofilm: A Pilot Randomized Clinical Trial. Nutrients 2022, 14, 1124. [Google Scholar] [CrossRef]
- Bertuccioli, A.; Gervasi, M.; Annibalini, G.; Binato, B.; Perroni, F.; Rocchi, M.B.L.; Sisti, D.; Amatori, S. Use of Streptococcus salivarius K12 in Supporting the Mucosal Immune Function of Active Young Subjects: A Randomised Double-Blind Study. Front. Immunol. 2023, 14, 1129060. [Google Scholar] [CrossRef]
- Tagg, J. Prevention of Streptococcal Pharyngitis by Anti-Streptococcus pyogenes Bacteriocin-like Inhibitory Substances (BLIS) Produced by Streptococcus salivarius. Indian J. Med. Res. 2004, 119, S13–S16. [Google Scholar]
- Jack, R.W.; Tagg, J.R.; Ray, B. Bacteriocins of Gram-Positive Bacteria. Microbiol. Rev. 1995, 59, 171–200. [Google Scholar] [CrossRef]
- Sharma, S.; Verma, K.K. Skin and Soft Tissue Infection. Indian J. Pediatr. 2001, 68 (Suppl. S3), S46–S50. [Google Scholar] [PubMed]
- Burton, J.P.; Chilcott, C.N.; Moore, C.J.; Speiser, G.; Tagg, J.R. A Preliminary Study of the Effect of Probiotic Streptococcus salivarius K12 on Oral Malodour Parameters. J. Appl. Microbiol. 2006, 100, 754–764. [Google Scholar] [CrossRef]
- Burton, J.; Chilcott, C.; Tagg, J. The Rationale and Potential for the Reduction of Oral Malodour Using Streptococcus salivarius Probiotics. Oral Dis. 2005, 11, 29–31. [Google Scholar] [CrossRef]
- Di Pierro, F.; Colombo, M.; Giuliani, M.G.; Danza, M.L.; Basile, I.; Bollani, T.; Conti, A.M.; Zanvit, A.; Rottoli, A.S. Effect of Administration of Streptococcus salivarius K12 on the Occurrence of Streptococcal Pharyngo-Tonsillitis, Scarlet Fever and Acute Otitis Media in 3 Years Old Children. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4601–4606. [Google Scholar]
- Hyink, O.; Wescombe, P.A.; Upton, M.; Ragland, N.; Burton, J.P.; Tagg, J.R. Salivaricin A2 and the Novel Lantibiotic Salivaricin B Are Encoded at Adjacent Loci on a 190-Kilobase Transmissible Megaplasmid in the Oral Probiotic Strain Streptococcus salivarius K12. Appl. Environ. Microbiol. 2007, 73, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Horz, H.-P.; Meinelt, A.; Houben, B.; Conrads, G. Distribution and Persistence of Probiotic Streptococcus salivarius K12 in the Human Oral Cavity as Determined by Real-Time Quantitative Polymerase Chain Reaction. Oral Microbiol. Immunol. 2007, 22, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Power, D.A.; Burton, J.P.; Chilcott, C.N.; Dawes, P.J.; Tagg, J.R. Preliminary Investigations of the Colonisation of Upper Respiratory Tract Tissues of Infants Using a Paediatric Formulation of the Oral Probiotic Streptococcus salivarius K12. Eur. J. Clin. Microbiol. Infect. Dis. 2008, 27, 1261–1263. [Google Scholar] [CrossRef] [PubMed]
- Souza, D.; Vale, A.F.; Silva, A.; Araújo, M.A.S.; De Paula Júnior, C.A.; De Lira, C.A.B.; Ramirez-Campillo, R.; Martins, W.; Gentil, P. Acute and Chronic Effects of Interval Training on the Immune System: A Systematic Review with Meta-Analysis. Biology 2021, 10, 868. [Google Scholar] [CrossRef]
- Campbell, J.P.; Turner, J.E. Debunking the Myth of Exercise-Induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. Front. Immunol. 2018, 9, 648. [Google Scholar] [CrossRef]
- Miko, B.A.; Pereira, M.R.; Safdar, A. Respiratory Tract Infections: Sinusitis, Bronchitis, and Pneumonia. In Principles and Practice of Transplant Infectious Diseases; Safdar, A., Ed.; Springer New York: New York, NY, 2019; pp. 339–349. ISBN 978-1-4939-9032-0. [Google Scholar]
- Cicchella, A.; Stefanelli, C.; Massaro, M. Upper Respiratory Tract Infections in Sport and the Immune System Response. A Review. Biology 2021, 10, 362. [Google Scholar] [CrossRef]
- Nieman, D.C. Risk of Upper Respiratory Tract Infection in Athletes: An Epidemiologic and Immunologic Perspective. J. Athl. Train. 1997, 32, 344–349. [Google Scholar]
- Åkerström, T.C.A.; Pedersen, B.K. Strategies to Enhance Immune Function for Marathon Runners: What Can Be Done? Sports Med. 2007, 37, 416–419. [Google Scholar] [CrossRef]
- Lin, L.; Decker, C.F. Respiratory Tract Infections in Athletes. Dis. Mon. 2010, 56, 407–413. [Google Scholar] [CrossRef]
- Di Pierro, F.; Iqtadar, S.; Mumtaz, S.U.; Bertuccioli, A.; Recchia, M.; Zerbinati, N.; Khan, A. Clinical Effects of Streptococcus salivarius K12 in Hospitalized COVID-19 Patients: Results of a Preliminary Study. Microorganisms 2022, 10, 1926. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Doyle, H.; Pierse, N.; Tiatia, R.; Williamson, D.; Baker, M.; Crane, J. Effect of Oral Probiotic Streptococcus salivarius K12 on Group A Streptococcus Pharyngitis: A Pragmatic Trial in Schools. Pediatr. Infect. Dis. J. 2018, 37, 619–623. [Google Scholar] [CrossRef]
- Di Pierro, F. Assessment of Efficacy of BLIS-Producing Probiotic K12 for the Prevention of Group A Streptococcus Pharyngitis: A Short Communication. Probiotics Antimicrob Proteins 2019, 11, 332–334. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barrett, B.; Brown, R.L.; Mundt, M.P.; Thomas, G.R.; Barlow, S.K.; Highstrom, A.D.; Bahrainian, M. Validation of a Short Form Wisconsin Upper Respiratory Symptom Survey (WURSS-21). Health Qual. Life Outcomes 2009, 7, 76. [Google Scholar] [CrossRef]
- Gleeson, M.; Bishop, N.C.; Oliveira, M.; Tauler, P. Daily Probiotic’s (Lactobacillus casei Shirota) Reduction of Infection Incidence in Athletes. Int. J. Sport Nutr. Exerc. Metab. 2011, 21, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A Power Primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Di Pierro, F.; Bertuccioli, A.; Saponara, M.; Ivaldi, L. Impact of a Two-Bacterial-Strain Formula, Containing Bifidobacterium animalis Lactis BB-12 and Enterococcus faecium L3, Administered before and after Therapy for Helicobacter pylori Eradication. Minerva Gastroenterol. Dietol. 2020, 66, 117–123. [Google Scholar] [CrossRef]
- Di Pierro, F.; Bertuccioli, A.; Pane, M.; Ivaldi, L. Effects of Rifaximin-Resistant Bifidobacterium longum W11 in Subjects with Symptomatic Uncomplicated Diverticular Disease Treated with Rifaximin. Minerva Gastroenterol. Dietol. 2020, 65, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Manning, J.; Dunne, E.M.; Wescombe, P.A.; Hale, J.D.F.; Mulholland, E.K.; Tagg, J.R.; Robins-Browne, R.M.; Satzke, C. Investigation of Streptococcus salivarius-Mediated Inhibition of Pneumococcal Adherence to Pharyngeal Epithelial Cells. BMC Microbiol. 2016, 16, 225. [Google Scholar] [CrossRef]
- Chen, T.Y.; Hale, J.D.F.; Tagg, J.R.; Jain, R.; Voss, A.L.; Mills, N.; Best, E.J.; Stevenson, D.S.; Bird, P.A.; Walls, T. In Vitro Inhibition of Clinical Isolates of Otitis Media Pathogens by the Probiotic Streptococcus salivarius BLIS K12. Probiotics Antimicrob. Proteins 2021, 13, 734–738. [Google Scholar] [CrossRef]
- Laws, G.L.; Hale, J.D.F.; Kemp, R.A. Human Systemic Immune Response to Ingestion of the Oral Probiotic Streptococcus salivarius BLIS K12. Probiotics Antimicrob. Proteins 2021, 13, 1521–1529. [Google Scholar] [CrossRef]
- Manti, S.; Parisi, G.F.; Papale, M.; Licari, A.; Salpietro, C.; Miraglia Del Giudice, M.; Marseglia, G.L.; Leonardi, S. Bacteriotherapy with Streptococcus salivarius 24SMB and Streptococcus oralis 89a Nasal Spray for Treatment of Upper Respiratory Tract Infections in Children: A Pilot Study on Short-Term Efficacy. Ital. J. Pediatr. 2020, 46, 42. [Google Scholar] [CrossRef] [PubMed]
- Bidossi, A.; De Grandi, R.; Toscano, M.; Bottagisio, M.; De Vecchi, E.; Gelardi, M.; Drago, L. Probiotics Streptococcus salivarius 24SMB and Streptococcus oralis 89a Interfere with Biofilm Formation of Pathogens of the Upper Respiratory Tract. BMC Infect. Dis. 2018, 18, 653. [Google Scholar] [CrossRef] [PubMed]
- Di Pierro, F.; Colombo, M.; Zanvit, A.; Risso, P.; Rottoli, A.S. Use of Streptococcus salivarius K12 in the Prevention of Streptococcal and Viral Pharyngotonsillitis in Children. Drug Healthc. Patient Saf. 2014, 6, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Zupancic, K.; Kriksic, V.; Kovacevic, I.; Kovacevic, D. Influence of Oral Probiotic Streptococcus salivarius K12 on Ear and Oral Cavity Health in Humans: Systematic Review. Probiotics Antimicrob. Proteins 2017, 9, 102–110. [Google Scholar] [CrossRef]
- Yoo, H.-J.; Jwa, S.-K.; Kim, D.-H.; Ji, Y.-J. Inhibitory Effect of Streptococcus salivarius K12 and M18 on Halitosis In Vitro. Clin. Exp. Dent. Res. 2020, 6, 207–214. [Google Scholar] [CrossRef]
- MacDonald, K.W.; Chanyi, R.M.; Macklaim, J.M.; Cadieux, P.A.; Reid, G.; Burton, J.P. Streptococcus salivarius Inhibits Immune Activation by Periodontal Disease Pathogens. BMC Oral Health 2021, 21, 245. [Google Scholar] [CrossRef]
- Bertuccioli, A.; Ninfali, P. The Mediterranean Diet in the Era of Globalization: The Need to Support Knowledge of Healthy Dietary Factors in the New socio-Economical Framework. Mediterr. J. Nutr. Metab. 2014, 7, 75–86. [Google Scholar] [CrossRef]
- Chastin, S.F.M.; Abaraogu, U.; Bourgois, J.G.; Dall, P.M.; Darnborough, J.; Duncan, E.; Dumortier, J.; Pavón, D.J.; McParland, J.; Roberts, N.J.; et al. Effects of Regular Physical Activity on the Immune System, Vaccination and Risk of Community-Acquired Infectious Disease in the General Population: Systematic Review and Meta-Analysis. Sports Med. 2021, 51, 1673–1686. [Google Scholar] [CrossRef]
- Saberi Hosnijeh, F.; Kolijn, P.M.; Casabonne, D.; Nieters, A.; Solans, M.; Naudin, S.; Ferrari, P.; Mckay, J.D.; Weiderpass, E.; Perduca, V.; et al. Mediating Effect of Soluble B-Cell Activation Immune Markers on the Association between Anthropometric and Lifestyle Factors and Lymphoma Development. Sci. Rep. 2020, 10, 13814. [Google Scholar] [CrossRef]
Treated (n = 56) | Control (n = 56) | t (p) | |
---|---|---|---|
Age (years) | 21.2 ± 2.5 | 21.6 ± 2.3 | 0.948 (0.372) |
Weight (Kg) | 71.2 ± 13.2 | 72.4 ± 13.3 | 1.211 (0.231) |
Height (cm) | 174.0 ± 10.6 | 172.6 ± 10.8 | 1.347 (0.184) |
BMI (Kg/m2) | 23.7 ± 2.8 | 23.5 ± 3.0 | 0.020 (0.8414) |
Adherence | Group | Very Sightly | Sightly | Moderately | Severely |
---|---|---|---|---|---|
>90% | Control | 4.13 (5.17) | 1.85 (2.51) | 1.03 (2.23) | 0.3 (0.16) |
Treated | 3.74 (3.96) | 2.44 (2.82) | 0.77 (1.55) | 0.10 (0.50) | |
70–90% | Control | 1.83 (2.53) | 1.00 (1.73) | 0.26 (0.78) | 0.03 (0.17) |
Treated | 3.23 (4.73) | 1.34 (2.42) | 0.77 (1.70) | 0.00 (0.00) | |
<70% | Control | 1.28 (2.91) | 0.55 (1.23) | 0.20 (0.69) | 0.01 (0.12) |
Treated | 0.79 (2.86) | 0.20 (1.01) | 0.13 (0.48) | 0.00 (0.00) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertuccioli, A.; Cardinali, M.; Micucci, M.; Rocchi, M.B.L.; Palazzi, C.M.; Zonzini, G.B.; Annibalini, G.; Belli, A.; Sisti, D. Efficacy of Streptococcus salivarius Blis K12 in the Prevention of Upper Respiratory Tract Infections in Physically Active Individuals: A Randomized Controlled Trial. Microorganisms 2024, 12, 2164. https://doi.org/10.3390/microorganisms12112164
Bertuccioli A, Cardinali M, Micucci M, Rocchi MBL, Palazzi CM, Zonzini GB, Annibalini G, Belli A, Sisti D. Efficacy of Streptococcus salivarius Blis K12 in the Prevention of Upper Respiratory Tract Infections in Physically Active Individuals: A Randomized Controlled Trial. Microorganisms. 2024; 12(11):2164. https://doi.org/10.3390/microorganisms12112164
Chicago/Turabian StyleBertuccioli, Alexander, Marco Cardinali, Matteo Micucci, Marco Bruno Luigi Rocchi, Chiara Maria Palazzi, Giordano Bruno Zonzini, Giosuè Annibalini, Annalisa Belli, and Davide Sisti. 2024. "Efficacy of Streptococcus salivarius Blis K12 in the Prevention of Upper Respiratory Tract Infections in Physically Active Individuals: A Randomized Controlled Trial" Microorganisms 12, no. 11: 2164. https://doi.org/10.3390/microorganisms12112164
APA StyleBertuccioli, A., Cardinali, M., Micucci, M., Rocchi, M. B. L., Palazzi, C. M., Zonzini, G. B., Annibalini, G., Belli, A., & Sisti, D. (2024). Efficacy of Streptococcus salivarius Blis K12 in the Prevention of Upper Respiratory Tract Infections in Physically Active Individuals: A Randomized Controlled Trial. Microorganisms, 12(11), 2164. https://doi.org/10.3390/microorganisms12112164