Brevundimonas aurifodinae, sp. nov., an Aerobic Anoxygenic Phototroph Resistant to Metalloid Oxyanions Isolated from Gold Mine Tailings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Cultivation
2.2. Physiological and Biochemical Experiments
2.3. Microscopy
2.4. Phylogenetic Analysis
3. Results and Discussion
3.1. Physiology and Morphology of Cells
3.2. Chemotaxonomic Characterization
3.3. Phylogenetic and Genomic Analysis
4. Conclusions
4.1. Description of Brevundimonas aurifodinae sp. nov.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Segers, P.; Vancanneyt, M.; Pot, B.; Torck, U.; Hoste, B.; Dewettinck, D.; Falsen, E.; Kersters, K.; De Vos, P. Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Büsing, Döll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. Nov. and Brevundimonas vesicularis comb. Nov., Respectively. Int. J. Syst. Evol. Microbiol. 1994, 44, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Abraham, W.-R.; Strompl, C.; Meyer, H.; Lindholst, S.; Moore, E.; Christ, R.; Vancanneyt, M.; Tindall, B.; Bennasar, A.; Smit, J.; et al. Phylogeny and Polyphasic Taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the Type Species, and Emended Description of the Genera Brevundimonas and Caulobacter. Int. J. Syst. Evol. Microbiol. 1999, 49, 1053–1073. [Google Scholar] [CrossRef] [PubMed]
- Parte, A.; Sardà Carbasse, J.; Meier-Kolthoff, J.; Reimer, L.; Göker, M. List of Prokaryotic Names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Bacteriol. 2020, 70, 5607–5612. [Google Scholar] [CrossRef]
- Vancanneyt, M.; Segers, P.; Abraham, W.-R.; Vos, P. Brevundimonas. In Bergey’s Manual of Systematics of Archaea and Bacteria, 2nd ed.; Trujillo, M.E., Dedysh, S., DeVos, P., Hedlund, B., Kämpfer, P., Rainey, F.A., Whitman, W.B., Eds.; Springer Science + Business Media, Inc.: New York, NY, USA, 2005; Volume 2, pp. 308–315. [Google Scholar]
- Friedrich, I.; Klassen, A.; Neubauer, H.; Schneider, D.; Hertel, R.; Daniel, R. Living in a Puddle of Mud: Isolation and Characterization of Two Novel Caulobacteraceae Strains Brevundimonas ondensis sp. nov. and Brevundimonas gottingensis sp. nov. Appl. Microbiol. 2021, 1, 38–59. [Google Scholar] [CrossRef]
- Ryan, M.; Pembroke, J. Brevundimonas spp.: Emerging Global Opportunistic Pathogens. Virulence 2018, 9, 480–493. [Google Scholar] [CrossRef]
- Tanabe, Y.; Yamaguchi, H.; Yoshida, M.; Kai, A.; Okazaki, Y. Characterization of a Bloom-Associated alphaproteobacterial Lineage, ‘Candidatus Phycosocius’: Insights into Freshwater Algal-Bacterial Interaction. ISME Comm. 2023, 3, 20. [Google Scholar] [CrossRef]
- Imhoff, J.; Than, T.; Kunzel, S.; Neulinger, S. Phylogeny of Anoxygenic Photosynthesis Based on Sequences of Photosynthetic Reaction Center Proteins and a Key Enzyme in Bacteriochlorophyll Biosynthesis, the Chlorophyllide Reductase. Microorganisms 2019, 7, 576. [Google Scholar] [CrossRef]
- Tahon, G.; Willems, A. Isolation and Characterization of Aerobic Anoxygenic Phototrophs from Exposed Soils for the Sor Rondane Mountains, East Antarctica. Syst. Appl. Microbiol. 2017, 40, 357–369. [Google Scholar] [CrossRef]
- Yurkov, V.; Hughes, E. Aerobic Anoxygenic Phototrophs: Four Decades of Mystery. In Modern Topics in the Phototrophic Prokaryotes: Environmental and Applied Aspects; Hallenbeck, P., Ed.; Springer: Cham, Switzerland, 2017; pp. 193–214. [Google Scholar]
- Yurkov, V.; Beatty, T. Aerobic Anoxygenic Phototrophic Bacteria. Microbiol. Mol. Biol. Rev. 1998, 62, 695–724. [Google Scholar] [CrossRef]
- Ghosh, A.; Sah, D.; Chakraborty, M.; Rai, J. Bio-mediated Detoxification of Heavy Metal Contaminated Soils and Phytotoxicity Reduction Using Novel Strain of Brevundimonas vancanneytii SMA3. Heliyon 2023, 9, e22344. [Google Scholar] [CrossRef]
- Singh, N.; Marwa, N.; Mishra, S.; Mishra, J.; Verma, P.; Rathaur, S.; Singh, N. Brevundimonas diminuta Mediated Alleviation of Arsenic Toxicity and Plant Growth Promotion in Oryza sativa L. Ecotoxicol. Environ. Saf. 2016, 125, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Li, M.; Su, J.; Li, Y.; Wang, Z.; Bai, Y.; Ali, E.; Shaheen, S. Brevundimonas diminuta Isolated from Mines Polluted Soil Immobilized Cadmium (Cd2+) and Zinc (Zn2+) Through Calcium Carbonate Precipitation: Microscopic and Spectroscopic Investigations. Sci. Total Environ. 2022, 813, 152668. [Google Scholar] [CrossRef] [PubMed]
- Resmi, G.; Thampi, S.; Chandrakaran, S. Brevundimonas vesicularis: A Novel Bio-sorbent for Removal of Lead from Wastewater. Int. J. Environ. Res. 2010, 4, 281–288. [Google Scholar]
- Singh, N.; Gadi, R. Bioremediation of Ni(II) and Cu(II) from Wastewater by the Nonliving Biomass of Brevundimonas vesicularis. J. Environ. Chem. Ecotoxicol. 2012, 4, 137–142. [Google Scholar]
- Hughes, E.; Head, B.; Maltman, C.; Piercey-Normore, M.; Yurkov, V. Aerobic Anoxygenic Phototrophs in Gold Mine Tailings in Nopiming Provincial Park, Manitoba, Canada. Can. J. Microbiol. 2017, 63, 212–218. [Google Scholar] [CrossRef]
- Poindexter, J. Biological Properties and Classification of the Caulobacter Group. Bacteriol. Rev. 1964, 28, 231–295. [Google Scholar] [CrossRef]
- Choi, J.-H.; Kim, M.-S.; Roh, S.; Bae, J.-W. Brevundimonas basaltis sp. nov., Isolated from Black Sand. Int. J. Syst. Evol. Microbiol. 2010, 60, 1488–1492. [Google Scholar] [CrossRef]
- Jordan, E.; Caldwell, M.; Reiter, D. Bacterial Motility. J. Bacteriol. 1934, 27, 165–174. [Google Scholar] [CrossRef]
- Bauer, A.; Kirby, W.; Sherry, J.; Turck, M. Antibiotic Susceptibility Testing by Using a Standardized Single Disc Method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Holt, J.; Krieg, N.; Sneath, P. Bergey’s Manual of Determinative Bacterology; The Williams and Wilkins Co.: Baltimore, MD, USA, 1994. [Google Scholar]
- Folch, J.; Lees, M.; Sloane-Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Estrela, A.; Abraham, W. Brevundimonas vancanneytii sp. nov., Isolated from Blood of a Patient with Endocarditis. Int. J. Syst. Evol. Microbiol. 2010, 60, 2129–2134. [Google Scholar] [CrossRef] [PubMed]
- Minnikin, D.E.; O’Donnell, A.G.; Goodfellow, M.; Alderson, G.; Athalye, M.; Schaal, A.; Parlett, J.H. An Integrated Procedure for the Extraction of Bacterial Isoprenoid Quinones and Polar Lipids. J. Microbiol. Methods 1984, 2, 233–241. [Google Scholar] [CrossRef]
- Chen, W.; Kuo, T. A Simple and Rapid Method for the Preparation of Gram-negative Bacterial Genomic DNA. Nucleic Acids Res. 1993, 21, 2260. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Maltman, C.; Kuzyk, S.B.; Kyndt, J.; Lengyel, G.; Yurkov, V. Shewanella metallivivens sp. nov., a Deep-sea Hydrothermal Vent Tube Worm Endobiont Capable of Dissimilatory Anaerobic Metalloid Oxyanion Reduction. Int. J. Sys. Evol. Microbiol. 2023, 73, 005980. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving Bacterial Genome Assemblies from Short and Long Sequencing Reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Wattam, A.R.; Davis, J.J.; Assaf, R.; Boisvert, S.; Brettin, T.; Bun, C.; Conrad, N.; Dietrich, E.M.; Disz, T.; Gabbard, J.L.; et al. Improvements to PATRIC, the All-Bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res. 2017, 45, D535–D542. [Google Scholar] [CrossRef]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Yoon, S.H.; Ha, S.M.; Lim, J.M.; Kwon, S.J.; Chun, J. A Large-scale Evaluation of Algorithms to Calculate Average Nucleotide Identity. Antonie Leeuwenhoek 2017, 110, 1281–1286. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Sardà Carbasse, J.; Peinado-Olarte, R.L.; Göker, M. TYGS and LPSN: A Database Tandem for Fast and Reliable Genome-based Classification and Nomenclature of Prokaryotes. Nucleic Acid Res. 2021, 50, D801–D807. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.; Goker, M. TYGS is an Automated High-throughput Platform for State-of-the-art Genome-based Taxonomy. Nat. Comm. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lefort, V.; Desper, R.; Gascuel, O. FastME 2.0: A Comprehensive, Accurate, and Fast Distance-based Phylogeny Inference program. Mol. Biol. Evol. 2015, 32, 2798–2800. [Google Scholar] [CrossRef] [PubMed]
- Farris, J.S. Estimating Phylogenetic Trees from Distance Matrices. Am. Nat. 1972, 106, 645–667. [Google Scholar] [CrossRef]
- Kreft, L.; Botzki, A.; Coppens, F.; Vandepoele, K.; Van Bel, M. PhyD3: A Phylogenetic Tree Viewer with Extended phyloXML Support for Functional Genomics Data Visualization. Bioinformatics 2017, 33, 2946–2947. [Google Scholar] [CrossRef]
- Richter, M.; Rossello-Mora, R. Shifting the Genomic Gold Standard for the Prokaryotic Species Definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef]
- Liu, R.; Ochman, H. Stepwise Formation of the Bacterial Flagellar System. Proc. Natl. Acad. Sci. USA 2007, 104, 7116–7121. [Google Scholar] [CrossRef]
Species | B. aurifodinae | B. bacteroides | B. variabilis | B. basaltis | B. alba | B. subvibrioides | B. diminuta |
---|---|---|---|---|---|---|---|
Strain | C11T | KACC 12013T | KACC 12016T | KACC 17487T | KACC 12015T | KACC 12014T | NRRL B-1496T |
Temperature (°C) | 5–40 | 25–40 | 10–40 | 10–40 | 10–40 | 25–40 | 10–40 |
Optimum | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
pH | 6.0–10.5 | 6.0–8.0 | 6.0–8.0 | 5.5–10.0 | 6.0–8.0 | 6.0–8.0 | 6.0–8.0 |
Optimum | 8.0 | 7.0 | 7.0 | 7.5 | 7.0 | 7.0 | 7.0 |
NaCl Tolerance (%) | 2 | 4 | 4 | 4 | 2 | 2 | 6 |
Optimum | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Utilization of: | |||||||
D-maltose | − | − | + | − | − | − | + |
D-cellobiose | + | − | + | − | − | + | + |
Gentibiose | + | + | + | + | − | − | + |
Sucrose | + | − | + | − | − | − | + |
Stachyose | + | + | + | − | − | − | + |
D-raffinose | − | − | + | − | − | + | + |
β-methyl-D-glucoside | − | + | − | + | − | + | + |
D-salicin | − | + | + | − | − | + | + |
α-D-glucose | + | − | + | + | + | + | + |
D-mannose | + | + | − | − | + | + | + |
D-fructose | − | − | − | + | − | − | + |
Gelatin | + | + | + | − | + | − | + |
L-arginine | − | + | + | + | − | − | + |
Pectin | − | − | + | + | − | + | + |
Mucic acid | − | + | + | + | − | + | + |
D-malic acid | + | + | − | + | − | + | + |
α-hydroxy-butyric acid | + | + | − | − | − | − | + |
α-keto-butyric acid | + | − | − | − | − | − | + |
Propionic acid | − | + | − | + | − | − | − |
Enzyme Activities: | |||||||
Amylase | + | + | + | − | − | + | − |
Gelatinase | + | + | + | − | + | − | − |
Leucine arylamidase | + | − | + | + | + | + | + |
Valine arylamidase | + | − | + | + | + | + | + |
Cysteine arylamidase | − | − | − | + | − | + | − |
α-chymotrypsin | + | − | + | + | + | + | + |
α-glucosidase | + | + | + | + | + | + | − |
Oxidase | + | + | − | − | + | + | + |
Esculin Hydrolysis | + | + | + | + | + | + | − |
Species | B. aurifodinae | B. bacteroides | B. variabilis | B. basaltis | B. alba | B. subvibrioides | B. diminuta |
---|---|---|---|---|---|---|---|
Strain 1 | C11T | KACC 12013T | KACC 12016T | KACC 17487T | KACC 12015T | KACC 12014T | NRRL B-1496T |
16S rRNA Gene Similarity (%) 2 | 100 | 98.4 | 98.2 | 97.5 | 97.4 | 97.2 | 94.8 |
Genome Size (Mb) | 3.3 | 3.2 | 3.4 | 2.6 | 3.1 | 3.4 | 3.4 |
G + C Content | 68.3 | 68.2 | 65.3 | 68.5 | 68.6 | 68.4 | 67.3 |
Genes | 3258 | 3225 | 3320 | 2715 | 3056 | 3385 | 3438 |
Protein-coding genes | 3186 | 3169 | 3246 | 2649 | 3000 | 3325 | 3358 |
No. of contigs | 26 | 17 | 8 | 8 | 3 | 1 | 2 |
No. of tRNA genes | 43 | 44 | 46 | 43 | 46 | 47 | 53 |
L50 | 5 | 4 | 2 | 2 | 1 | 1 | 1 |
OrthoANI (%) 2 | 100 | 83.5 | 77.7 | 77.7 | 77.4 | 80.9 | 77.3 |
dDDH (%) 2 | 100 | 26.6 | 21.8 | 21.4 | 21.3 | 23.5 | 20.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maltman, C.; Messner, K.; Kyndt, J.A.; Yurkov, V. Brevundimonas aurifodinae, sp. nov., an Aerobic Anoxygenic Phototroph Resistant to Metalloid Oxyanions Isolated from Gold Mine Tailings. Microorganisms 2024, 12, 2167. https://doi.org/10.3390/microorganisms12112167
Maltman C, Messner K, Kyndt JA, Yurkov V. Brevundimonas aurifodinae, sp. nov., an Aerobic Anoxygenic Phototroph Resistant to Metalloid Oxyanions Isolated from Gold Mine Tailings. Microorganisms. 2024; 12(11):2167. https://doi.org/10.3390/microorganisms12112167
Chicago/Turabian StyleMaltman, Chris, Katia Messner, John A. Kyndt, and Vladimir Yurkov. 2024. "Brevundimonas aurifodinae, sp. nov., an Aerobic Anoxygenic Phototroph Resistant to Metalloid Oxyanions Isolated from Gold Mine Tailings" Microorganisms 12, no. 11: 2167. https://doi.org/10.3390/microorganisms12112167
APA StyleMaltman, C., Messner, K., Kyndt, J. A., & Yurkov, V. (2024). Brevundimonas aurifodinae, sp. nov., an Aerobic Anoxygenic Phototroph Resistant to Metalloid Oxyanions Isolated from Gold Mine Tailings. Microorganisms, 12(11), 2167. https://doi.org/10.3390/microorganisms12112167