Sulfate-Reducing Bacteria Isolated from an Oil Field in Kazakhstan and a Description of Pseudodesulfovibrio karagichevae sp. nov.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Enrichment and Pure Cultures
2.2. Isolation, Media Composition and Phenotypic Characterization
2.3. Genome Sequencing and Annotation
2.4. Genomic and Phylogenetic Analyses
2.5. Nucleotide Sequence Accession Numbers
3. Results and Discussion
3.1. Isolation and Identification of Pure Cultures from the Oil Field
3.2. Physiological and Chemotaxonomic Characterization of the Strain 9FUST
3.3. Phylogenetic Analysis of 16S rRNA Gene Sequences
3.4. Genome Features and Phylogeny
3.5. Genome Insights and Unique Genes of Strain 9FUST
3.6. Ecological Implications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magot, M.; Ollivier, B.; Patel, B.K.C. Microbiology of petroleum reservoirs. Antonie Leeuwenhoek 2000, 77, 103–116. [Google Scholar] [CrossRef]
- Gieg, L.M.; Jack, T.R.; Foght, J.M. Biological souring and mitigation in oil reservoirs. Appl. Microbiol. Biotechnol. 2011, 92, 263–282. [Google Scholar] [CrossRef] [PubMed]
- Koch, G.; Varney, J.; Thompson, N.; Moghissi, O.; Gould, M.; Payer, J. International Measures of Prevention, Application, and Economics of Corrosion Technologies Study. Houston. 2016. Available online: http://impact.nace.org/economic-impact.aspx (accessed on 15 October 2024).
- Liang, R.; Grizzle, R.S.; Duncan, K.E.; McInerney, M.J.; Suflita, J.M. Roles of thermophilic thiosulfate-reducing bacteria and methanogenic archaea in the biocorrosion of oil pipelines. Front. Microbiol. 2014, 5, 89. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Zhang, B.L.; Mbadinga, S.M.; Liu, J.F.; Gu, J.D.; Mu, B.Z. Functional genes (dsr) approach reveals similar sulphidogenic prokaryotes diversity but different structure in saline waters from corroding high temperature petroleum reservoirs. Appl. Microbiol. Biotechnol. 2014, 98, 1871–1882. [Google Scholar] [CrossRef] [PubMed]
- Knisz, J.; Eckert, R.; Gieg, L.M.; Koerdt, A.; Lee, J.S.; Silva, E.R.; Skovhus, T.L.; An Stepec, B.A.; Wade, S.A. Microbiologically influenced corrosion—more than just microorganisms. FEMS Microbiol. Rev. 2023, 47, fuad041. [Google Scholar] [CrossRef] [PubMed]
- Widdel, F.; Musat, F.; Knittel, K.; Galushko, A. Anaerobic degradation of hydrocarbons with sulphate as electron donor. In Sulphate-Reducing Bacteria. Environmental and Engineered Systems; Barton, L.L., Hamilton, W.A., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 265–303. [Google Scholar]
- Plugge, C.M.; Zhang, W.; Scholten, J.C.; Stams, A.J.M. Metabolic flexibility of sulfate-reducing bacteria. Front. Microbiol. 2011, 2, 81. [Google Scholar] [CrossRef]
- Davidova, I.A.; Marks, C.R.; Suflita, J.M. Anaerobic hydrocarbon-degrading Deltaproteobacteria. In Taxonomy, Genomics and Ecophysiology of Hydrocarbon-Degrading Microbes. Handbook of Hydrocarbon and Lipid Microbiology; McGenity, T.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–38. [Google Scholar] [CrossRef]
- Nazina, T.N.; Shestakova, N.M.; Ivoilov, V.S.; Kostrukova, N.K.; Belyaev, S.S.; Ivanov, M.V. Radiotracer assay of microbial processes in petroleum reservoirs. Adv. Biotech. Microbiol. 2017, 2, 555591. [Google Scholar] [CrossRef]
- Duncan, K.E.; Gieg, L.M.; Parisi, V.A.; Tanner, R.S.; Tringe, S.G.; Bristow, J.; Suflita, J.M. Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities. Environ. Sci. Technol. 2009, 43, 7977–7984. [Google Scholar] [CrossRef]
- Davidova, I.A.; Duncan, K.E.; Perez-Ibarra, B.M.; Suflita, J.M. Involvement of thermophilic archaea in the biocorrosion of oil pipelines. Environ. Microbiol. 2012, 14, 1762–1771. [Google Scholar] [CrossRef]
- Mand, J.; Park, H.S.; Okoro, C.; Lomans, B.P.; Smith, S.; Chiejina, L.; Voordouw, G. Microbial methane production associated with carbon steel corrosion in a Nigerian oil field. Front. Microbiol. 2016, 6, 1538. [Google Scholar] [CrossRef]
- Liang, R.; Davidova, I.A.; Marks, C.R.; Stamps, B.W.; Harriman, B.H.; Stevenson, B.S.; Duncan, K.E.; Suflita, J.M. Metabolic capability of a predominant Halanaerobium sp. in hydraulically fractured gas wells and its implication in pipeline corrosion. Front. Microbiol. 2016, 7, 988. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, D.S.; Semenova, E.M.; Grouzdev, D.S.; Ershov, A.P.; Bidzhieva, S.K.; Ivanova, A.E.; Babich, T.L.; Sissenbayeva, M.R.; Bisenova, M.A.; Nazina, T.N. Microbial diversity and potential sulfide producers in the Karazhanbas oilfield (Kazakhstan). Microbiology 2020, 89, 459–469. [Google Scholar] [CrossRef]
- Murzagaliev, R.S. Geological Model of the Karazhanbas High-Viscosity Oil Deposit and Modern Biotechnologies for Its Recovery. 2009. Available online: https://new-disser.ru/_avtoreferats/01004423876.pdf (accessed on 6 December 2024).
- Wolin, E.A.; Wolin, M.J.; Wolfe, R.S. Formation of methane by bacterial extracts. J. Biol. Chem. 1963, 238, 2882–2888. [Google Scholar] [CrossRef] [PubMed]
- Pfennig, N.; Lippert, K.D. Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Archiv. Mikrobiol. 1966, 55, 245–256. [Google Scholar] [CrossRef]
- Hungate, R.E. A roll tube method for the cultivation of strict anaerobes. In Methods in Microbiology; Norris, J.L., Ribbons, D.W., Eds.; Academic Press: New York, NY, USA, 1969; Volume 3, pp. 117–132. [Google Scholar]
- Trüper, H.G.; Schlegel, H.G. Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie Leeuwenhoek 1964, 30, 321–323. [Google Scholar] [CrossRef]
- Bidzhieva, S.K.; Tourova, T.P.; Kadnikov, V.V.; Samigullina, S.R.; Sokolova, D.S.; Poltaraus, A.B.; Avtukh, A.N.; Tereshina, V.M.; Beletsky, A.V.; Mardanov, A.V.; et al. Phenotypic and genomic characterization of a sulfate-reducing bacterium Pseudodesulfovibrio methanolicus sp. nov. isolated from a petroleum reservoir in Russia. Biology 2024, 13, 800. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- A Windowed Adaptive Trimming Tool for FASTQ Files Using Quality. Available online: https://github.com/najoshi/sickle (accessed on 28 January 2023).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Carbasse, J.S.; Peinado-Olarte, R.L.; Göker, M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022, 50, D801–D807. [Google Scholar] [CrossRef]
- Chaumeil, P.-A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2020, 36, 1925–1927. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Hoang, D.T.; Vinh, L.S.; Flouri, T.; Stamatakis, A.; Von Haeseler, A.; Minh, B.Q. MPBoot: Fast phylogenetic maximum parsimony tree inference and bootstrap approximation. BMC Evol. Biol. 2018, 18, 11. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Delmont, T.O.; Eren, A.M. Linking pangenomes and metagenomes: The Prochlorococcus metapangenome. PeerJ 2018, 6, e4320. [Google Scholar] [CrossRef]
- Eren, A.M.; Esen, Ö.C.; Quince, C.; Vineis, J.H.; Morrison, H.G.; Sogin, M.L.; Delmont, T.O. Anvi’o: An advanced analysis and visualization platform for ‘omics data. PeerJ 2015, 3, e1319. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45, D353–D361. [Google Scholar] [CrossRef]
- Feio, M.J.; Zinkevich, V.; Beech, I.B.; Llobet-Brossa, E.; Eaton, P.; Schmitt, J.; Guezennec, J. Desulfovibrio alaskensis sp. nov.; a sulphate-reducing bacterium from a soured oil reservoir. Int. J. Syst. Evol. Microbiol. 2004, 54, 1747–1752. [Google Scholar] [CrossRef] [PubMed]
- Waite, D.W.; Chuvochina, M.; Pelikan, C.; Parks, D.H.; Yilmaz, P.; Wagner, M.; Loy, A.; Naganuma, T.; Nakai, R.; Whitman, W.B.; et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int. J. Syst. Evol. Microbiol. 2020, 70, 5972–6016. [Google Scholar] [CrossRef] [PubMed]
- Eichler, B.; Schink, B. Oxidation of primary aliphatic alcohols by Acetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch. Microbiol. 1984, 140, 147–152. [Google Scholar] [CrossRef]
- Paarup, M.; Friedrich, M.; Tindall, B.; Finster, K. Characterization of the psychrotolerant acetogen strain SyrA5 and the emended description of the species Acetobacterium carbinolicum. Antonie Leeuwenhoek 2006, 89, 55–69. [Google Scholar] [CrossRef]
- Gilmour, C.C.; Soren, A.B.; Gionfriddo, C.M.; Podar, M.; Wall, J.D.; Brown, S.D.; Michener, J.K.; Urriza, M.S.G.; Elias, D.A. Pseudodesulfovibrio mercurii sp. nov., a mercury-methylating bacterium isolated from sediment. Int. J. Syst. Evol. Microbiol. 2019, 71, 004697. [Google Scholar] [CrossRef]
- Ranchou-Peyruse, M.; Goni-Urriza, M.; Guignard, M.; Goas, M.; Ranchou-Peyruse, A.; Guyoneaud, R. Pseudodesulfovibrio hydrargyri sp. nov.; a mercury-methylating bacterium isolated from a brackish sediment. Int. J. Syst. Evol. Microbiol. 2018, 68, 1461–1466. [Google Scholar] [CrossRef]
- Gaikwad, S.L.; Pore, S.D.; Dhakephalkar, P.K.; Dagar, S.S.; Soni, R.; Kaur, M.P.; Rawat, H.N. Pseudodesulfovibrio thermohalotolerans sp. nov.; a novel obligately anaerobic, halotolerant, thermotolerant, and sulfate-reducing bacterium isolated from a western offshore hydrocarbon reservoir in India. Anaerobe 2023, 83, 102780. [Google Scholar] [CrossRef]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; Da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.-W.; De Meyer, S.; et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.-P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef]
- Brown, S.D.; Gilmour, C.C.; Kucken, A.M.; Wall, J.D.; Elias, D.A.; Brandt, C.C.; Podar, M.; Chertkov, O.; Held, B.; Bruce, D.C.; et al. Genome sequence of the mercury-methylating strain Desulfovibrio desulfuricans ND132. J. Bacteriol. 2011, 193, 2078–2079. [Google Scholar] [CrossRef]
- Cao, J.; Gayet, N.; Zeng, X.; Shao, Z.; Jebbar, M.; Alain, K. Pseudodesulfovibrio indicus gen. nov.; sp. nov.; a piezophilic sulfate-reducing bacterium from the Indian Ocean and reclassification of four species of the genus Desulfovibrio. Int. J. Syst. Evol. Microbiol. 2016, 66, 3904–3911. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, D.; Ueki, A.; Amaishi, A.; Ueki, K. Desulfovibrio portus sp. nov.; a novel sulfate-reducing bacterium in the class Deltaproteobacteria isolated from an estuarine sediment. J. Gen. Appl. Microbiol. 2009, 55, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, T.; Kondo, R. Genome sequence of the sulfate-reducing bacterium Pseudodesulfovibrio portus JCM 14722T. Microbiol. Resour. Announc. 2022, 11, e00947-22. [Google Scholar] [CrossRef] [PubMed]
- Slobodkina, G.; Merkel, A.; Novikov, A.; Slobodkin, A. Pseudodesulfovibrio pelocollis sp. nov. a sulfate-reducing bacterium isolated from a terrestrial mud volcano. Curr. Microbiol. 2024, 81, 120. [Google Scholar] [CrossRef]
- Motamedi, M.; Pedersen, K. Desulfovibrio aespoeensis sp. nov.; a mesophilic sulfate-reducing bacterium from deep groundwater at Äspö hard rock laboratory, Sweden. Int. J. Syst. Bacteriol. 1998, 48, 311–315. [Google Scholar] [CrossRef]
- Pedersen, K.; Bengtsson, A.; Edlund, J.; Rabe, L.; Hazen, T.; Chakraborty, R.; Goodwin, L.; Shapiro, N. Complete genome sequence of the subsurface, mesophilic sulfate-reducing bacterium Desulfovibrio aespoeensis Aspo-2. Genome Announc. 2014, 2, e00509-14. [Google Scholar] [CrossRef]
- Zheng, R.; Wu, S.; Sun, C. Pseudodesulfovibrio cashew sp. nov.; a novel deep-sea sulfate-reducing bacterium, linking heavy metal resistance and sulfur cycle. Microorganisms 2021, 9, 429. [Google Scholar] [CrossRef]
- Frolova, A.A.; Merkel, A.Y.; Kuchierskaya, A.A.; Bonch-Osmolovskaya, E.A.; Slobodkin, A.I. Pseudodesulfovibrio alkaliphilus, sp. nov.; an alkaliphilic sulfate-reducing bacterium isolated from a terrestrial mud volcano. Antonie Leeuwenhoek 2021, 114, 1387–1397. [Google Scholar] [CrossRef]
- Takahashi, A.; Kojima, H.; Watanabe, M.; Fukui, M. Pseudodesulfovibrio sediminis sp. nov.; a mesophilic and neutrophilic sulfate-reducing bacterium isolated from sediment of a brackish lake. Arch. Microbiol. 2022, 204, 307. [Google Scholar] [CrossRef]
- Ben Ali Gam, Z.; Oueslati, R.; Abdelkafi, S.; Casalot, L.; Tholozan, J.L.; Labat, M. Desulfovibrio tunisiensis sp. nov.; a novel weakly halotolerant, sulfate-reducing bacterium isolated from exhaust water of a Tunisian oil refinery. Int. J. Syst. Evol. Microbiol. 2009, 59, 1059–1063. [Google Scholar] [CrossRef]
- Park, M.-J.; Kim, Y.J.; Park, M.; Yu, J.; Namirimu, T.; Roh, Y.-R.; Kwon, K.K. Establishment of genome based criteria for classification of the family Desulfovibrionaceae and proposal of two novel genera, Alkalidesulfovibrio gen. nov. and Salidesulfovibrio gen. nov. Front. Microbiol. 2022, 13, 738205. [Google Scholar] [CrossRef] [PubMed]
- Thioye, A.; Gam, Z.B.A.; Mbengue, M.; Cayol, J.-L.; Joseph-Bartoli, M.; Touré-Kane, C.; Labat, M. Desulfovibrio senegalensis sp. nov.; a mesophilic sulfate reducer isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 2017, 67, 3162–3166. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Yang, J.-A.; Lim, J.K.; Park, M.-J.; Yang, S.-H.; Lee, H.S.; Kang, S.G.; Lee, J.-H.; Kwon, K.K. Paradesulfovibrio onnuriensis gen. nov.; sp. nov.; a chemolithoautotrophic sulfate-reducing bacterium isolated from the Onnuri vent field of the Indian Ocean and reclassification of Desulfovibrio senegalensis as Paradesulfovibrio senegalensis comb. nov. J. Microbiol. 2020, 58, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Kondo, R. Pseudodesulfovibrio nedwellii sp. nov., a mesophilic sulphate-reducing bacterium isolated from a xenic culture of an anaerobic heterolobosean protist. Int. J. Syst. Evol. Microbiol. 2023, 73, 005826. [Google Scholar] [CrossRef] [PubMed]
- Kondo, R.; Kataoka, T. Whole-genome sequence of the sulfate-reducing bacterial strain SYK, isolated from a xenic culture of an anaerobic protist. Microbiol. Resour. Announc. 2023, 12, e01257-22. [Google Scholar] [CrossRef]
- Khelaifia, S.; Fardeau, M.-L.; Pradel, N.; Aussignargues, C.; Garel, M.; Tamburini, C.; Cayol, J.-L.; Gaudron, S.; Gaill, F.; Ollivier, B. Desulfovibrio piezophilus sp. nov., a piezophilic, sulfate-reducing bacterium isolated from wood falls in the Mediterranean Sea. Int. J. Syst. Evol. Microbiol. 2011, 61, 2706–2711. [Google Scholar] [CrossRef]
- Pradel, N.; Ji, B.; Gimenez, G.; Talla, E.; Lenoble, P.; Garel, M.; Tamburini, C.; Fourquet, P.; Lebrun, R.; Bertin, P.; et al. The first genomic and proteomic characterization of a deep-sea sulfate reducer: Insights into the piezophilic lifestyle of Desulfovibrio piezophilus. PLoS ONE 2013, 8, e55130. [Google Scholar] [CrossRef]
- Zeng, Z.; Zeng, X.; Guo, Y.; Wu, Z.; Cai, Z.; Pan, D. Determining the role of UTP-glucose-1-phosphate uridylyltransferase (GalU) in improving the resistance of Lactobacillus acidophilus NCFM to freeze-drying. Foods 2022, 11, 1719. [Google Scholar] [CrossRef]
- Hamada, M.; Toyofuku, M.; Miyano, T.; Nomura, N. cbb3-type cytochrome c oxidases, aerobic respiratory enzymes, impact the anaerobic life of Pseudomonas aeruginosa PAO1. J. Bacteriol. 2014, 196, 3881–3889. [Google Scholar] [CrossRef]
- Valvano, M.A.; Messner, P.; Kosma, P. Novel pathways for biosynthesis of nucleotide-activated glycero-manno-heptose precursors of bacterial glycoproteins and cell surface polysaccharides. Microbiology. 2002, 148, 1979–1989. [Google Scholar] [CrossRef]
- Militello, K.T.; Simon, R.D.; Mandarano, A.H.; DiNatale, A.; Hennick, S.M.; Lazatin, J.C.; Cantatore, S. 5-azacytidine induces transcriptome changes in Escherichia coli via DNA methylation-dependent and DNA methylation-independent mechanisms. BMC Microbiol. 2016, 16, 130. [Google Scholar] [CrossRef] [PubMed]
- Florés, M.; Sanchez, N.; Michel, B. A fork-clearing role for UvrD. Mol. Microbiol. 2005, 57, 1664–1675. [Google Scholar] [CrossRef] [PubMed]
- Paquola, A.C.M.; Asif, H.; Pereira, C.A.D.B.; Feltes, B.C.; Bonatto, D.; Lima, W.C.; Menck, C.F.M. Horizontal gene transfer building prokaryote genomes: Genes related to exchange between cell and environment are frequently transferred. J. Mol. Evol. 2018, 86, 190–203. [Google Scholar] [CrossRef] [PubMed]
- Clifton, M.C.; Simon, M.J.; Erramilli, S.K.; Zhang, H.; Zaitseva, J.; Hermodson, M.A.; Stauffacher, C.V. In Vitro Reassembly of the Ribose ATP-binding Cassette Transporter Reveals a Distinct Set of Transport Complexes. J. Biol. Chem. 2015, 290, 5555–5565. [Google Scholar] [CrossRef] [PubMed]
- Caescu, C.I.; Vidal, O.; Krzewinski, F.; Artenie, V.; Bouquelet, S. Bifidobacterium longum requires a fructokinase (Frk; ATP:D-fructose 6-phosphotransferase, EC 2.7.1.4) for fructose catabolism. J. Bacteriol. 2004, 186, 6515–6525. [Google Scholar] [CrossRef]
- Joerger, R.D.; Jacobson, M.R.; Premakumar, R.; Wolfinger, E.D.; Bishop, P.E. Nucleotide sequence and mutational analysis of the structural genes (anfHDGKOR) for the second alternative nitrogenase from Azotobacter vinelandii. J. Bacteriol. 1989, 171, 1075–1086. [Google Scholar] [CrossRef]
- Oehlmann, N.N.; Schmidt, F.V.; Herzog, M.; Goldman, A.L.; Rebelein, J.G. The iron nitrogenase reduces carbon dioxide to formate and methane under physiological conditions: A route to feedstock chemicals. Sci Adv. 2024, 10, eado7729. [Google Scholar] [CrossRef]
- López-Torrejón, G.; Burén, S.; Veldhuizen, M.; Rubio, L.M. Biosynthesis of cofactor-activatable iron-only nitrogenase in Saccharomyces cerevisiae. Microb. Biotechnol. 2021, 14, 1073–1083. [Google Scholar] [CrossRef]
- Wei, B.; Xu, J.; Sun, C.; Cheng, Y.F. Internal microbiologically influenced corrosion of natural gas pipelines: A critical review. J. Nat. Gas Sci. Eng. 2022, 102, 104581. [Google Scholar] [CrossRef]
- Lv, X.; Wang, C.; Liu, J.; Sand, W.; Nabuk, E., II; Zhang, Y.; Xu, A.; Duan, J.; Zhang, R. The microbiologically influenced corrosion and protection of pipelines: A detailed review. Materials 2024, 17, 4996. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, Q.; Senko, J.M.; Cheng, G.; Newby, B.M.Z.; Castaneda, H.; Ju, L.K. Long-term survival of Desulfovibrio vulgaris on carbon steel and associated pitting corrosion. Corros. Sci. 2015, 90, 89–100. [Google Scholar] [CrossRef]
- Dou, W.; Liu, J.; Cai, W.; Wang, D.; Jia, R.; Chen, S.; Gu, T. Electrochemical investigation of increased carbon steel corrosion via extracellular electron transfer by a sulfate reducing bacterium under carbon source starvation. Corros. Sci. 2019, 150, 258–267. [Google Scholar] [CrossRef]
- Sun, M.; Wang, X.; Cui, W. Corrosion of sulfate-reducing bacteria on L245 steel under different carbon source conditions. Microorganisms 2024, 12, 1826. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Gu, T. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm. Int. Biodeterior. Biodegrad. 2014, 91, 74–81. [Google Scholar] [CrossRef]
- Thakur, P.; Alaba, M.O.; Rauniyar, S.; Singh, R.N.; Saxena, P.; Bomgni, A.; Gnimpieba, E.Z.; Lushbough, C.; Goh, K.M.; Sani, R.K. Text-mining to identify gene sets involved in biocorrosion by sulfate-reducing bacteria: A semi-automated workflow. Microorganisms 2023, 11, 119. [Google Scholar] [CrossRef]
- Bastin, E.S. The presence of sulfate-reducing bacteria in oilfield waters. Science 1926, 63, 21–24. [Google Scholar] [CrossRef]
- Ginsburg-Karagicheva, T.L. Microbiological investigations on the sulfur salt waters off Apsheron. Azerb. Petrol. Econ. 1926, 6–7, 30–39. (In Russian) [Google Scholar]
- Magot, M.; Basso, O.; Tardy-Jacquenod, C.; Caumette, P. Desulfovibrio bastinii sp. nov. and Desulfovibrio gracilis sp. nov., moderately halophilic, sulfate-reducing bacteria isolated from deep subsurface oilfield water. Int. J. Syst. Evol. Microbiol. 2004, 54, 1693–1697. [Google Scholar] [CrossRef]
Strain | GenBank Number of 16S rRNA Gene Sequence | Closest Type Strain According to 16S rRNA Gene, acc. no. | 16S rRNA Gene Similarity, % | Substrate/Acceptor |
---|---|---|---|---|
9FUST | PQ453521 | Pseudodesulfovibrio mercurii ND132, CP003220 | 98.6 | Fumarate/S0 |
9ES | PQ453522 | P. mercurii ND132, HQ693571 | 98.4 | Ethanol/SO42− |
09 | PQ453523 | P. mercurii ND132, CP003220 | 98.7 | H2 + CO2/SO42− |
09S | PQ474646 | P. mercurii ND132, CP003220 | 98.5 | Fumarate/S0 |
DNS2 | PQ453525 | Oleidesulfovibrio alaskensis Al1, NR_029338 | 100 | H2 + CO2 + acetate/SO42− |
9FOS | PQ453524 | Acetobacterium carbinolicum DSM 2925, NR_026325.1 | 99.1 | Formate/S0 |
Characteristic | Type Strains | ||||
---|---|---|---|---|---|
9FUST | 5S69T | BerOc1T | ND132T | MCM B-1480T | |
1 | 2 | 3 | 4 | 5 | |
NaCl % (w/v) range (optimum) | 0–5 (0–2) | 0.2–6 (2–4) | 0.2–4.0 (1.5) | 0–3.0 (2.0) | 1.0–6.0 (3.0) |
Temperature (°C) range (optimum) | 15–37 (23–28) | 15–37 (23–28) | 25–35 (30) | 20–37 (32) | 20–60 (37) |
pH range (optimum) | 4.1–8.6 (6.5) | 4.6–8.6 (6.5) | (6.0–7.4) | 6.8–8.2 (7.8) | 6.0–8.0 (7.0) |
Electron donor with sulfate: | |||||
H2/CO2 | + * | + * | + | + * | ND |
Formate | + | + | − | + * | + |
Succinate | + | + | − | − | + |
Fumarate | + | + | + | + | + |
Citrate | − | W | − | ND | − |
Malate | + | + | − | − | ND |
Benzoate | − | − | − | ND | ND |
Methanol | + | + | − | − | ND |
Ethanol | + | + | W | − | ND |
Glycerol | + | + | − | ND | ND |
Glucose | − | − | − | − | + |
Sucrose | − | − | − | ND | + |
Fructose | + | + | − | ND | + |
Lactose | − | − | − | ND | + |
Galactose | W | W | − | ND | + |
Ribose | + | − | − | ND | ND |
Electron acceptor: | |||||
Elemental sulfur | + | + | − | ND | − |
Nitrate | − | − | − | − | + |
Fermentation of: | |||||
Lactate | − | − | − | − | + |
Fumarate | − | + | − | + | + |
Genome size (Mb) | 4.20 | 4.16 | 4.1 | 3.86 | 3.9 |
Genomic G + C content (%) | 64.0 | 63.0 | 64.0 | 65.2 | 60.5 |
Major cellular fatty acids | i-C17:1 ω11, C15:0, i-C15:0, C16:0 | i-C15:0, ai-C15:0, C16:0 | C18:0, ai-C15:0, C16:0, C18:1 ω7 | i-C15:0, ai-C15:0, i-C17:0 | ai-C15:0, i-C15:0, C16:0, ai-C17:0 |
Isolation source | Hydrocarbon reservoir | Hydrocarbon reservoir | Brackish lagoon sediments | Brackish bottom sediments | Hydrocarbon reservoir |
Type Strain | Genome | Ref. | Genome Size, Mb | G + C Content, mol.% | Strain 9FUST | ||
---|---|---|---|---|---|---|---|
16S rRNA | dDDH | ANI | |||||
Strain 9FUST | GCF_041414475.1 | 4.20 | 64.0 | 100.0 | 100.0 | 100.0 | |
‘P. methanolicus’ 5S69T | GCF_037094465.1 | [21] | 4.16 | 63.1 | 98.9 | 45.0 | 91.6 |
P. hydrargyri BerOc1T | GCF_001874525.1 | [42] | 4.08 | 64.0 | 98.5 | 41.2 | 90.6 |
P. mercurii ND132T | GCF_000189295.2 | [41,46] | 3.86 | 65.2 | 98.2 | 35.3 | 88.6 |
‘P. thermohalotolerans’ MCM B-1480T | GCF_021353295.2 | [43] | 3.89 | 60.4 | 98.3 | 27.9 | 84.5 |
P. indicus J2T | GCF_004365595.1 | [47] | 3.96 | 63.5 | 98.0 | 26.8 | 84.0 |
P. portus JCM 14722T | GCF_026000375.1 | [48,49] | 3.40 | 61.2 | 96.5 | 22.5 | 80.1 |
‘P. pelocollis’ SB368T | GCF_030282845.1 | [50] | 3.43 | 63.7 | 95.4 | 21.0 | 78.3 |
P. aespoeensis Aspo-2T | GCF_000176915.2 | [51,52] | 3.63 | 62.6 | 95.9 | 20.9 | 78.2 |
‘P. cashew’ SRB007T | GCF_009762795.1 | [53] | 3.91 | 59.9 | 95.4 | 21.0 | 78.2 |
P. alkaliphilus F-1T | GCF_009729555.1 | [54] | 3.23 | 61.9 | 95.3 | 20.2 | 77.1 |
P. sediminis SF6T | GCF_020886695.1 | [55] | 3.76 | 54.0 | 96.7 | 19.7 | 76.0 |
P. tunisiensis RB22T | GCF_022809775.1 | [56,57] | 3.61 | 59.4 | 93.5 | 18.7 | 75.1 |
P. senegalensis DSM 101509T | GCF_008830225.1 | [58,59] | 3.37 | 58.1 | 92.8 | 18.5 | 74.0 |
P. nedwellii SYKT | GCF_027923765.1 | [60,61] | 3.76 | 49.4 | 96.7 | 18.5 | 73.9 |
P. piezophilus C1TLV30T | GCF_000341895.1 | [62,63] | 3.65 | 50.0 | 95.7 | 19.2 | 72.5 |
Parameter | Pseudodesulfovibrio karagichevae sp. nov. |
---|---|
Genus name | Pseudodesulfovibrio |
Species name | Pseudodesulfovibrio karagichevae |
Species status | sp. nov. |
Species etymology | ka.ra’gi.che.vae. N.L. gen. n. karagichevae, named in honor of the Russian microbiologist Tatiana L. Ginzburg-Karagicheva, who studied sulfate-reducing bacteria from oilfields in 1926 and is one of the founders of petroleum microbiology |
Designation of the Type Strain | 9FUST |
Strain Collection Numbers | VKM B-3654T = KCTC 25498T |
Genome accession number | GCF_041414475.1 |
Genome status | Contig |
Genome size | 4.20 Mb |
G + C mol% | 64.0 |
16S rRNA gene accession nr. | PQ453521 |
Description of the new taxon and diagnostic traits | The cells are strictly anaerobic, chemoorganotrophic, Gram-stain-negative, non-spore-forming, motile, slightly curved rods. Mesophilic, with a growth range of 15–37 °C (optimum, 23–28 °C). Growth is observed in the presence of 0–5% (w/v) NaCl (optimum, 0–2% NaCl), at pH 4.1–8.6 (optimum, pH 6.5). Lactate, pyruvate, formate, malate, fumarate, succinate, methanol, ethanol, glycerol, fructose, ribose, yeast extract, and H2/CO2 (in the presence of acetate) are used as carbon and energy sources for sulfate reduction; weak growth occurs on glutamate, propanol, galactose, and mannose, but acetate, propionate, butyrate, citrate, glycine, L-serine, ornithine, glucose, lactose, sucrose, and benzoate are not used. No autotrophic growth. Lactate is oxidized to acetate and CO2. Fermentative growth occurs with pyruvate, but lactate is not fermented in the absence of terminal electron acceptors. Reduces sulfate, sulfite, thiosulfate, and elemental sulfur to sulfide in the presence of lactate but does not use nitrate. The predominant cellular fatty acids are iso-C17:1 ω11, C15:0, iso-C15:0, and C16:0. The major polar lipids are phosphatidylethanolamine, diphosphatidylglycerol, and phosphatidylglycerol. The major respiratory quinone is menaquinone MK-6(H2). The genome size of the type strain is 4.20 Mb with a genomic G + C content of 64.0 mol%. The type strain, 9FUST (VKM B-3654T = KCTC 25498T), was isolated from the Karazhanbas oil field in Mangystau Province, The Republic of Kazakhstan. The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence is PQ453521, and the genomic assembly accession number is GCF_041414475.1. |
Country and region of origin | The Republic of Kazakhstan, Mangystau Province |
Date of isolation | 2019 |
Source of isolation | Production water from the Karazhanbas oil field |
Sampling date | June 2019 |
Latitude, Longitude | 43°22′33.3″ N, 52°59′27.1″ E |
Depth (meters below sea level) | 350 |
Number of strains in study | 4 |
Information related to the Nagoya Protocol | Not applicable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bidzhieva, S.K.; Tourova, T.P.; Grouzdev, D.S.; Samigullina, S.R.; Sokolova, D.S.; Poltaraus, A.B.; Avtukh, A.N.; Tereshina, V.M.; Mardanov, A.V.; Zhaparov, N.S.; et al. Sulfate-Reducing Bacteria Isolated from an Oil Field in Kazakhstan and a Description of Pseudodesulfovibrio karagichevae sp. nov. Microorganisms 2024, 12, 2552. https://doi.org/10.3390/microorganisms12122552
Bidzhieva SK, Tourova TP, Grouzdev DS, Samigullina SR, Sokolova DS, Poltaraus AB, Avtukh AN, Tereshina VM, Mardanov AV, Zhaparov NS, et al. Sulfate-Reducing Bacteria Isolated from an Oil Field in Kazakhstan and a Description of Pseudodesulfovibrio karagichevae sp. nov. Microorganisms. 2024; 12(12):2552. https://doi.org/10.3390/microorganisms12122552
Chicago/Turabian StyleBidzhieva, Salimat K., Tatyana P. Tourova, Denis S. Grouzdev, Salima R. Samigullina, Diyana S. Sokolova, Andrey B. Poltaraus, Alexander N. Avtukh, Vera M. Tereshina, Andrey V. Mardanov, Nurlan S. Zhaparov, and et al. 2024. "Sulfate-Reducing Bacteria Isolated from an Oil Field in Kazakhstan and a Description of Pseudodesulfovibrio karagichevae sp. nov." Microorganisms 12, no. 12: 2552. https://doi.org/10.3390/microorganisms12122552
APA StyleBidzhieva, S. K., Tourova, T. P., Grouzdev, D. S., Samigullina, S. R., Sokolova, D. S., Poltaraus, A. B., Avtukh, A. N., Tereshina, V. M., Mardanov, A. V., Zhaparov, N. S., & Nazina, T. N. (2024). Sulfate-Reducing Bacteria Isolated from an Oil Field in Kazakhstan and a Description of Pseudodesulfovibrio karagichevae sp. nov. Microorganisms, 12(12), 2552. https://doi.org/10.3390/microorganisms12122552