An Integrated Investigation of the Relationship between Two Soil Microbial Communities (Bacteria and Fungi) and Chrysanthemum Zawadskii (Herb.) Tzvel. Wilt Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Sample Preparation
2.3. Determination of Soil Chemical Properties
2.4. DNA Extraction, PCR Amplification, and Construction of Gene Clone Library
2.5. Sequence Processing and Analysis
2.6. Statistical Analysis
3. Results
3.1. Comparison of Initial Soil Physicochemical Properties between Healthy and Diseased Chrysanthemum Plants
3.2. Diversity Changes in Rhizosphere Community in Healthy and Diseased Plants
3.3. Classification and Analysis of Rhizosphere Community of Healthy and Diseased Plants
3.4. LEfSe Analysis of Bacterial and Fungal Community
3.5. Environmental Factors Affecting Soil Microbial Community
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Li, J.; Gu, L.; Begum, S.; Wang, Y.; Sun, B.; Lee, M.; Sung, C. Chrysanthemum zawadskii extract induces hair growth by stimulating the proliferation and differentiation of hair matrix. Int. J. Mol. Med. 2014, 34, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Sibagariang, A.; Suryanto, D.; Nurtjahja, K. A Possibility of using Antagonistic Bacterial Isolates in Controlling Fusarium Wilt of Chrysanth (Chrysanthemum sp.). J. Pure Appl. Microbiol. 2019, 13, 297–305. [Google Scholar] [CrossRef]
- Kwaśna, H.; Szewczyk, W.; Baranowska, M.; Gallas, E.; Wiśniewska, M.; Behnke-Borowczyk, J. Mycobiota Associated with the Vascular Wilt of Poplar. Plants 2021, 10, 892. [Google Scholar] [CrossRef] [PubMed]
- Ocimati, W.; Were, E.; Tazuba, A.F.; Dita, M.; Zheng, S.-J.; Blomme, G. Spent Pleurotus ostreatus Substrate Has Potential for Managing Fusarium Wilt of Banana. J. Fungi 2021, 7, 946. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Ghani, M.I.; Ding, H.; Iqbal, M.; Cheng, Z.; Cai, Z. Garlic Substrate Induces Cucumber Growth Development and Decreases Fusarium Wilt through Regulation of Soil Microbial Community Structure and Diversity in Replanted Disturbed Soil. Int. J. Mol. Sci. 2020, 21, 6008. [Google Scholar] [CrossRef] [PubMed]
- Elmer, W.H.; Zuverza-Mena, N.; Triplett, L.R.; Roberts, E.L.; White, J.C. Foliar Application of Copper Oxide Nanoparticles Suppresses Fusarium Wilt Development on Chrysanthemum. Environ. Sci. Technol. 2021, 55, 10805–10810. [Google Scholar] [CrossRef] [PubMed]
- Sabuquillo, P.; De Cal, A.; Melgarejo, P. Dispersal Improvement of a Powder Formulation of Penicillium oxalicum, a Biocontrol Agent of Tomato Wilt. Plant Dis. 2005, 89, 1251–1375. [Google Scholar] [CrossRef]
- Wang, H.; Wu, C.; Zhang, H.; Xiao, M.; Ge, T.; Zhou, Z.; Liu, Y.; Peng, S.; Peng, P.; Chen, J. Characterization of the belowground microbial community and co-occurrence networks of tobacco plants infected with bacterial wilt disease. World J. Microbiol. Biotechnol. 2022, 38, 155. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, S.; Zhang, K.; Zou, Z.; Ni, J.; Jiang, X.; Chen, F.; Fang, W. MinIsolation and identification of Fusarium oxysporum from chrysanthemum and the effects of crude toxin on growth of cut-chrysanthemum ‘Jimba’ seedlings. J. Nanjing Agric. Univ. 2018, 41, 662–669. [Google Scholar]
- Zhu, Y.; Che, J.; Xiao, R.; Su, M.; Huang, X.; Lan, J. Growth Characteristics of Fusarium oxysporum Schl. Chin. Agric. Sci. Bull. 2007, 23, 373–376. [Google Scholar]
- Caravaca, F.; Torres, P.; Díaz, G.; Roldán, A. Elevated CO2 affects the rhizosphere microbial community and the growth of two invader plant species differently in semiarid Mediterranean soils. Land Degrad. Dev. 2022, 33, 117–132. [Google Scholar] [CrossRef]
- Chen, Q.; Miao, Y.; Wang, T.; Guo, L.; Liu, D. Fusarium Wilt Changes Microbial Community Structure in Rhizosphere Soil of Chrysanthemum morifolium. Chin. J. Exp. Tradit. Med. Formulae 2021, 27, 180–186. [Google Scholar]
- Thanthri NT, W.; Meyhfer, R. Does apple replant disease affect the soil patch selection behaviour and population growth of Collembolans? J. Appl. Entomol. 2023, 147, 36–46. [Google Scholar] [CrossRef]
- Rueda AM, F.; Kruse, C.G.; Griffin, J.; St-Pierre, B. PSIV-5 Characterization of the Fecal Bacterial Communities of Grass-fed and Grain-fed Bison Heifers. J. Anim. Sci. 2021, 99, 212–213. [Google Scholar] [CrossRef]
- Vaulot, D.; Geisen, S.; Mahé, F.; Bass, D. pr2-primers: An 18S rRNA primer database for protists. Mol. Ecol. Resour. 2022, 22, 168–179. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, L.; Sun, X.; Wan, X.; Sun, G.; Jiang, R.; Kang, X. Characteristics of the fecal microbiota of high-and low-yield hens and effects of fecal microbiota transplantation on egg production performance. Res. Vet. Sci. 2020, 129, 164–173. [Google Scholar] [CrossRef]
- Abbak, R.A.; Ellmann, A.; Ustun, A. A practical software package for computing gravimetric geoid by the least squares modification of Hotine’s formula. Earth Sci. Inform. 2022, 15, 713–724. [Google Scholar] [CrossRef]
- Chen, H.B. VennDiagram: Generate High-Resolution Venn and Euler Plots; R Package Version 1.7.3. 2017. Available online: https://CRAN.R-project.org/package=VennDiagram (accessed on 23 November 2023).
- Ao, J.C.; Li, B.; Yan, K. Effects of continuous cropping on tobacco-planting soil bacterial community diversity in typical tobacco-growing areas of Yunnan Province. J. Agric. Resour. Environ. 2022, 39, 46–54. [Google Scholar]
- Zheng, Y.X.; Yang, M.; Wang, J.M. Effects of tobacco root rot on fungal community structure in tobacco rhizosphere soil. Chin. Tob. Sci. 2021, 42, 50–55. [Google Scholar]
- Xiang, L.G.; Wang, H.C.; Guo, H.; Zong, W.; Shun, L.; Zu, H.; Lei, Y.U. Bacterial community structure and diversity in rhizospheric soil and in stalk of healthy and black shank disease-infected tobacco plants. Acta Table Sin. 2020, 26, 100–108. [Google Scholar]
- See, C.R.; Fernandez, C.W.; Conley, A.M.; Delancey, L.C.; Hobbie, S.E. Distinct carbon fractions drive a generalisable two, ool model of fungal necromass decomposition. Funct. Ecol. 2020, 35, 796–806. [Google Scholar] [CrossRef]
- Lin, H.; Yuan, Q.; Yu, Q.; Chen, Z.; Ma, J. Plants Mitigate Nitrous Oxide Emissions from Antibiotic-Contaminated Agricultural Soils. Environ. Sci. Technol. EST 2022, 56, 4950–4960. [Google Scholar] [CrossRef] [PubMed]
- Lebeda, A.; Barbora, M.; Kitner, M.; Veronika, P.; Cook RT, A. Golovinomyces powdery mildews on Asteraceae in the Czech Republic. Plant Prot. Sci. 2020, 56, 163–179. [Google Scholar]
- Ebadah IM, A.; Moawad, S.S.; Sadek, H.E.; Lotfy, D.E. Effectiveness of Two Entomopathogenic Fungi Sources Toward Some Sucking Insects and Their Predators on Okra Crop. J. Entomol. 2020, 17, 14–19. [Google Scholar] [CrossRef]
- Zeng, Z.; Li, Q.; Huo, Y.; Chen, C.; Duan, S.; Xu, F.; Cheng, Y.; Dong, X. Inhibitory effects of essential oils from Asteraceae plant against pathogenic fungi of Panax notoginseng. J. Appl. Microbiol. 2021, 130, 592–603. [Google Scholar] [CrossRef]
- Wandrag, E.M.; Birnbaum, C.; Klock, M.M.; Barrett, L.G.; Thrall, P.H. Availability of soil mutualists may not limit non-native Acacia invasion but could increase their impact on native soil communities. J. Appl. Ecol. 2020, 57, 786–793. [Google Scholar] [CrossRef]
- Ross, N.D.; Moles, A.T. The contribution of pathogenic soil microbes to ring formation in an iconic Australian arid grass, Triodia basedowii (Poaceae). Aust. J. Bot. 2021, 69, 113–120. [Google Scholar] [CrossRef]
- Rey, J.C.; Perichi, G.; Lobo, D.; Olivares, B.O. Relationship of Microbial Activity with Soil Properties in Banana Plantations in Venezuela. Sustainability 2022, 14, 13531. [Google Scholar]
- Olivares, B.O.; Rey, J.C.; Lobo, D.; Navas-Cortés, J.A.; Gómez, J.A.; Landa, B.B. Fusarium Wilt of Bananas: A Review of Agro-Environmental Factors in the Venezuelan Production System Affecting Its Development. Agronomy 2021, 11, 986. [Google Scholar] [CrossRef]
- Campos, B.O. Banana Production in Venezuela: Novel Solutions to Productivity and Plant Health; Springer Nature: Cham, Switzerland, 2023. [Google Scholar]
- Vega, A.; Calderón, M.A.R.; Rey, J.C.; Lobo, D.; Gómez, J.A.; Landa, B.B.; Campos, B.O. Identification of Soil Properties Associated with the Incidence of Banana Wilt Using Supervised Methods. Plants 2022, 11, 2070. [Google Scholar]
- Orlando, O.; Araya-Alman, M.; Acevedo-Opazo, C.; Rey, J.C.; Cañete-Salinas, P.; Kurina, F.G.; Balzarini, M.; Lobo, D.; Navas-Cortés, J.A.; Landa, B.B.; et al. Relationship between soil properties and banana productivity in the two main cultivation areas in Venezuela. J. Soil Sci. Plant Nutr. 2020, 20, 2512–2524. [Google Scholar]
- Calero, J.; Olivares, B.; Rey, J.C.; Lobo, D.; Landa, B.B.; Gómez, J.A. Correlation of banana productivity levels and soil morphological properties using Regularized Optimal Scaling Regression. Catena 2022, 208, 105718. [Google Scholar]
- Olivares, B. Machine learning and the new sustainable agriculture: Applications in banana production systems of Venezuela. Agric. Res. Updates 2022, 42, 133–157. [Google Scholar]
- Paredes, F.; Rey, J.; Lobo, D.; Galvis-Causil, S.; Olivares, B. The relationship between the normalized difference vegetation index, rainfall, and potential evapotranspiration in a banana plantation of Venezuela. STJSSA—J. Soil Sci. Agroclimatol. 2021, 18, 58–64. [Google Scholar]
- Rodríguez-Yzquierdo, G.; Olivares, B.O.; Silva-Escobar, O.; González-Ulloa, A.; Soto-Suarez, M.; Betancourt-Vásquez, M. Mapping of the Susceptibility of Colombian Musaceae Lands to a Deadly Disease: Fusarium oxysporum f. sp. cubense Tropical Race 4. Horticulturae 2023, 9, 757. [Google Scholar] [CrossRef]
- Rodríguez-Yzquierdo, G.; Olivares, B.O.; González-Ulloa, A.; León-Pacheco, R.; Gómez-Correa, J.C.; Yacomelo-Hernández, M.; Carrascal-Pérez, F.; Florez-Cordero, E.; Soto-Suárez, M.; Dita, M.; et al. Soil Predisposing Factors to Fusarium oxysporum f. sp. Cubense Tropical Race 4 on Banana Crops of La Guajira, Colombia. Agronomy 2023, 13, 2588. [Google Scholar] [CrossRef]
- Lobo, D.; Orlando, O.; Rey, J.C.; Vega, A.; Rueda, M.A. Relationships between the Visual Evaluation of Soil Structure (VESS) and soil properties in agriculture: A meta-analysis. Sci. Agropecu. 2023, 14, 67–78. [Google Scholar]
- Cavus, M.; Dayi, M.; Dagci, Y.; Ulusu, H. The usability of the brick dust and blast furnace slag in zeolite-based lime mortars in different curing environments. Ceram. Int. 2023, 49, 4046–4054. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, L.; Chen, H.; Chen, G.; Wang, Y. Responses of soil phosphorus pools accompanied with carbon composition and microorganism changes to phosphorus-input reduction in paddy soils. Pedosphere 2021, 31, 83–93. [Google Scholar] [CrossRef]
- Sokol, N.W.; Whalen, E.D.; Jilling, A.; Kallenbach, C.; Pett-Ridge, J.; Georgiou, K. Global distribution, formation and fate of mineral-associated soil organic matter under a changing climate: A trait-based perspective. Funct. Ecol. 2022, 36, 1411–1429. [Google Scholar] [CrossRef]
- Yu, S.; Lv, J.; Jiang, L.; Geng, P.; Cao, D.; Wang, Y. Changes of Soil Dissolved Organic Matter and Its Relationship with Microbial Community along the Hailuogou Glacier Forefield Chronosequence. Environ. Sci. Technol. 2023, 57, 4027–4038. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.; Anna, E.; Wenjie, Q.; Matsumura, E.E.; Falk, B.W. Flock house virus as a vehicle for aphid Virus-induced gene silencing and a model for aphid biocontrol approaches. J. Pest Sci. 2023, 96, 225–239. [Google Scholar]
- Ming, Y.M.; Yong, M.C.; Wang, X.; Desneux, N.; Lian, S.Z. Comparative demographics, population projections and egg maturation patterns of four eupelmid egg parasitoids on the factitious host Antherae pernyi. Pest Manag. Sci. 2023, 79, 3631–3641. [Google Scholar]
Sample Group | Multivariate Homogeneity of Variance Test Statistic | p |
---|---|---|
Group A | 0.132 | 0.934 |
Group B | 0.258 | 0.759 |
Group C | 0.334 | 0.661 |
Group D | 0.469 | 0.518 |
Group E | 0.618 | 0.396 |
Group F | 0.757 | 0.234 |
Different Indicators | Healthy Plants | Wilt Strain | p |
---|---|---|---|
Soil pH value | 6.64 ± 0.32 | 6.56 ± 0.76 | 1.235 |
Total nitrogen (g/kg) | 5.41 ± 0.62 | 5.92 ± 1.64 | 0.078 |
Total phosphorus (g/kg) | 2.05 ± 0.14 | 2.52 ± 1.15 | 0.067 |
Organic carbon (g/kg) | 214.92 ± 27.62 | 426.28 ± 176.23 | 0.004 |
Available phosphorus (mg/kg) | 219.62 ± 51.05 | 423.64 ± 202.64 | 0.003 |
Water content (g/kg) | 0.49 ± 0.07 | 0.70 ± 0.12 | 0.005 |
Site | Fungi | Bacterial | ||
---|---|---|---|---|
Treatment | Chrysanthemum disease plant | Chrysanthemum healthy plant | Chrysanthemum disease plant | Chrysanthemum healthy plant |
OTUs observed | 365.12 ± 107.34 | 363.53 ± 107.60 | 2225.67 ± 235.36 * | 1942.33 ± 225.13 |
Shannon | 3.19 ± 1.05 | 3.49 ± 0.71 | 8.58 ± 0.31 | 8.28 ± 0.37 |
Chao 1 | 567.32 ± 157.17 | 543.81 ± 94.61 | 3153.08 ± 317.07 * | 2684.01 ± 331.46 |
ACE | 547.18 ± 164.95 | 523.33 ± 78.67 | 3089.63 ± 320.75 * | 2636.01 ± 317.01 |
Coverage (%) | 0.99 ± 0.01 | 0.99 ± 0.01 | 0.97 ± 0.01 | 0.97 ± 0.01 |
Index | Healthy Plants-b | Wilt Strain-b | Healthy Plants-f | Wilt Strain-f |
---|---|---|---|---|
Shannon | 8.75 ± 0.21 | 8.28 ± 0.37 * | 3.29 ± 1.06 | 3.49 ± 0.71 |
Simpson | 0.991 ± 0.002 | 0.85 ± 0.007 | 0.692 ± 0.202 | 0.768 ± 0.110 |
Ace | 3326.20 ± 193.92 | 2684.01 ± 331.46 ** | 622.33 ± 159.46 | 543.81 ± 94.60 |
Chao1 | 3269.05 ± 173.99 | 2636.01 ± 317.01 ** | 610.39 ± 163.65 | 523.33 ± 78.67 |
Goods_coverage | 0.967 ± 0.002 | 0.974 ± 0.004 ** | 0.9925 ± 0.0022 | 0.993 ± 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Peng, J.; Song, T. An Integrated Investigation of the Relationship between Two Soil Microbial Communities (Bacteria and Fungi) and Chrysanthemum Zawadskii (Herb.) Tzvel. Wilt Disease. Microorganisms 2024, 12, 337. https://doi.org/10.3390/microorganisms12020337
Wu C, Peng J, Song T. An Integrated Investigation of the Relationship between Two Soil Microbial Communities (Bacteria and Fungi) and Chrysanthemum Zawadskii (Herb.) Tzvel. Wilt Disease. Microorganisms. 2024; 12(2):337. https://doi.org/10.3390/microorganisms12020337
Chicago/Turabian StyleWu, Chao, Juan Peng, and Tingting Song. 2024. "An Integrated Investigation of the Relationship between Two Soil Microbial Communities (Bacteria and Fungi) and Chrysanthemum Zawadskii (Herb.) Tzvel. Wilt Disease" Microorganisms 12, no. 2: 337. https://doi.org/10.3390/microorganisms12020337
APA StyleWu, C., Peng, J., & Song, T. (2024). An Integrated Investigation of the Relationship between Two Soil Microbial Communities (Bacteria and Fungi) and Chrysanthemum Zawadskii (Herb.) Tzvel. Wilt Disease. Microorganisms, 12(2), 337. https://doi.org/10.3390/microorganisms12020337