Effect of Food Amounts on Larval Performance, Bacteriome and Molecular Immunologic Development during First-Feeding Culture of European Eel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Animals
2.3. Experimental Design
2.4. Sampling and Data Collection
2.4.1. Sampling
2.4.2. Image Analysis for Determining Larval Body Area, Feeding Incidence and Gut Fullness
2.4.3. Larval Survival
2.4.4. Gene Expression Analysis
2.4.5. Characterisation of Bacterial Community Composition by Amplicon Sequencing
2.5. Statistical Analysis
2.5.1. Larval Survival, Body Area, Feeding Success and Expression of Immune and Stress-Related Genes
2.5.2. Measures of Microbial Diversity
3. Results
3.1. Feeding Incidence, Gut Fullness, Body Area and Larval Survival
3.2. Molecular Analysis
3.3. Bacterial Community Composition Analysis
3.3.1. Alpha Diversity—Diversity within Samples
3.3.2. Relative Abundances at the Order Level
3.3.3. Beta Diversity—Comparison of Samples
3.3.4. Differential Abundance Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nielsen, T.; Prouzet, P. Capture-based aquaculture of the wild European eel (Anguilla anguilla). In Capture-Based Aquaculture. Global Overview; FAO Fisheries Technical Paper; FAO: Rome, Italy, 2008; Volume 508, pp. 141–168. [Google Scholar]
- Pike, C.; Crook, V.; Gollock, M. Anguilla anguilla. IUCN Red List Threat. Species 2020, e.T60344A152845178. [Google Scholar] [CrossRef]
- Tomkiewicz, J.; Politis, S.N.; Sørensen, S.R.; Butts, I.A.E.; Kottmann, J.S. European eel—An integrated approach to establish eel hatchery technology in Denmark. In Eels Biology, Monitoring, Management, Culture and Exploitation: Proceedings of the First International Eel Science Symposium; 5m Publishing: Sheffield, UK, 2019. [Google Scholar]
- Mordenti, O.; Casalini, A.; Parmeggiani, A.; Emmanuele, P.; Zaccaroni, A. Captive breeding of the European eel: Italian review. In Eels Biology, Monitoring, Management, Culture and Exploitation: Proceedings of the First International Eel Science Symposium; 5m Publishing: Sheffield, UK, 2019; pp. 317–339. [Google Scholar]
- Asturiano, J.F. Improvements on the reproductive control of the European eel. In Reproduction in Aquatic Animals; Springer: Singapore, 2020; pp. 293–320. [Google Scholar] [CrossRef]
- Ayala, D.J.; Munk, P.; Lundgreen, R.B.C.; Traving, S.J.; Jaspers, C.; Jørgensen, T.S.; Hansen, L.H.; Riemann, L. Gelatinous plankton is important in the diet of European eel (Anguilla anguilla) larvae in the Sargasso Sea. Sci. Rep. 2018, 8, 6156. [Google Scholar] [CrossRef]
- Miller, M.J.; Marohn, L.; Wysujack, K.; Freese, M.; Pohlmann, J.-D.; Westerberg, H.; Tsukamoto, K.; Hanel, R. Morphology and gut contents of anguillid and marine eel larvae in the Sargasso Sea. Zool. Anz. 2019, 279, 138–151. [Google Scholar] [CrossRef]
- Tanaka, H.; Kagawa, H.; Ohta, H. Production of leptocephali of Japanese eel (Anguilla japonica) in captivity. Aquaculture 2001, 201, 51–60. [Google Scholar] [CrossRef]
- Benini, E.; Bandara, K.A.; Politis, S.N.; Engrola, S.; Conceicao, L.; Nielsen, A.; Tomkiewicz, J. Exploring first-feeding diets for European eel larval culture: Insights at morphological, nutritional, and molecular levels. PLoS ONE 2023, 18, e0283680. [Google Scholar] [CrossRef]
- Tanaka, H. Progression in artificial seedling production of Japanese eel Anguilla japonica. Fish. Sci. 2015, 81, 11–19. [Google Scholar] [CrossRef]
- Vadstein, O.; Bergh, Ø.; Gatesoupe, F.-J.; Galindo-Villegas, J.; Mulero, V.; Picchietti, S.; Scapigliati, G.; Makridis, P.; Olsen, Y.; Dierckens, K.; et al. Microbiology and immunology of fish larvae. Rev. Aquac. 2013, 5, S1–S25. [Google Scholar] [CrossRef]
- Miest, J.J.; Politis, S.N.; Adamek, M.; Tomkiewicz, J.; Butts, I.A.E. Molecular ontogeny of larval immunity in European eel at increasing temperatures. Fish Shellfish Immunol. 2019, 87, 105–119. [Google Scholar] [CrossRef]
- Politis, S.N.; Benini, E.; Miest, J.J.; Engrola, S.; Sørensen, S.R.; Syropoulou, E.; Butts, I.A.E.; Tomkiewicz, J. First Assessment of Prebiotics, Probiotics, and Synbiotics Affecting Survival, Growth, and Gene Expression of European Eel (Anguilla anguilla) Larvae. Aquac. Res. 2023, 2023, 1260967. [Google Scholar] [CrossRef]
- Bandara, K.A.; Benini, E.; Politis, S.N.; Conceição, L.E.C.; Santos, A.; Sørensen, S.R.; Tomkiewicz, J.; Vadstein, O. Exploring bacterial community composition and immune gene expression of European eel larvae (Anguilla anguilla) in relation to first-feeding diets. PLoS ONE 2023, 18, e0288734. [Google Scholar] [CrossRef]
- Attramadal, K.J.K.; Salvesen, I.; Xue, R.; Øie, G.; Størseth, T.R.; Vadstein, O.; Olsen, Y. Recirculation as a possible microbial control strategy in the production of marine larvae. Aquac. Eng. 2012, 46, 27–39. [Google Scholar] [CrossRef]
- Vadstein, O.; Mo, T.A.; Bergh, Ø. Microbial Interactions, Prophylaxis and Diseases. In Culture of Cold-Water Marine Fish; Moksness, E., Kjrsvik, E., Olsen, Y., Eds.; Blackwell Publishing Ltd.: Oxford, UK, 2004; pp. 28–72. [Google Scholar] [CrossRef]
- Sørensen, S.R.; Skov, P.V.; Lauesen, P.; Tomkiewicz, J.; Bossier, P.; De Schryver, P. Microbial interference and potential control in culture of European eel (Anguilla anguilla) embryos and larvae. Aquaculture 2014, 426–427, 1–8. [Google Scholar] [CrossRef]
- Okamura, A.; Yamada, Y.; Horie, N.; Mikawa, N.; Tsukamoto, K. Long-term rearing of Japanese eel larvae using a liquid-type diet: Food intake, survival and growth. Fish. Sci. 2019, 85, 687–694. [Google Scholar] [CrossRef]
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. Official Journal of The European Union, 20.10.2010, L 276/33. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF (accessed on 16 August 2022).
- Sørensen, S.R.; Butts, I.A.E.; Munk, P.; Tomkiewicz, J. Effects of salinity and sea salt type on egg activation, fertilization, buoyancy and early embryology of European eel, Anguilla anguilla. Zygote 2016, 24, 121–138. [Google Scholar] [CrossRef]
- Politis, S.N.; Mazurais, D.; Servili, A.; Zambonino-Infante, J.-L.; Miest, J.J.; Sørensen, S.R.; Tomkiewicz, J.; Butts, I.A.E. Temperature effects on gene expression and morphological development of European eel, Anguilla anguilla larvae. PLoS ONE 2017, 12, e0182726. [Google Scholar] [CrossRef]
- Benini, E.; Engrola, S.; Politis, S.N.; Sørensen, S.R.; Nielsen, A.; Conceição, L.E.C.; Santos, A.; Tomkiewicz, J. Transition from endogenous to exogenous feeding in hatchery-cultured European eel larvae. Aquac. Rep. 2022, 24, 101159. [Google Scholar] [CrossRef]
- Politis, S.N.; Syropoulou, E.; Benini, E.; Bertolini, F.; Sørensen, S.R.; Miest, J.J.; Butts, I.A.E.; Tomkiewicz, J. Performance thresholds of hatchery produced European eel larvae reared at different salinity regimes. Aquaculture 2021, 539, 736651. [Google Scholar] [CrossRef]
- Bakke, I.; Skjermo, J.; Vo, T.A.; Vadstein, O. Live feed is not a major determinant of the microbiota associated with cod larvae (Gadus morhua): Effect of diet on cod larval microbiota. Environ. Microbiol. Rep. 2013, 5, 537–548. [Google Scholar] [CrossRef]
- McCurley, A.T.; Callard, G.V. Characterization of housekeeping genes in zebrafish: Male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol. Biol. 2008, 9, 102. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Edgar, R.C. SINTAX: A simple non-Bayesian taxonomy classifier for 16S and ITS sequences (preprint). Bioinformatics 2016, 074161. [Google Scholar] [CrossRef]
- Hill, M.O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Tsukamoto, K.; Yamada, Y.; Okamura, A.; Kaneko, T.; Tanaka, H.; Miller, M.J.; Horie, N.; Mikawa, N.; Utoh, T.; Tanaka, S. Positive buoyancy in eel leptocephali: An adaptation for life in the ocean surface layer. Mar. Biol. 2009, 156, 835–846. [Google Scholar] [CrossRef]
- Bouilliart, M.; Tomkiewicz, J.; Lauesen, P.; De Kegel, B.; Adriaens, D. Musculoskeletal anatomy and feeding performance of pre-feeding engyodontic larvae of the European eel (Anguilla anguilla). J. Anat. 2015, 227, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Yoshimatsu, T. Early development of preleptocephalus larvae of the Japanese eel in captivity with special reference to the organs for larval feeding. Bull. Grad. Sch. Bioresour. Mie Univ. 2011, 37, 11–18. [Google Scholar]
- Politis, S.N.; Sørensen, S.R.; Mazurais, D.; Servili, A.; Zambonino-Infante, J.-L.; Miest, J.J.; Clemmesen, C.M.; Tomkiewicz, J.; Butts, I.A.E. Molecular ontogeny of first-feeding European eel larvae. Front. Physiol. 2018, 9, 1477. [Google Scholar] [CrossRef]
- Austin, B.; Sharifuzzaman, S.M. (Eds.) Probiotics in Aquaculture; Springer International Publishing: Cham, Germany, 2022. [Google Scholar] [CrossRef]
- Wang, M.; Liu, G.; Lu, M.; Ke, X.; Liu, Z.; Gao, F.; Cao, J.; Zhu, H.; Yi, M.; Yu, D. Effect of Bacillus cereus as a water or feed additive on the gut microbiota and immunological parameters of Nile tilapia. Aquac. Res. 2017, 48, 3163–3173. [Google Scholar] [CrossRef]
- Roberts, R.J.; Agius, C.; Saliba, C.; Bossier, P.; Sung, Y.Y. Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: A review: Heat shock proteins in fish and shellfish. J. Fish Dis. 2010, 33, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Lam, F.W.-S.; Wu, S.-Y.; Lin, S.-J.; Lin, C.-C.; Chen, Y.-M.; Wang, H.-C.; Chen, T.-Y.; Lin, H.-T.; Lin, J.H.-Y. The expression of two novel orange-spotted grouper (Epinephelus coioides) TNF genes in peripheral blood leukocytes, various organs, and fish larvae. Fish Shellfish Immunol. 2011, 30, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, F.; Matsubara, T.; Koyama, T.; Iwamoto, H.; Miyaji, K. Whey protein hydrolysate mitigates both inflammation and endotoxin tolerance in THP-1 human monocytic leukemia cells. Immun. Inflamm. Dis. 2022, 10, e737. [Google Scholar] [CrossRef] [PubMed]
- Giatsis, C.; Sipkema, D.; Smidt, H.; Heilig, H.; Benvenuti, G.; Verreth, J.; Verdegem, M. The impact of rearing environment on the development of gut microbiota in tilapia larvae. Sci. Rep. 2015, 5, 18206. [Google Scholar] [CrossRef]
- Romero, J.; Navarrete, P. 16S rDNA-Based Analysis of Dominant Bacterial Populations Associated with Early Life Stages of Coho Salmon (Oncorhynchus kisutch). Microb. Ecol. 2006, 51, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Bourne, D.; Iida, Y.; Uthicke, S.; Smith-Keune, C. Changes in coral-associated microbial communities during a bleaching event. ISME J. 2008, 2, 350–363. [Google Scholar] [CrossRef]
- Bourne, D.G.; Munn, C.B. Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ. Microbiol. 2005, 7, 1162–1174. [Google Scholar] [CrossRef]
- Meron, D.; Atias, E.; Iasur Kruh, L.; Elifantz, H.; Minz, D.; Fine, M.; Banin, E. The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME J. 2011, 5, 51–60. [Google Scholar] [CrossRef]
- Sunagawa, S.; DeSantis, T.Z.; Piceno, Y.M.; Brodie, E.L.; DeSalvo, M.K.; Voolstra, C.R.; Weil, E.; Andersen, G.L.; Medina, M. Bacterial diversity and White Plague Disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME J. 2009, 3, 512–521. [Google Scholar] [CrossRef]
- Yang, G.; Cao, H.; Jiang, W.; Hu, B.; Jian, S.; Wen, C.; Kajbaf, K.; Kumar, V.; Tao, Z.; Peng, M. Dietary supplementation of Bacillus cereus as probiotics in Pengze crucian carp (Carassius auratus var. Pengze): Effects on growth performance, fillet quality, serum biochemical parameters and intestinal histology. Aquac. Res. 2019, 50, 2207–2217. [Google Scholar] [CrossRef]
- Yang, G.; Shen, K.; Yu, R.; Wu, Q.; Yan, Q.; Chen, W.; Ding, L.; Kumar, V.; Wen, C.; Peng, M. Probiotic (Bacillus cereus) enhanced growth of Pengze crucian carp concurrent with modulating the antioxidant defense response and exerting beneficial impacts on inflammatory response via Nrf2 activation. Aquaculture 2020, 529, 735691. [Google Scholar] [CrossRef]
- Allame, S.K.; Daud, H.; Yusoff, F.; Saad, C.; Ideris, A. Isolation, identification and characterization of Leuconostoc mesenteroides as a new probiotic from intestine of snakehead fish (Channa striatus). Afr. J. Biotechnol. 2012, 11, 3810–3816. [Google Scholar] [CrossRef]
- Suresh, M.; Iyapparaj, P.; Anantharaman, P. Optimization, characterization and partial purification of bacteriocin produced by Staphylococcus haemolyticus MSM an isolate from seaweed. Biocatal. Agric. Biotechnol. 2014, 3, 161–166. [Google Scholar] [CrossRef]
- Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 2005, 3, 777–788. [Google Scholar] [CrossRef]
- Austin, B.; Zhang, X.-H. Vibrio harveyi: A significant pathogen of marine vertebrates and invertebrates. Lett. Appl. Microbiol. 2006, 43, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kumar, C.B.; Rajendran, V.; Abishaw, N.; Anand, P.S.S.; Kannapan, S.; Nagaleekar, V.K.; Vijayan, K.K.; Alavandi, S.V. Delineating virulence of Vibrio campbellii: A predominant luminescent bacterial pathogen in Indian shrimp hatcheries. Sci. Rep. 2021, 11, 15831. [Google Scholar] [CrossRef] [PubMed]
- Kumara, K.R.; Hettiarachchi, M. White faeces syndrome caused by Vibrio alginolyticus and Vibrio fluvialis in shrimp, Penaeus monodon (Fabricius 1798)—Multimodal strategy to control the syndrome in Sri Lankan grow-out ponds. Asian Fish Sci. 2017, 30, 245–261. [Google Scholar]
- Liu, G.; Chu, M.; Nie, S.; Xu, X.; Ren, J. Effects of Ilisha elongata protein, soy protein and whey protein on growth characteristics and adhesion of probiotics. Curr. Res. Food Sci. 2022, 5, 2125–2134. [Google Scholar] [CrossRef] [PubMed]
Function | Gene Name | Abbreviation | Primer Sequence | Accession Number | Amplicon Length | |
---|---|---|---|---|---|---|
Reference | Ribosomal protein S18 | rps18 | FW | ACGAGGTTGAGAGAGTGGTG | XM_035428800.1 | 158 bp |
RV | TCAGCCTCTCCAGATCCTCT | |||||
Elongation Factor 1 | ef1 | FW | CTGAAGCCTGGTATGGTGGT | XM_035428274.1 | 75 bp | |
RV | CATGGTGCATTTCCACAGAC | |||||
Appetite | Prepro-Ghrelin | ghrl | FW | TCACCATGACTGAGGAGCTG | XM_035381207.1 | 134 bp |
RV | TGGGACGCAGGGTTTTATGA | |||||
Stress/repair | Heat shock protein 90 | hsp90 | FW | ACCATTGCCAAGTCAGGAAC | XM_035392491.1 | 153 bp |
RV | ACTGCTCATCGTCATTGTGC | |||||
Pathogen recognition | Toll-like receptor 18 | tlr18 | FW | TGGTTCTGGCTGTAATGGTG | XM035421803.1 | 145 bp |
RV | CGAAATGAAGGCATGGTAGG | |||||
Inflammatory response | Interleukin 10 | il10 | FW | CTCGACAGCATCATGACAACA | XM_035387988.1 | 133 bp |
RV | CCAGAGGTTCAGTGTTTAGGC | |||||
Tumor necrosis factor α | tnfa | FW | CACCTCTCCTCTCCTCTCCT | XM_035428518.1 | 241 bp | |
RV | CTGGGACTGTTCTTTAGCGC | |||||
Complement system | Complement component 1, Q subcomponent, C chain | c1qc | FW | TCTGCTGTCATGTTCACCCA | XM_035433127.1 | 155 bp |
RV | CTTCTCGCCATCCCTTCCAT |
Age | Comparison | p Values | |
---|---|---|---|
Sørensen–Dice | Bray–Curtis | ||
9 DPH | Inflowing water vs. larvae | 0.004 | 0.004 |
15 DPH | Inflow vs. Low food outflow | 0.012 | 0.019 |
Inflow vs. High food outflow | 0.006 | 0.003 | |
Low food outflow vs. High food outflow | 0.318 | 0.286 | |
Low food larvae vs. High food larvae | 0.73 | 0.519 | |
Low food water (outflow) vs. larvae | 0.022 | 0.043 | |
High food water (outflow) vs. larvae | 0.029 | 0.027 | |
25 DPH | Low vs. High food larvae | 0.444 | 0.492 |
30 DPH | Low vs. High food larvae | 0.029 | 0.018 |
Sample Type | Comparison | p Values | |
---|---|---|---|
Sørensen–Dice | Bray–Curtis | ||
Water inflow | 9 vs. 15 dph | 0.002 | 0.001 |
Low food larvae | 9 vs. 15 dph | 0.182 | 0.141 |
9 vs. 25 dph | 0.018 | 0.083 | |
9 vs. 30 dph | 0.031 | 0.039 | |
High food larvae | 9 vs. 15 dph | 0.025 | 0.029 |
9 vs. 25 dph | 0.023 | 0.068 | |
9 vs. 30 dph | 0.028 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandara, K.A.; Politis, S.N.; Sørensen, S.R.; Benini, E.; Tomkiewicz, J.; Vadstein, O. Effect of Food Amounts on Larval Performance, Bacteriome and Molecular Immunologic Development during First-Feeding Culture of European Eel. Microorganisms 2024, 12, 355. https://doi.org/10.3390/microorganisms12020355
Bandara KA, Politis SN, Sørensen SR, Benini E, Tomkiewicz J, Vadstein O. Effect of Food Amounts on Larval Performance, Bacteriome and Molecular Immunologic Development during First-Feeding Culture of European Eel. Microorganisms. 2024; 12(2):355. https://doi.org/10.3390/microorganisms12020355
Chicago/Turabian StyleBandara, Kasun Anuruddha, Sebastian Nikitas Politis, Sune Riis Sørensen, Elisa Benini, Jonna Tomkiewicz, and Olav Vadstein. 2024. "Effect of Food Amounts on Larval Performance, Bacteriome and Molecular Immunologic Development during First-Feeding Culture of European Eel" Microorganisms 12, no. 2: 355. https://doi.org/10.3390/microorganisms12020355
APA StyleBandara, K. A., Politis, S. N., Sørensen, S. R., Benini, E., Tomkiewicz, J., & Vadstein, O. (2024). Effect of Food Amounts on Larval Performance, Bacteriome and Molecular Immunologic Development during First-Feeding Culture of European Eel. Microorganisms, 12(2), 355. https://doi.org/10.3390/microorganisms12020355