Scrutinizing Clinical Biomarkers in a Large Cohort of Patients with Lyme Disease and Other Tick-Borne Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Serology Analysis
2.3. Analyses of Immune Markers and Biomarkers
2.4. Statistical Analysis
Marker | Mean | Test Statistic 3 | Cohen’s d | Cohen’s d Interpretation 1 | |
---|---|---|---|---|---|
T0 | T2 | ||||
CD3% (%) (reference range: 61–84%) | 68.00 | 69.34 | −2.515 ** | 0.25 | Small |
CD4% (%) (reference range: 32–60%) | 43.76 | 46.47 | −4.742 *** | 0.48 | Small |
CD4+ Helper T Cell Count (reference range: 540–1600) | 895.86 | 943.19 | −2.638 ** | 0.27 | Small |
H/S Ratio 2 (reference range: 0.90–4.50) | 2.36 | 2.47 | −2.676 ** | 0.27 | Small |
IgG (reference range: 6.00–16.00) | 11.19 | 10.68 | 1.782 * | 0.22 | Small |
Platelets (× 109 /L) (reference range: 150–400) | 269.62 | 249.27 | 4.005 *** | 0.39 | Small |
White Cell Count (× 109 /L) (reference range: 3.50–11.00) | 6.32 | 6.03 | 2.191 * | 0.21 | Small |
Transferrin (g/dL) (reference range: 1.88–3.02) | 2.53 | 2.13 | 13.113 *** | 1.27 | Large |
Transferrin Saturation (%) (reference range: 19–55%) | 28.95 | 34.48 | −4.447 *** | 0.44 | Small |
2.5. Ethics Approval
3. Results
3.1. Patient Serology Results
3.2. Abnormal Markers at T0 and T2 in the Cohort of 110 Patients
3.3. Abnormal CD57+, CD19+, ANA and RF Values at T0
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zomer, T.P.; Barendregt, J.N.M.; van Kooten, B.; van Bemmel, T.; Landman, G.W.; van Hees, B.C.; Vermeeren, Y.M. Non-specific symptoms in adult patients referred to a Lyme centre. Clin. Microbiol. Infect. 2019, 25, 67–70. [Google Scholar] [CrossRef]
- Kobayashi, T.; Higgins, Y.; Samuels, R.; Moaven, A.; Sanyal, A.; Yenokyan, G.; Lantos, P.M.; Melia, M.T.; Auwaerter, P.G. Misdiagnosis of Lyme Disease With Unnecessary Antimicrobial Treatment Characterizes Patients Referred to an Academic Infectious Diseases Clinic. Open Forum Infect. Dis. 2019, 6, ofz299. [Google Scholar] [CrossRef]
- Johnson, L.; Shapiro, M.; Mankoff, J. Removing the Mask of Average Treatment Effects in Chronic Lyme Disease Research Using Big Data and Subgroup Analysis. Healthcare 2018, 6, 124. [Google Scholar] [CrossRef]
- Shor, S.; Green, C.; Szantyr, B.; Phillips, S.; Liegner, K.; Burrascano, J.J., Jr.; Bransfield, R.; Maloney, E.L. Chronic Lyme Disease: An Evidence-Based Definition by the ILADS Working Group. Antibiotics 2019, 8, 269. [Google Scholar] [CrossRef] [PubMed]
- Willems, R.; Verhaeghe, N.; Perronne, C.; Borgermans, L.; Annemans, L. Cost of illness in patients with post-treatment Lyme disease syndrome in Belgium. Eur. J. Public Health 2023, 33, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Davidsson, M. The Financial Implications of a Well-Hidden and Ignored Chronic Lyme Disease Pandemic. Healthcare 2018, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Adrion, E.R.; Aucott, J.; Lemke, K.W.; Weiner, J.P. Health care costs, utilization and patterns of care following Lyme disease. PLoS ONE 2015, 10, e0116767. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Liu, L.; Gao, D. Modeling co-infection of Ixodes tick-borne pathogens. Math. Biosci. Eng. 2017, 14, 1301–1316. [Google Scholar] [CrossRef] [PubMed]
- Diuk-Wasser, M.A.; Vannier, E.; Krause, P.J. Co-infection by Ixodes Tick-Borne Pathogens: Ecological, Epidemiological, and Clinical Consequences. Trends Parasitol. 2016, 32, 30–42. [Google Scholar] [CrossRef]
- Swanson, S.J.; Neitzel, D.; Reed, K.D.; Belongia, E.A. Co-infections acquired from Ixodes ticks. Clin. Microbiol. Rev. 2006, 19, 708–727. [Google Scholar] [CrossRef]
- Nadelman, R.B. Erythema migrans. Infect. Dis. Clin. N. Am. 2015, 29, 211–239. [Google Scholar] [CrossRef] [PubMed]
- Rudenko, N.; Golovchenko, M.; Kybicova, K.; Vancova, M. Metamorphoses of Lyme disease spirochetes: Phenomenon of Borrelia persisters. Parasi. Vectors 2019, 12, 237. [Google Scholar] [CrossRef] [PubMed]
- Borgermans, L.; Goderis, G.; Vandevoorde, J.; Devroey, D. Relevance of chronic lyme disease to family medicine as a complex multidimensional chronic disease construct: A systematic review. Int. J. Fam. Med. 2014, 2014, 138016. [Google Scholar] [CrossRef] [PubMed]
- Sigal, L.H.; Moffat, C.M.; Steere, A.C.; Dwyer, J.M. Cellular immune findings in Lyme disease. Yale J. Biol. Med. 1984, 57, 595–598. [Google Scholar] [PubMed]
- Mehrzad, R.; Bravoco, J. Pancytopenia in Lyme disease. BMJ Case Rep. 2014, 2014, bcr2013201079. [Google Scholar] [CrossRef] [PubMed]
- Blum, L.K.; Adamska, J.Z.; Martin, D.S.; Rebman, A.W.; Elliott, S.E.; Cao, R.R.L.; Embers, M.E.; Aucott, J.N.; Soloski, M.J.; Robinson, W.H. Robust B Cell Responses Predict Rapid Resolution of Lyme Disease. Front. Immunol. 2018, 9, 1634. [Google Scholar] [CrossRef]
- Sellati, T.J.; Barberio, D.M. Mechanisms of Dysregulated Antibody Response in Lyme Disease. Front. Cell. Infect. Microbiol. 2020, 10, 567252. [Google Scholar] [CrossRef]
- Stricker, R.B.; Burrascano, J.; Winger, E. Longterm decrease in the CD57 lymphocyte subset in a patient with chronic Lyme disease. Ann. Agric. Environ. Med. 2002, 9, 111–113. [Google Scholar]
- Stricker, R.B.; Winger, E.E. Decreased CD57 lymphocyte subset in patients with chronic Lyme disease. Immunol. Lett. 2001, 76, 43–48. [Google Scholar] [CrossRef]
- Rochlin, I.; Toledo, A. Emerging tick-borne pathogens of public health importance: A mini-review. J. Med. Microbiol. 2020, 69, 781–791. [Google Scholar] [CrossRef]
- Lippi, C.A.; Ryan, S.J.; White, A.L.; Gaff, H.D.; Carlson, C.J. Trends and Opportunities in Tick-Borne Disease Geography. J. Med. Entomol. 2021, 58, 2021–2029. [Google Scholar] [CrossRef]
- Zagorac, G.B.; Kezele, T.G. Ceftriaxone and Doxycycline induced Seroconversion in Previously Seronegative Patient with Clinically Suspected Disseminated Lyme Disease: Case Report. Infect. Chemother. 2021, 53, 582–588. [Google Scholar] [CrossRef]
- Madison-Antenucci, S.; Kramer, L.D.; Gebhardt, L.L.; Kauffman, E. Emerging Tick-Borne Diseases. Clin. Microbiol. Rev. 2020, 33, e00083-18. [Google Scholar] [CrossRef]
- Boulanger, N.; Boyer, P.; Talagrand-Reboul, E.; Hansmann, Y. Ticks and tick-borne diseases. Med. Mal. Infect. 2019, 49, 87–97. [Google Scholar] [CrossRef]
- Burn, L.; Vyse, A.; Pilz, A.; Tran, T.M.P.; Fletcher, M.A.; Angulo, F.J.; Gessner, B.D.; Moisi, J.C.; Stark, J.H. Incidence of Lyme Borreliosis in Europe: A Systematic Review (2005–2020). Vector-Borne Zoonotic Dis. 2023, 23, 172–194. [Google Scholar] [CrossRef] [PubMed]
- Rebman, A.W.; Crowder, L.A.; Kirkpatrick, A.; Aucott, J.N. Characteristics of seroconversion and implications for diagnosis of post-treatment Lyme disease syndrome: Acute and convalescent serology among a prospective cohort of early Lyme disease patients. Clin. Rheumatol. 2015, 34, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Craft, J.E.; Fischer, D.K.; Shimamoto, G.T.; Steere, A.C. Antigens of Borrelia burgdorferi recognized during Lyme disease. Appearance of a new immunoglobulin M response and expansion of the immunoglobulin G response late in the illness. J. Clin. Investig. 1986, 78, 934–939. [Google Scholar] [CrossRef] [PubMed]
- Engstrom, S.M.; Shoop, E.; Johnson, R.C. Immunoblot interpretation criteria for serodiagnosis of early Lyme disease. J. Clin. Microbiol. 1995, 33, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.; Mavin, S.; Ho-Yen, D.O. Audit of the laboratory diagnosis of Lyme disease in Scotland. J. Med. Microbiol. 2005, 54, 1139–1141. [Google Scholar] [CrossRef] [PubMed]
- Berglund, J.; Eitrem, R.; Ornstein, K.; Lindberg, A.; Ringer, A.; Elmrud, H.; Carlsson, M.; Runehagen, A.; Svanborg, C.; Norrby, R. An epidemiologic study of Lyme disease in southern Sweden. N. Engl. J. Med. 1995, 333, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Dejmkova, H.; Hulinska, D.; Tegzova, D.; Pavelka, K.; Gatterova, J.; Vavrik, P. Seronegative Lyme arthritis caused by Borrelia garinii. Clin. Rheumatol. 2002, 21, 330–334. [Google Scholar] [CrossRef]
- Durovska, J.; Bazovska, S.; Ondrisova, M.; Pancak, J. Our experience with examination of antibodies against antigens of Borrelia burgdorferi in patients with suspected Lyme disease. Bratisl. Lek. Listy 2010, 111, 153–155. [Google Scholar]
- Hamilton, K.S.; Standaert, S.M.; Kinney, M.C. Characteristic peripheral blood findings in human ehrlichiosis. Mod. Pathol. 2004, 17, 512–517. [Google Scholar] [CrossRef]
- Luckheeram, R.V.; Zhou, R.; Verma, A.D.; Xia, B. CD4(+)T cells: Differentiation and functions. Clin. Dev. Immunol. 2012, 2012, 925135. [Google Scholar] [CrossRef] [PubMed]
- McKisic, M.D.; Barthold, S.W. T-cell-independent responses to Borrelia burgdorferi are critical for protective immunity and resolution of Lyme disease. Infect. Immun. 2000, 68, 5190–5197. [Google Scholar] [CrossRef]
- Wang, K.; Wei, G.; Liu, D. CD19: A biomarker for B cell development, lymphoma diagnosis and therapy. Exp. Hematol. Oncol. 2012, 1, 36. [Google Scholar] [CrossRef]
- Del Nagro, C.J.; Otero, D.C.; Anzelon, A.N.; Omori, S.A.; Kolla, R.V.; Rickert, R.C. CD19 function in central and peripheral B-cell development. Immunol. Res. 2005, 31, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Horton, S.; Fleming, K.A.; Kuti, M.; Looi, L.M.; Pai, S.A.; Sayed, S.; Wilson, M.L. The Top 25 Laboratory Tests by Volume and Revenue in Five Different Countries. Am. J. Clin. Pathol. 2019, 151, 446–451. [Google Scholar] [CrossRef]
- Pfäfflin, A.; Schleicher, E. Inflammation markers in point-of-care testing (POCT). Anal. Bioanal. Chem. 2009, 393, 1473–1480. [Google Scholar] [CrossRef]
- Laursen, S.B.; Hansen, J.M.; Schaffalitzky de Muckadell, O.B. The Glasgow Blatchford score is the most accurate assessment of patients with upper gastrointestinal hemorrhage. Clin. Gastroenterol. Hepatol. 2012, 10, 1130–1135.e1131. [Google Scholar] [CrossRef] [PubMed]
- Imrie, C.W. Prognosis of acute pancreatitis. Ann. Ital. Chir. 1995, 66, 187–189. [Google Scholar]
- Akman, C.; Bakirdogen, S. The role of serum inflammatory markers, albumin, and hemoglobin in predicting the diagnosis in patients admitted to the emergency department with a pre-diagnosis of COVID-19. Rev. Assoc. Med. Bras. (1992) 2021, 67 (Suppl. S1), 91–96. [Google Scholar] [CrossRef] [PubMed]
- Uhde, M.; Indart, A.; Fallon, B.A.; Wormser, G.P.; Marques, A.R.; Vernon, S.D.; Alaedini, A. C-Reactive Protein Response in Patients With Post-Treatment Lyme Disease Symptoms Versus Those With Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Clin. Infect. Dis. 2018, 67, 1309–1310. [Google Scholar] [CrossRef]
- Aucott, J.N.; Seifter, A. Misdiagnosis of early Lyme disease as the summer flu. Orthop. Rev. 2011, 3, e14. [Google Scholar] [CrossRef]
- Xi, D.; Thoma, A.; Rajput-Ray, M.; Madigan, A.; Avramovic, G.; Garg, K.; Gilbert, L.; Lambert, J.S. A Longitudinal Study of a Large Clinical Cohort of Patients with Lyme Disease and Tick-Borne Co-Infections Treated with Combination Antibiotics. Microorganisms 2023, 11, 2152. [Google Scholar] [CrossRef] [PubMed]
- ArminLabs. Quality Assurance. Available online: https://www.arminlabs.com (accessed on 6 February 2024).
- Garg, K.; Jokiranta, T.S.; Filen, S.; Gilbert, L. Assessing the Need for Multiplex and Multifunctional Tick-Borne Disease Test in Routine Clinical Laboratory Samples from Lyme Disease and Febrile Patients with a History of a Tick Bite. Trop. Med. Infect. Dis. 2021, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Wang, P.; Jia, H.; Chen, M.; Gu, X.; Liu, M.; Zhang, Z.; Cheng, W.; Wu, Z. Lymphocyte count or percentage: Which can better predict the prognosis of advanced cancer patients following palliative care? BMC Cancer 2017, 17, 514. [Google Scholar] [CrossRef]
- Virmani, S.; Prabhu, P.S.; Sundeep, P.T.; Kumar, V. Role of laboratory markers in predicting severity of acute appendicitis. Afr. J. Paediatr. Surg. 2018, 15, 1. [Google Scholar] [CrossRef]
- Hedges, L.; Olkin, I. Statistical Methods for Meta-Analysis; Academic Press: San Diego, CA, USA, 1985. [Google Scholar]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Statistics, L. Wilcoxon Signed-Rank Test using SPSS Statistics; Lund Research Ltd.: Nottingham, UK, 2015. [Google Scholar]
- Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive statistics and normality tests for statistical data. Ann. Card. Anaesth. 2019, 22, 67–72. [Google Scholar] [CrossRef]
- Singh, P. P Value, Statistical Significance and Clinical Significance. J. Clin. Prev. Cardiol. 2013, 2, 202–204. [Google Scholar]
- Sullivan, G.M.; Feinn, R. Using Effect Size-or Why the P Value Is Not Enough. J. Grad. Med Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef]
- Kim, H.Y. Statistical notes for clinical researchers: Chi-squared test and Fisher’s exact test. Restor. Dent. Endod. 2017, 42, 152–155. [Google Scholar] [CrossRef]
- Tavakolpour, S.; Rakhshandehroo, T.; Wei, E.X.; Rashidian, M. Lymphopenia during the COVID-19 infection: What it shows and what can be learned. Immunol. Lett. 2020, 225, 31–32. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, A.; Trombetta, E.; Cattaneo, A.; Castelli, V.; Palomba, E.; Tirone, M.; Mangioni, D.; Lamorte, G.; Manunta, M.; Prati, D.; et al. Early Phases of COVID-19 Are Characterized by a Reduction in Lymphocyte Populations and the Presence of Atypical Monocytes. Front. Immunol. 2020, 11, 560330. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Long, W.; Tu, M.; Chen, S.; Huang, Y.; Wang, S.; Zhou, W.; Chen, D.; Zhou, L.; Wang, M.; et al. Lymphocyte subset (CD4+, CD8+) counts reflect the severity of infection and predict the clinical outcomes in patients with COVID-19. J. Infect. 2020, 81, 318–356. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Zhang, B.; Huang, H.; Luo, Y.; Wu, S.; Tang, G.; Liu, W.; Mao, L.; Mao, L.; Wang, F.; et al. Using IL-2R/lymphocytes for predicting the clinical progression of patients with COVID-19. Clin. Exp. Immunol. 2020, 201, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Kamradt, T.; Krause, A.; Burmester, G.R. A role for T cells in the pathogenesis of treatment-resistant Lyme arthritis. Mol. Med. 1995, 1, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Onuora, S. Lyme arthritis: Bystander-activated T cells contribute to Lyme arthritis. Nat. Rev. Rheumatol. 2018, 14, 123. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Verges, S.; Milush, J.M.; Pandey, S.; York, V.A.; Arakawa-Hoyt, J.; Pircher, H.; Norris, P.J.; Nixon, D.F.; Lanier, L.L. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood 2010, 116, 3865–3874. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.; Brown, M.R.; Fleisher, T.A. Natural killer cell counts are not different between patients with post-Lyme disease syndrome and controls. Clin. Vaccine Immunol. 2009, 16, 1249–1250. [Google Scholar] [CrossRef] [PubMed]
- Soloski, M.J.; Crowder, L.A.; Lahey, L.J.; Wagner, C.A.; Robinson, W.H.; Aucott, J.N. Serum inflammatory mediators as markers of human Lyme disease activity. PLoS ONE 2014, 9, e93243. [Google Scholar] [CrossRef] [PubMed]
- Patterson, B.K.; Guevara-Coto, J.; Yogendra, R.; Francisco, E.B.; Long, E.; Pise, A.; Rodrigues, H.; Parikh, P.; Mora, J.; Mora-Rodriguez, R.A. Immune-Based Prediction of COVID-19 Severity and Chronicity Decoded Using Machine Learning. Front. Immunol. 2021, 12, 700782. [Google Scholar] [CrossRef] [PubMed]
- Patterson, B.K.; Yogendra, R.; Guevara-Coto, J.; Mora-Rodriguez, R.A.; Osgood, E.; Bream, J.; Parikh, P.; Kreimer, M.; Jeffers, D.; Rutland, C.; et al. Case series: Maraviroc and pravastatin as a therapeutic option to treat long COVID/Post-acute sequelae of COVID (PASC). Front Med. 2023, 10, 1122529. [Google Scholar] [CrossRef] [PubMed]
- Patterson, B.K.; Guevara-Coto, J.; Francisco, E.B.; Yogendra, R.; Parikh, P.; Mora-Rodríguez, R.A.; Mora, J.; Beaty, C.; Kaplan, G.; Katz, A.; et al. Cytokine Hub Classification of PASC, ME-CFS and other PASC-like Conditions. Search Life-Sci. Lit. 2022. [Google Scholar] [CrossRef]
- Lin, L.; Pantapalangkoor, P.; Tan, B.; Bruhn, K.W.; Ho, T.; Nielsen, T.; Skaar, E.P.; Zhang, Y.; Bai, R.; Wang, A.; et al. Transferrin iron starvation therapy for lethal bacterial and fungal infections. J. Infect. Dis. 2014, 210, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Skaar, E.P. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. 2010, 6, e1000949. [Google Scholar] [CrossRef]
- Claise, C.; Saleh, J.; Rezek, M.; Vaulont, S.; Peyssonnaux, C.; Edeas, M. Low transferrin levels predict heightened inflammation in patients with COVID-19: New insights. Int. J. Infect. Dis. 2022, 116, 74–79. [Google Scholar] [CrossRef]
- Markanday, A. Acute Phase Reactants in Infections: Evidence-Based Review and a Guide for Clinicians. Open Forum Infect. Dis. 2015, 2, ofv098. [Google Scholar] [CrossRef]
- Al-Naseem, A.; Sallam, A.; Choudhury, S.; Thachil, J. Iron deficiency without anaemia: A diagnosis that matters. Clin. Med. 2021, 21, 107–113. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Comin-Colet, J.; de Francisco, A.; Dignass, A.; Doehner, W.; Lam, C.S.; Macdougall, I.C.; Rogler, G.; Camaschella, C.; Kadir, R.; et al. Iron deficiency across chronic inflammatory conditions: International expert opinion on definition, diagnosis, and management. Am. J. Hematol. 2017, 92, 1068–1078. [Google Scholar] [CrossRef]
- Rohr, M.; Brandenburg, V.; Brunner-La Rocca, H.P. How to diagnose iron deficiency in chronic disease: A review of current methods and potential marker for the outcome. Eur. J. Med. Res. 2023, 28, 15. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.E.; Wessling-Resnick, M. Iron metabolism and the innate immune response to infection. Microbes Infect. 2012, 14, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Li, C.; Wu, Q.; An, P.; Huang, L.; Wang, J.; Chen, C.; Chen, X.; Zhang, F.; Ma, L.; et al. Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses. Nat. Commun. 2019, 10, 2935. [Google Scholar] [CrossRef] [PubMed]
Marker | Mean | Test Statistic 3 | Cohen’s d | Cohen’s d Interpretation 1 | |
---|---|---|---|---|---|
T0 | T2 | ||||
CD3% (%) (reference range: 61–84%) | 68.00 | 69.34 | −2.515 ** | 0.25 | Small |
CD4% (%) (reference range: 32–60%) | 43.76 | 46.47 | −4.742 *** | 0.48 | Small |
CD4+ Helper T Cell Count (reference range: 540–1600) | 895.86 | 943.19 | −2.638 ** | 0.27 | Small |
H/S Ratio 2 (reference range: 0.90–4.50) | 2.36 | 2.47 | −2.676 ** | 0.27 | Small |
IgG (reference range: 6.00–16.00) | 11.19 | 10.68 | 1.782 * | 0.22 | Small |
Platelets (×109/L) (reference range: 150–400) | 269.62 | 249.27 | 4.005 *** | 0.39 | Small |
White Cell Count (×109/L) (reference range: 3.50–11.00) | 6.32 | 6.03 | 2.191 * | 0.21 | Small |
Transferrin (g/dL) (reference range: 1.88–3.02) | 2.53 | 2.13 | 13.113 *** | 1.27 | Large |
Transferrin Saturation (%) (reference range: 19–55%) | 28.95 | 34.48 | −4.447 *** | 0.44 | Small |
Total Number of Patients Tested for CD57+ NK Cells, n = 37 | |||||
---|---|---|---|---|---|
Total | Borrelia Infections Only (n = 8), N (%) | Borrelia and Co-Infections (n = 8), N (%) | Tick-Borne Co-Infections without Borrelia (n = 3), N (%) | Negative Serology (n = 18), N (%) | |
Low CD57+ | 22 (59.46) | 5 (62.50) | 5 (62.50) | 1 (33.33) | 11 (61.11) |
High CD57+ | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
Total Number of Patients Tested for ANA, n = 22 | |||||
Total | Borrelia Infections Only (n = 7), N (%) | Borrelia and Co-Infections (n = 6), N (%) | Tick-Borne Co-Infections without Borrelia (n = 4), N (%) | Negative Serology (n = 5), N (%) | |
ANA Weak Positive | 5 (22.73) | 2 (28.57) | 2 (33.33) | 0 (0.00) | 1 (20.00) |
ANA Positive | 1 (4.55) | 0 (0.00) | 0 (0.00) | 1 (25.00) | 0 (0.00) |
Total Number of Patients Tested for CD19 B Lymphocytes, n = 101 | |||||
Total | Borrelia Infections Only (n = 23), N (%) | Borrelia and Co-Infections (n = 27), N (%) | Tick-Borne Co-Infections without Borrelia (n = 12), N (%) | Negative Serology (v = 39), N (%) | |
Low CD19+ | 15 (14.85) | 5 (21.74) | 2 (7.41) | 2 (16.67) | 6 (15.38) |
High CD19+ | 1 (0.99) | 0 (0.00) | 1 (3.70) | 0 (0.00) | 0 (0.00) |
Low CD19% | 37 (36.63) | 9 (39.13) | 7 (25.93) | 5 (41.67) | 16 (41.03) |
High CD19% | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
Total Number of Patients Tested for RF, n = 100 | |||||
Total | Borrelia Infections Only (n = 23), N (%) | Borrelia and Co-Infections (n = 30), N (%) | Tick-Borne Co-Infections without Borrelia (n = 11), N (%) | Negative Serology (n = 36), N (%) | |
High RF | 9 (9.00) | 1 (4.35) | 3 (10.00) | 1 (9.09) | 4 (11.11) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, D.; Garg, K.; Lambert, J.S.; Rajput-Ray, M.; Madigan, A.; Avramovic, G.; Gilbert, L. Scrutinizing Clinical Biomarkers in a Large Cohort of Patients with Lyme Disease and Other Tick-Borne Infections. Microorganisms 2024, 12, 380. https://doi.org/10.3390/microorganisms12020380
Xi D, Garg K, Lambert JS, Rajput-Ray M, Madigan A, Avramovic G, Gilbert L. Scrutinizing Clinical Biomarkers in a Large Cohort of Patients with Lyme Disease and Other Tick-Borne Infections. Microorganisms. 2024; 12(2):380. https://doi.org/10.3390/microorganisms12020380
Chicago/Turabian StyleXi, David, Kunal Garg, John S. Lambert, Minha Rajput-Ray, Anne Madigan, Gordana Avramovic, and Leona Gilbert. 2024. "Scrutinizing Clinical Biomarkers in a Large Cohort of Patients with Lyme Disease and Other Tick-Borne Infections" Microorganisms 12, no. 2: 380. https://doi.org/10.3390/microorganisms12020380
APA StyleXi, D., Garg, K., Lambert, J. S., Rajput-Ray, M., Madigan, A., Avramovic, G., & Gilbert, L. (2024). Scrutinizing Clinical Biomarkers in a Large Cohort of Patients with Lyme Disease and Other Tick-Borne Infections. Microorganisms, 12(2), 380. https://doi.org/10.3390/microorganisms12020380