Mold Odor from Wood Treated with Chlorophenols despite Mold Growth That Can Only Be Seen Using a Microscope
Abstract
:1. Introduction
2. Materials and Methods
2.1. Litterature Search on Relations between CPs, Cas, and Mold
2.2. Investigation of Two Swedish Schools with Odor Problems
2.2.1. Object Selection
2.2.2. Crawlspace Inspection and Sampling of Treated Wood
2.2.3. Analysis of Mold
2.2.4. Evaluation of Odor
2.2.5. Analysis of CPs and CAs
2.3. Statistical Analyses
3. Results
3.1. Litterature Search
3.2. Author’s Investigation of Two Schools with Odor Problems
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mendell, M.J.; Kumagai, K. Observation-based metrics for residential dampness and mold with dose-response relationships to health: A review. Indoor Air 2017, 27, 506–517. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Guidelines for Indoor Air Quality: Dampness and Mould; World Health Organization (WHO): Copenhagen, Denmark, 2009; pp. 1–248. [Google Scholar]
- Lorentzen, J.C.; Juran, S.; Johanson, G. Chloroanisoles in relation to indoor air quality and health. SWESIAQ News Lett. 2012, 21, 1. [Google Scholar]
- Lorentzen, J.C.; Juran, S.; Johanson, G. Kloranisolers betydelse för inomhusmiljön. SWESIAQ Nyhetsbrev 2012, 21, 1–2. (In Swedish) [Google Scholar]
- Lorentzen, J.C.; Juran, S.A.; Nilsson, M.; Nordin, S.; Johanson, G. Chloroanisoles may explain mold odor and represent a major indoor environment problem in Sweden. Indoor Air 2016, 26, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Lorentzen, J.C.; Juran, S.A.; Ernstgard, L.; Olsson, M.J.; Johanson, G. Chloroanisoles and chlorophenols explain mold odor but their impact on the Swedish population is attributed to dampness and mold. Int. J. Environ. Res. Public Health 2020, 17, 930. [Google Scholar] [CrossRef] [PubMed]
- Lorentzen, J.C.; Harderup, L.-E.; Johanson, G. Evidence of unrecognized indoor exposure to toxic chlorophenols and odorous chloroanisoles in Denmark, Finland, and Norway. Indoor Air 2023, 2023, 2585089. [Google Scholar] [CrossRef]
- Nazaroff, W.W. Best paper awards (editorial). Indoor Air 2017, 27, 243–245. [Google Scholar] [CrossRef] [PubMed]
- Nazaroff, W.W. 30+ years of knowledge creation: Indoor Air 1991–2021 (editorial). Indoor Air 2022, 32, e13074. [Google Scholar] [CrossRef] [PubMed]
- IARC. Carcinogenicity of Pentachlorophenol and Some Related Compounds; International Agency for Research on Cancer: Lyon, France, 2019; Volume 117, pp. 33–140. [Google Scholar]
- Stockholm Convention. Guidance for Parties to Introduce Safer Chemicals and Non-Chemical Alternatives to Pentachlorophenol, Including Waste-Related Aspects. Available online: http://chm.pops.int/Implementation/PesticidePOPs/PCP/Project/tabid/7986/Default.aspx (accessed on 14 October 2023).
- Stockholm Convention. All POPs Listed in the Stockholm Convention. Annex A (Elimination). Available online: https://www.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx (accessed on 14 October 2023).
- Bevenue, A.; Beckman, H. Pentachlorophenol: A discussion of its properties and its occurrence as a residue in human and animal tissues. Residue Rev. 1967, 19, 83–134. [Google Scholar] [CrossRef]
- Engel, C.; de Groot, A.P.; Weurman, C. Tetrachloroanisol: A source of musty taste in eggs and broilers. Science 1966, 154, 270–271. [Google Scholar] [CrossRef]
- Cserjesi, A.J.; Johnson, E.L. Methylation of pentachlorophenol by Trichoderma virgatum. Can. J. Microbiol. 1972, 18, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Curtis, F.; Dennis, C.; Gee, J.M.; Gee, M.G.; Griffiths, N.M.; Land, D.G.; Peel, J.L.; Robinson, D. Chloroanisoles as a cause of musty taint in chickens and their microbiological formation from chlorophenols in broiler house litters. J. Sci. Food Agric. 1974, 25, 811–828. [Google Scholar] [CrossRef] [PubMed]
- Curtis, R.F.; Land, D.G.; Robinson, D.; Gee, M.; Gee, J.M.; Griffiths, N.M.; Peel, J.L.; Dennis, C. 2,3,4,6-Tetrachloroanisole association with musty taint in chickens and microbiological formation. Nature 1972, 235, 223–224. [Google Scholar] [CrossRef]
- Ide, A.; Sakamoto, F.; Watanabe, H.; Watanabe, I.; Niki, Y. Decomposition of pentachlorophenol in paddy soil. Agric. Biol. Chem. 1972, 36, 1937–1944. [Google Scholar] [CrossRef]
- Suzuki, T. Methylation and hydroxylation of pentachlorophenol by Mycobacterium sp. isolated from soil. J. Pestic. Sci. 1983, 8, 419–428. [Google Scholar] [CrossRef]
- Laine, M.M.; Jorgensen, K.S. Straw compost and bioremediated soil as inocula for the bioremediation of chlorophenol-contaminated soil. Appl. Environ. Microbiol. 1996, 62, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Nyström, A.; Sävenhed, R.; Krantz-Rüilcker, C.; Grimvall, A.; Åkerstrand, K. Drinking water off-flavour caused by 2,4,6-trichloroanisole. Water Sci. Technol. 1992, 25, 241–249. [Google Scholar] [CrossRef]
- Renberg, L.; Marell, E.; Sundstrom, G.; Adolfssonerici, M. Levels of chlorophenols in natural-waters and fish after an accidental discharge of a wood-impregnating solution. Ambio 1983, 12, 121–123. [Google Scholar]
- Whitfield, F.B.; Nguyen, T.L.; Shaw, K.J.; Last, J.H.; Tindale, C.R.; Stanley, G. Contamination of dried fruit by 2,4,6-trichloroanisole and 2,3,4,6-tetrachloroanisole adsorbed from packaging materials. Chem. Ind-Lond. 1985, 19, 661–663. [Google Scholar]
- Miki, A.; Isogai, A.; Utsunomiya, H.; Iwata, H. Identification of 2,4,6-trichloroanisole (TCA) causing a musty/muddy off-flavor in sake and its production in rice koji and moromi mash. J. Biosci. Bioeng. 2005, 100, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Ramstad, T.; Walker, J.S. Investigation of musty odor in pharmaceutical products by dynamic headspace gas-chromatography. Analyst 1992, 117, 1361–1366. [Google Scholar] [CrossRef]
- Buser, H.R.; Zanier, C.; Tanner, H. Identification of 2,4,6-trichloroanisole as a potent compound causing cork taint in wine. J. Agric. Food Chem. 1982, 30, 359–362. [Google Scholar] [CrossRef]
- Spadone, J.C.; Takeoka, G.; Liardon, R. Analytical investigation of Rio off-flavor in green coffee. J. Agric. Food Chem. 1990, 38, 226–233. [Google Scholar] [CrossRef]
- Bertrand, A.; Barrios, M.L. Contamination des bouchons sur les produits de traitments de palletes de stockage des bouchons. Rev. Fr. Oenol. 1994, 149, 29–32. [Google Scholar]
- Chatonnet, P.; Guimberteau, G.; Dubourdieu, D.; Boidron, J.-N. Nature et origine des odeurs de “moisi” dans les caves. Incidences sur la contamination des vins. OENO One 1994, 28, 131–151. [Google Scholar] [CrossRef]
- Camino-Sanchez, F.J.; Bermudez-Peinado, R.; Zafra-Gomez, A.; Ruiz-Garcia, J.; Vilchez-Quero, J.L. Determination of trichloroanisole and trichlorophenol in wineries’ ambient air by passive sampling and thermal desorption-gas chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 2015, 1380, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Andersen, I.; Gyntelberg, F. Modern indoor climate research in Denmark from 1962 to the early 1990s: An eyewitness report. Indoor Air 2011, 21, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Sundell, J. Reflections on the history of indoor air science, focusing on the last 50 years. Indoor Air 2017, 27, 708–724. [Google Scholar] [CrossRef]
- Micklitz, H.W. Injuries from wood preservatives. J. Consum. Policy 1989, 12, 415–432. [Google Scholar] [CrossRef]
- Obst, A. Möglichkeiten und Grenzen Epidemiologischer Analysen zu Langzeitfolgen der Holzschutzmittelexposition in Wohnräumen Anhand der Akten des Frankfurter Holzschutzmittelprozesses 1984–1993. Ph.D. Thesis, Ernst Moritz Arndt Universität, Greifswald, Germany, 22 June 2015. (In German). [Google Scholar]
- Seidel, H.J. Environmental medicine in Germany—A review. Environ. Health Perspect. 2002, 110 (Suppl. 1), 113–118. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, K. Das Holzschutzmittelsyndrom. Verbreitung—Klinisches Bild—Diagnostische Möglichkeiten. Schlesw. Holst. Ärztebl 1989, 42, 335–338. (In German) [Google Scholar]
- Gunschera, J.; Fuhrmann, F.; Salthammer, T.; Schulze, A.; Uhde, E. Formation and emission of chloroanisoles as indoor pollutants. Environ. Sci. Pollut. Res. Int. 2004, 11, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Gunschera, J.; Fuhrmann, F.; Salthammer, T.; Schulze, A.; Uhde, E.; Uhde, M. Chloroanisoles as indoor pollutants originating from PCP-metabolism. In Proceedings of the 10th International Conference on Indoor Air Quality and Climate, Beijing, China, 4–9 September 2005; pp. 2154–2158. [Google Scholar]
- Carlsson, A. Elak lukt i källarlösa hus. Bull. Natl. Swed. Inst. Build. Res. 1974, 21, 27–32. (In Swedish) [Google Scholar]
- Lindvall, T. Assessing the relative risk of indoor exposures and hazards, and future needs. In Proceedings of the 4th International Conference on Indoor Air Quality and Climate, Berlin, Germany, 17–21 August 1987; Volume 4, pp. 116–132. [Google Scholar]
- Samuelson, I. Mögelluktande Hus. Redovisning av Skadefall; SP Technical Research Institute of Sweden: Borås, Sweden, 1981; Volume 37, pp. 1–73. (In Swedish) [Google Scholar]
- Samuelson, I. Mögel i Hus. Orsaker och Åtgärder; SP Technical Research Institute of Sweden: Borås, Sweden, 1985; Volume 16, pp. 4–11. (In Swedish) [Google Scholar]
- Pegasus Lab. Mögellukt är Inte Alltid Mögel; Pegasus Lab: Uppsala, Sweden, 1999. (In Swedish) [Google Scholar]
- Johansson, P.; Ekstrand-Tobin, A.; Svensson, T.; Bok, G. Laboratory study to determine the critical moisture level for mould growth on building materials. Int. Biodeterior Biodegrad. 2012, 73, 23–32. [Google Scholar] [CrossRef]
- Bliffeld, M.; Mundy, J.; Potrykus, I.; Fütterer, J. Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor. Appl. Genet. 1999, 98, 1079–1086. [Google Scholar] [CrossRef]
- Chen, J.B.; Ma, Y.Y.; Lin, H.P.; Zheng, Q.Z.; Zhang, X.X.; Yang, W.B.; Li, R. Fabrication of Hydrophobic ZnO/PMHS Coatings on Bamboo Surfaces: The Synergistic Effect of ZnO and PMHS on Anti-Mildew Properties. Coatings 2019, 9, 15. [Google Scholar] [CrossRef]
- Corsi, A.J.; Hernandez, F.C.R.; Cruz, G.C.Y.; Neal, J.A. The effectiveness of electron beam irradiation to reduce or eliminate mould in cork stoppers. Int. J. Food Sci. Technol. 2016, 51, 389–395. [Google Scholar] [CrossRef]
- Dang, X.J.; Stevenson, K.J.; Hupp, J.T. Monitoring molecular adsorption on high-area titanium dioxide via modulated diffraction of visible light. Langmuir 2001, 17, 3109–3112. [Google Scholar] [CrossRef]
- Deering, K.; Spiegel, E.; Quaisser, C.; Nowak, D.; Rakete, S.; Garí, M.; Bose-O’Reilly, S. Exposure assessment of toxic metals and organochlorine pesticides among employees of a natural history museum. Environ. Res. 2020, 184, 11. [Google Scholar] [CrossRef]
- Deering, K.; Spiegel, E.; Quaisser, C.; Nowak, D.; Schierl, R.; Bose-O’Reilly, S.; Garí, M. Monitoring of arsenic, mercury and organic pesticides in particulate matter, ambient air and settled dust in natural history collections taking the example of the Museum fur Naturkunde, Berlin. Environ. Monit. Assess. 2019, 191, 17. [Google Scholar] [CrossRef]
- deJong, E.; Field, J.A. Sulfur tuft and turkey tail: Biosynthesis and biodegradation of organohalogens by basidiomycetes. Annu. Rev. Microbiol. 1997, 51, 375–414. [Google Scholar] [CrossRef]
- Endo, M.; Matsui, C.; Maeta, N.; Uehara, Y.; Matsuda, R.; Fujii, Y.; Fujita, A.; Fujii, T.; Yamada, O. Growth characteristics of Aspergillus oryzae in the presence of 2,4,6-trichlorophenol. J. Gen. Appl. Microbiol. 2021, 67, 256–259. [Google Scholar] [CrossRef]
- Gabrielli, M.; Englezos, V.; Rolle, L.; Segade, S.R.; Giacosa, S.; Cocolin, L.; Paissoni, M.A.; Lambri, M.; Rantsiou, K.; Maury, C. Chloroanisoles occurrence in wine from grapes subjected to electrolyzed water treatments in the vineyard. Food Res. Int. 2020, 137, 8. [Google Scholar] [CrossRef]
- Giacosa, S.; Gabrielli, M.; Torchio, F.; Segade, S.R.; Grobas, A.M.M.; Aimonino, D.R.; Gay, P.; Gerbi, V.; Maury, C.; Rolle, L. Relationships among electrolyzed water postharvest treatments on winegrapes and chloroanisoles occurrence in wine. Food Res. Int. 2019, 120, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Haas, D.; Galler, H.; Habib, J.; Melkes, A.; Schlacher, R.; Buzina, W.; Friedl, H.; Marth, E.; Reinthaler, F.F. Concentrations of viable airborne fungal spores and trichloroanisole in wine cellars. Int. J. Food Microbiol. 2010, 144, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Henry, C. NMR method detects spoiled wine in unopened bottles. Chem. Eng. News 2005, 83, 34–35. [Google Scholar]
- Kim, C.M.; Ullah, A.; Kim, K.G.; Kim, S.Y.; Kim, G.M. Preparation of Carbon Nanotube-Wrapped Porous Microparticles Using a Microfluidic Device. J. Nanosci. Nanotechnol. 2016, 16, 12003–12008. [Google Scholar] [CrossRef]
- Lehtaru, J. Preservation of Archival Records at the Estonian National Archives through the Century. Part 2. Tuna-Ajalookultuuri Ajak. 2021. Available online: https://tuna.ra.ee/en/preservation-of-archival-records-at-the-estonian-national-archives-through-the-century-part-2/ (accessed on 2 February 2024).
- Li, Y.Q.; Li, W.C.; Wang, Y.H.; Zhou, H.L.; Hu, G.J.; Zhang, N.H.; Sun, C. Development of a solid-phase microextraction fiber coated with poly(methacrylic acid-ethylene glycol dimethacrylate) and its application for the determination of chlorophenols in water coupled with GC. J. Sep. Sci. 2013, 36, 2121–2127. [Google Scholar] [CrossRef] [PubMed]
- Muthusubramanian, L.; Mitra, R.B. A new approach to the synthesis of bromochloromethane as a biocide intermediate. J. Soc. Leather Technol. Chem. 2005, 89, 34–35. [Google Scholar]
- Pereira, C.S.; Marques, J.J.F.; San Romao, M.V. Cork taint in wine: Scientific knowledge and public perception—A critical review. Crit. Rev. Microbiol. 2000, 26, 147–162. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.S.; Pires, A.; Valle, M.J.; Boas, L.V.; Marques, J.J.F.; San Romao, M.V. Role of Chrysonilia sitophila in the quality of cork stoppers for sealing wine bottles. J. Ind. Microbiol. Biotechnol. 2000, 24, 256–261. [Google Scholar] [CrossRef]
- Philipp, C.; Sari, S.; Brandes, W.; Nauer, S.; Patzl-Fischerleitner, E.; Eder, R. Reduction in Off-Flavors in Wine Using Special Filter Layers with Integrated Zeolites and the Effect on the Volatile Profile of Austrian Wines. Appl. Sci. 2022, 12, 4343. [Google Scholar] [CrossRef]
- Prak, S.; Gunata, Z.; Guiraud, J.P.; Schorr-Galindo, S. Fungal strains isolated from cork stoppers and the formation of 2,4,6-trichloroanisole involved in the cork taint of wine. Food Microbiol. 2007, 24, 271–280. [Google Scholar] [CrossRef]
- Pröhl, A.; Böge, K.P.; AlsenHinrichs, C. Activities of an Environmental Analysis Van in the German Federal State Schleswig-Holstein. Environ. Health Perspect. 1997, 105, 844–849. [Google Scholar] [CrossRef] [PubMed]
- Rocha, S.; Delgadillo, I.; Correia, A.J.F. GC-MS study of volatiles of normal and microbiologically attacked cork from Quercus suber L. J. Agric. Food Chem. 1996, 44, 865–871. [Google Scholar] [CrossRef]
- Schnürer, J.; Olsson, J.; Börjesson, T. Fungal volatiles as indicators of food and feeds spoilage. Fungal Genet. Biol. 1999, 27, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Shehu, R.A.; Al-Hamidi, A.A.A.; Rabbani, N.; Duhaiman, A.S. Inhibition of camel lens ζ-crystallin/NADPH:Quinone oxidoreductase activity by chlorophenols. J. Enzym. Inhib. 1998, 13, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Uraki, Y.; Kubo, S.; Sano, Y. Preparation of activated carbon moldings from the mixture of waste newspaper and isolated lignins: Mechanical strength of thin sheet and adsorption property. J. Wood Sci. 2002, 48, 521–526. [Google Scholar] [CrossRef]
- Varelas, V.; Sanvicens, N.; Marco, M.P.; Kintzios, S. Development of a cellular biosensor for the detection of 2,4,6-trichloroanisole (TCA). Talanta 2011, 84, 936–940. [Google Scholar] [CrossRef] [PubMed]
- Vlachos, P.; Kampioti, A.; Kornaros, M.; Lyberatos, G. Development and evaluation of alternative processes for sterilization and deodorization of cork barks and natural cork stoppers. Eur. Food Res. Technol. 2007, 225, 653–663. [Google Scholar] [CrossRef]
- Wörle, M.; Hubert, V.; Hildbrand, E.; Hunger, K.; Lehmann, E.; Mayer, I.; Petrak, G.; Pracher, M.; von Arx, U.; Wülfert, S. Evaluation of decontamination methods of pesticide contaminated wooden objects in museum collections: Efficiency of the treatments and influence on the wooden structure. J. Cult. Herit. 2012, 13, S209–S215. [Google Scholar] [CrossRef]
- Yang, M.; Zheng, S.K. Pollutant removal-oriented yeast biomass production from high-organic-strength industrial wastewater: A review. Biomass Bioenerg. 2014, 64, 356–362. [Google Scholar] [CrossRef]
- Yapici, B.M.; Karaboz, I. The effect of two anti-fungal compounds on the growth of molds that frequently appear on tanned leather. J. Am. Leather Chem. Assoc. 1997, 92, 38–45. [Google Scholar]
- Alleman, B.C.; Logan, B.E.; Gilbertson, R.L. Toxicity of pentachlorophenol to six species of white rot fungi as a function of chemical dose. Appl. Environ. Microbiol. 1992, 58, 4048–4050. [Google Scholar] [CrossRef] [PubMed]
- Beliakova, L.A. Pentachlorophenolate sodium as an antiseptic preventing mold formation in the glue. Mikrobiologiia 1956, 25, 713–717. [Google Scholar] [PubMed]
- Cserjesi, A.J. The adaptation of fungi to pentachlorophenol and its biodegradation. Can. J. Microbiol. 1967, 13, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- Duncan, C.G.; Deverall, F.J. Degradation of Wood Preservatives by Fungi. Appl. Microbiol. 1964, 12, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Higson, F.K. Degradation of xenobiotics by white rot fungi. Rev. Environ. Contam. Toxicol. 1991, 122, 111–152. [Google Scholar] [CrossRef] [PubMed]
- Hofrichter, M.; Bublitz, F.; Fritsche, W. Unspecific degradation of halogenated phenols by the soil fungus Penicillium frequentans Bi 7/2. J. Basic Microbiol. 1994, 34, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Komorowicz, M.; Janiszewska-Latterini, D.; Przybylska-Balcerek, A.; Stuper-Szablewska, K. Fungal Biotransformation of Hazardous Organic Compounds in Wood Waste. Molecules 2023, 28, 4823. [Google Scholar] [CrossRef] [PubMed]
- Kremer, S.; Sterner, O.; Anke, H. Degradation of pentachlorophenol by Mycena avenacea TA 8480-identification of initial dechlorinated metabolites. Z. Naturforschung C J. Biosci. 1992, 47, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Lamar, R.T.; Dietrich, D.M. In Situ Depletion of Pentachlorophenol from Contaminated Soil by Phanerochaete spp. Appl. Environ. Microbiol. 1990, 56, 3093–3100. [Google Scholar] [CrossRef] [PubMed]
- Leontievsky, A.A.; Myasoedova, N.M.; Baskunov, B.P.; Evans, C.S.; Golovleva, L.A. Transformation of 2,4,6-trichlorophenol by the white rot fungi Panus tigrinus and Coriolus versicolor. Biodegradation 2000, 11, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Mileski, G.J.; Bumpus, J.A.; Jurek, M.A.; Aust, S.D. Biodegradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 1988, 54, 2885–2889. [Google Scholar] [CrossRef] [PubMed]
- Montiel-González, A.M.; Fernández, F.J.; Keer, N.; Tomasini, A. Increased PCP removal by Amylomyces rouxii transformants with heterologous Phanerochaete chrysosporium peroxidases supplementing their natural degradative pathway. Appl. Microbiol. Biotechnol. 2009, 84, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Pezzotti, F.; Okrasa, K.; Therisod, M. Oxidation of chlorophenols catalyzed by Coprinus cinereus peroxidase with in situ production of hydrogen peroxide. Biotechnol. Prog. 2004, 20, 1868–1871. [Google Scholar] [CrossRef] [PubMed]
- Reddy, G.V.B.; Gold, M.H. Degradation of pentachlorophenol by Phanerochaete chrysosporium: Intermediates and reactions involved. Microbiology 2000, 146 Pt 2, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Rose, L.J.; Simmons, R.B.; Crow, S.A.; Ahearn, D.G. Volatile organic compounds associated with microbial growth in automobile air conditioning systems. Curr. Microbiol. 2000, 41, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Schmidhalter, D.R.; Canevascini, G. Isolation and characterization of the cellobiose dehydrogenase from the brown-rot fungus Coniophora puteana (Schum ex Fr.) Karst. Arch. Biochem. Biophys. 1993, 300, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Seigle-Murandi, F.; Steiman, R.; Benoit-Guyod, J.L. Biodegradation potential of some micromycetes for pentachlorophenol. Ecotoxicol. Environ. Saf. 1991, 21, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Shirk, H.G.; Poelma, P.L.; Corey, R.R., Jr. The influence of chemical structure on fungal activity. I. Effect of p-chlorophenol and derivatives. Arch. Biochem. Biophys. 1951, 32, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Tayal, A.K.; Das, L.; Kaur, I. Biodegradation of pentachlorophenol (PCP) by white rot fungal strains screened from local sources and its estimation by high-performance liquid chromatography. Biomed. Chromatogr. BMC 1999, 13, 220–224. [Google Scholar] [CrossRef]
- Tortella, G.R.; Diez, M.C.; Duran, N. Fungal diversity and use in decomposition of environmental pollutants. Crit. Rev. Microbiol. 2005, 31, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Andersson, P.; Risberg, P. Trollängsskolan Hus C, Askim. Undersökning av Krypgrund Samt Slöjdsalar; Dry-IT AB: Gothenburg, Sweden, 2016; pp. 1–12. (In Swedish) [Google Scholar]
- Lundholm, S. Innemiljöutredning—Tångenskolan; WSP Environmental Sverige: Gothenburg, Sweden, 2017; pp. 1–22. (In Swedish) [Google Scholar]
- Ekberg, O.; Lorentzen, J.C.; Harderup, L.-E. Investigating the presence of mold in wood treated with chlorophenol. In Proceedings of the 12th Nordic Symposium on Building Physics (NSB 2020), E3S Web of Conferences, Tallinn, Estonia, 7–9 September 2020; Volume 172, p. 10006. [Google Scholar] [CrossRef]
- Catelli, E.; Bănică, F.-G.; Bănică, A. Salt efflorescence in historic wooden buildings. Herit. Sci. 2016, 4, 31. [Google Scholar] [CrossRef]
- Nyman, E. Lukt Från Impregnerat Trä; Svenska Träskyddsinstitutet: Stockholm, Sweden, 1994; pp. 1–29. (In Swedish) [Google Scholar]
- Norén, Y. Construction Deficiencies in a Terrace House Area. Suggestions of Reconstruction Solutions. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, April 2010. (In Swedish with Abstract In English). [Google Scholar]
- Bhatt, P.; Kumar, M.S.; Mudliar, S.; Chakrabarti, T. Biodegradation of chlorinated compounds—A review. Crit. Rev. Environ. Sci. Technol. 2007, 37, 165–198. [Google Scholar] [CrossRef]
- Olaniran, A.O.; Igbinosa, E.O. Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes. Chemosphere 2011, 83, 1297–1306. [Google Scholar] [CrossRef]
- Samuelson, I. 20 Fuktskador; Lund University, Faculty of Engineering: Lund, Sweden, 1977; pp. 1–97. (In Swedish) [Google Scholar]
- Höglund, I.; Hyppel, A. New method of renovating wall sills damaged by mould. Build. Res. Inf. 1991, 19, 282–286. [Google Scholar] [CrossRef]
- Pershagen, G. Epidemiologiska undersökningsmetoder—En kunskapssammanställning. In Beskrivningar av Allergi/Överkänslighet. Expertbilaga Till Allergiutredningens Betänkande; SOU 1987:77; Statens Offentliga Utredningar: Stockholm, Sweden, 1989; pp. 119–130. (In Swedish) [Google Scholar]
- Sundell, J. Inomhusmiljöers betydelse för uppkomst av allergi och annan överkänslighet. In Beskrivningar av Allergi/Överkänslighet. Expertbilaga Till Allergiutredningens Betänkande; SOU 1987:77; Statens Offentliga Utredningar: Stockholm, Sweden, 1989; pp. 130–158. (In Swedish) [Google Scholar]
- SOU. Beskrivningar av allergi/Överkänslighet. Expertbilaga Till Allergiutredningens Betänkande; SOU 1989:77; Statens Offentliga Utredningar: Stockholm, Sweden, 1989; p. 187. (In Swedish) [Google Scholar]
- Berglund, B.; Berglund, U.; Lindvall, T. Characterization of indoor air quality and “sick buildings”. ASHRAE Trans. 1984, 90 Pt 1, 1045–1055. [Google Scholar]
- Thacher, J.D.; Gruzieva, O.; Pershagen, G.; Melén, E.; Lorentzen, J.C.; Kull, I.; Bergström, A. Mold and dampness exposure and allergic outcomes from birth to adolescence: Data from the BAMSE cohort. Allergy 2017, 72, 967–974. [Google Scholar] [CrossRef]
School Sample | Sample Location | Odor | Mold Index | CPs and CAs Present in Samples | ||
---|---|---|---|---|---|---|
Lund | Uppsala1 | Uppsala2 | ||||
A 1 | SP | No | No | No | 2 | Yes |
A 2 | SP | No | No | No | 2 | Yes |
A 3 | C | Yes | No | No | 3 | Yes 1 |
A 4 | SP | No | No | No | 2 | Yes |
A 5 | SP | No | No | No | 3 | Yes |
A 6 | C | Yes | Yes | Yes | 4 | Yes 1 |
A 7 | C | Yes | No | Yes | 4 | Yes 1 |
A 8 | SP | No | No | No | 2 | Yes |
B 9 | SP | No | No | No | 3 | Yes |
B 10 | SP | No | Yes | No | 3 | Yes |
B 11 | C | No | Yes | No | 4 | Yes 1 |
B 12 | C | No | No | No | 1 | Yes |
B 13 | SP | No | No | No | 2 | Yes |
B 14 | SP | No | No | No | 2 | Yes |
B 15 | C | No | No | No | 1 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorentzen, J.C.; Ekberg, O.; Alm, M.; Björk, F.; Harderup, L.-E.; Johanson, G. Mold Odor from Wood Treated with Chlorophenols despite Mold Growth That Can Only Be Seen Using a Microscope. Microorganisms 2024, 12, 395. https://doi.org/10.3390/microorganisms12020395
Lorentzen JC, Ekberg O, Alm M, Björk F, Harderup L-E, Johanson G. Mold Odor from Wood Treated with Chlorophenols despite Mold Growth That Can Only Be Seen Using a Microscope. Microorganisms. 2024; 12(2):395. https://doi.org/10.3390/microorganisms12020395
Chicago/Turabian StyleLorentzen, Johnny C., Olle Ekberg, Maria Alm, Folke Björk, Lars-Erik Harderup, and Gunnar Johanson. 2024. "Mold Odor from Wood Treated with Chlorophenols despite Mold Growth That Can Only Be Seen Using a Microscope" Microorganisms 12, no. 2: 395. https://doi.org/10.3390/microorganisms12020395
APA StyleLorentzen, J. C., Ekberg, O., Alm, M., Björk, F., Harderup, L.-E., & Johanson, G. (2024). Mold Odor from Wood Treated with Chlorophenols despite Mold Growth That Can Only Be Seen Using a Microscope. Microorganisms, 12(2), 395. https://doi.org/10.3390/microorganisms12020395