Disinfection of Bacteria in Aerosols by Applying High Voltage to Stranded Wire Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Experimental Procedure
2.3. Comparison of Disinfection Rates at under Various Voltage Waveforms
2.4. Comparative Analysis of Disinfection Rates with Single and Stranded Anode Wires
2.5. Electric Field Analysis of Single and Stranded Wire Configurations
2.6. Statistical Analysis
3. Results
3.1. Disinfection Rates under Different Voltage Waveforms
3.2. Disinfection Using Solid Wire and Stranded Wire Electrodes
3.3. Electric Field Analysis of Solid Wire and Stranded Wire Electrodes
4. Discussion
5. Conclusions
- The objective of this study was to achieve aerosol disinfection through the application of a pulsed voltage and to scrutinize the distribution of the electric field across diverse electrode configurations. Consequently, the ensuing principal discoveries were ascertained:
- Disinfection rates exhibited an augmentation concomitant with the escalation of the applied voltage.
- When the voltage was elevated from 15 kV to 20 kV, a discernible variance manifested in the augmentation of disinfection rates between pulsed and DC voltages. Nonetheless, no significant distinction in the disinfecting efficacy was observed between the pulsed and AC voltages.
- The disinfecting efficacy witnessed an amplification in tandem with an escalation in the frequency of the pulsed voltage.
- Altering the electrode geometry from a solid wire to two stranded wires resulted in an increase in the disinfection rate. The augmentation in disinfection rate with stranded wires was substantial, surpassing 2.0 logarithmic units in comparison with the solid wire electrode.
- Electric field analysis divulged a marginal reduction in field strength with an augmentation in the number of stranded wires. Nevertheless, the actual disinfection potency exhibited an escalation. This phenomenon may be attributed to an upsurge in the frequency of electric field applications per unit of time, attributable to diminished air velocity induced by the electrode configuration.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vella, F.; Senia, P.; Ceccarelli, M.; Vitale, E.; Maltezou, H.; Taibi, R.; Ledda, C. Transmission mode associated with coronavirus disease 2019: A review. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 7889–7904. [Google Scholar] [CrossRef]
- Myojo, T.; Okada, T. Aerosol Transmission of COVID-19 and Effectiveness of Masks. J. Aerosol Res. 2021, 36, 223–230. [Google Scholar] [CrossRef]
- Takekagawa, N. Aerosol, Droplet Transmission, and Airborne Transmission. J. Aerosol Res. 2021, 36, 65–74. [Google Scholar] [CrossRef]
- Kousaka, Y.; Nomura, T.; Naito, M. The Possibility of the Aerosol Infection of Corona Disease COVID-19—Analysis from the Viewpoint of Particle Technology. J. Soc. Powder. 2020, 57, 526–529. [Google Scholar] [CrossRef]
- Yanagi, U. Design of air-conditioning and ventilation system in hospital-acquired infection prevention. Jpn. J. Clin. Ecol. 2018, 27, 67–76. [Google Scholar]
- Takada, K.; Furukawa, T.; Ueno, T. Study on efficiency of aerosol disinfection by PEF. 1st Kosen Res. Int. Symp. 2023, 1, 33. [Google Scholar]
- Yamaguchi, M.; Isawa, K.; Yamada, Y.; Kawakami, R.; Tomioka, K. Examination of the Anti-Microbe Measure with the Chlorine-Based Chemicals: Evaluation of Sterlizing Efficacy of Ultrasonic Fogging with Hypochlorite or Slightly Acid Electrolzed Solutions in an Actual Large Space. J. Environ. Eng. (Trans. AIJ) 2015, 80, 945–952. [Google Scholar] [CrossRef]
- Tatsumi, T.; Ikeguti, A.; Sasaki, K.; Oginol, A.; Nishi, Y.; Goto, M. Effect of Fogging with Solution of Didecyl Dimethyl Ammonium Chloride (DDAC) on Aerial Bacteria and Dust in Floor Feeding Meat-type Chicken Windowless House Ventilated Cross Wise under Negative Pressure. J. Jpn. Soc. Poult. Dis. 2010, 45, 214–218. (In Japanese) [Google Scholar]
- Tatsumi, T.; Sasaki, K. Effect of Spraying with a Solution of Didecyl Dimethyl Ammonium Chloride (DDAC) on Aerial Bacteria in Layer Cage-Feeding Windowless House Cross-Ventilated Under Negative Pressure. J. Jpn. Soc. Poult. Dis. 2010, 46, 173–180. (In Japanese) [Google Scholar]
- Imanishi, Y.; Furuta, K. Factors Affected for Efficacy of Disinfectant Solutions Sprayed like a Mist. Jpn. Poult. Sci. 1991, 28, 81–87. [Google Scholar] [CrossRef]
- Naito, S. Inhibition of Food Microorganisms by Application of Ozone and UV. Jpn. J. Food Microbiol. 1995, 12, 105–113. [Google Scholar]
- Ikeda, A.; Kawai, Y.; Esaki, K.; Nakayama, S. Sterilization of Vegetables Preserved at Low Temperature with Low Ozone Concentration. J. Soc. High. Technol. Agric. 1998, 10, 237–242. [Google Scholar] [CrossRef]
- Kusumoto, N.; Watanabe, A.; Hasunuma, Y.; Hiraoka, S.; Kawashima, N.; Tokuoka, Y. Bactericidal activity against Bacillus atrophaeus by ultraviolet-ozone generation method using microwave plasma. Mater. Technol. 2020, 38, 41–46. [Google Scholar]
- Seki, H. The Inactivation of Virus and Microbe in the Air & CT Value. Urban. Pest. Manag. 2015, 5, 17–23. [Google Scholar] [CrossRef]
- Sung, M.; Kato, S.; Yanagi, U. Evaluation of surface and air disinfection effects using UV radiation simulation. J. Environ. Eng. 2009, 74, 1137–1143. [Google Scholar] [CrossRef]
- Watanabe, Y.; Nawa, H.; Koike, N. The Follow-up Study on Effects of Ultraviolet Air Disinfection System against Airborne Bacteria. Jpn. J. Environ. Infect. 1997, 12, 174–176. [Google Scholar] [CrossRef]
- Nishikiori, K. The Utilization of Ultraviolet Ray and Electron Beam. J. Illum. Eng. Inst. Jpn. 1997, 81, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Funayama, H. UV Sterilization Characteristics of E coli and Bacillus Subtilis Spores. Res. Rep. Natl. Inst. Technol. Akita Coll. 2010, 46, 80–85. [Google Scholar]
- Takeuchi, Y. Deodorization technology using ozone lamp. Jpn. J. Swine Sci. 1995, 32, 236–238. [Google Scholar] [CrossRef]
- Yamabe, C. Ozone Generation Technologies and Their Applications. The transactions of the institute of Electrical Engineers of Japan. Fundam. Mater. Soc. 2006, 126, 874–877. [Google Scholar] [CrossRef]
- Ohkubo, T.; Kanazawa, S.; Nomoto, Y.; Chang, J.S. The Effect of CO2 Concentration in Air on Ozone Generation by Corona Discharges in a Wire-Plate Electrode System. J. Inst. Electrost. Jpn. 1991, 15, 56–62. [Google Scholar]
- Uchino, T. Physical Disinfection Technique for Agricultural Products. J. Jpn. Soc. Agric. Mach. 2013, 75, 56–61. [Google Scholar] [CrossRef]
- Nakamura, H.; Furuhashi, M. Ultraviolet Irradiation of Air Sterilization under Dynamic Airflow System: Bacterial Aerosols Behavior and Inactivation. J. Aerosol. Res. 1986, 1, 169–177. [Google Scholar] [CrossRef]
- Kato, S.; Sung, M.; Yanagi, U.; Takagi, T.; Yanagihara, R.; Ida, H.; Tanaka, T.; Asai, M. Application of UVGI system to Indoor Air in North America. Soc. Heat. Air-Cond. Sanit. Eng. Jpn. 2008, 2043–2046. [Google Scholar] [CrossRef]
- Oguma, K.; Koshio, M.; Lohwacharin, J.; Takizawa, S. Effects of Suspended Particles in Water on Efficiency of UV Disinfection. J. Jpn. Soc. Water Environ. 2017, 40, 59–65. [Google Scholar] [CrossRef]
- Mizuno, T. Ozone is such a substance (Chemistry of Ozone). Chem. Educ. 2011, 59, 68–73. [Google Scholar]
- Akaike, T. Surface Chemistry of Bioelectronic Materials—Approach to Artificial Mitochondria and Highly Functional Artifical Organ Devices. J. Surf. Sci. Soc. Jpn. 1989, 10, 102–108. [Google Scholar] [CrossRef]
- Shoji, S. Micro/Nanosystems for Chemical/Biochemical Applications—Applications of MEMS and Top-down Nanotechnologies for Chemistry and Biotechnology. Hyomen Kagaku 2003, 24, 684–688. [Google Scholar] [CrossRef]
- Kinoshita, A.; Omukai, T.; Komada, F.; Utsumi, Y. High density cell culture using micro 3D structure. J. Jpn. Inst. Electron. Packag. 2010, 13, 200–203. [Google Scholar] [CrossRef]
- Onoda, M.; Abe, Y.; Tada, K.; Kawakita, Y.; Fujisato, T.; Uto, S. Conductive Polymers as Bioelectronic Materials. IEEJ Trans. EIS 2012, 132, 1422–1428. [Google Scholar] [CrossRef]
- Suzuki, T. A Cell Array Fabricated by Assembly-Free Multidirectional Photolithography. J. Jpn. Inst. Electron. Packag. 2010, 13, 194–199. [Google Scholar] [CrossRef]
- Sale, A.J.H.; Hamilton, W.A. Effects of high electric fields on microorganisms: I. Killing of bacteria and yeasts. Biochim. Biophys. Acta (BBA)—Gen. Subj. 1967, 148, 781–788. [Google Scholar] [CrossRef]
- Sato, T.; Murakami, Y.; Muramoto, Y. Effect of D.C. High Electric Field Application on Sterilization of Escherichia coli in Ice. Trans. Jpn. Soc. Refrig. Air Cond. Eng. 2019, 36, 27–33. [Google Scholar] [CrossRef]
- Ishida, N.; Ohshima, T.; Sato, M. Characteristics of Pulsed Electric Field Inactivation System Using Spiral Electrode Configuration. Jpn. J. Food Eng. 2004, 5, 35–40. [Google Scholar] [CrossRef]
- Uemura, K.; Inoue, T.; Hoshino, T. Inactivation of Microorganisms in Liquid Foods by High Electric Field Alternating Current. Nippon. Shokuhin Kagaku Kogaku Kaishi 2016, 63, 185–189. [Google Scholar] [CrossRef]
- Nakamura, G.; Oishi, R.; Nuki, H.; Katsuki, S.; Masuda, N.; Shimizu, Y. Influence of Fat Globules on Pulsed Electric Field Sterilization of Milk. Trans. Inst. Electr. Eng. Jpn. A 2021, 141, 597–603. [Google Scholar] [CrossRef]
- Lee, K.; Paek, K.H.; Ju, W.T.; Lee, Y. Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen. J. Microbiol. 2006, 44, 269–275. [Google Scholar]
- Nakamura, M.; Nishikawa, K. Principle and Application of Sanitization Function of Plasma Cluster Ions. SEIKATSU EISEI (J. Urban Living Health Assoc.) 2009, 53, 239–246. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, Y.; Chang, X.; Yao, Z.; Wei, X.; Feng, Z.; Zhang, D.; Zhou, Q.; Wang, X.; Luo, H. In-duct grating-like dielectric barrier discharge system for air disinfection. J. Hazard. Mater. 2022, 435, 129075. [Google Scholar] [CrossRef] [PubMed]
- Hayamizu, A.; Tenma, T.; Mizuno, A. Destruction of Yeast Cells by Pulsed High Voltage Application. Int. J. Plasma Environ. Sci. Technol. 1989, 13, 331–332. [Google Scholar]
- Ramaswamy, R.; Prabu Ramachandran, R.; Gowrisree, V. High Voltage Pulsed Electric Field Application Using Titanium Electrodes for Bacterial Inactivation in Unpurified Water. Jpn. J. Food Eng. 2019, 20, 63–70. [Google Scholar] [CrossRef]
- Kitajima, N.; Akuzawa, E.; Ueda, K.; Ohshima, T.; Sato, M. Inactivation System Using Textile Electrode by Pulsed Electric Field. Jpn. J. Food Eng. 2007, 8, 139–145. [Google Scholar] [CrossRef]
- Schoenbach, K.H.; Joshi, R.P.; Stark, R.H.; Dobbs, F.C.; Beebe, S.J. Bacterial Decontamination of Liquids with Pulsed Electric Fields. IEEE Trans. Dielect. Electr. Insul. 2000, 7, 637–645. [Google Scholar] [CrossRef]
- Miyazaki, D.; Toyomitsu, H.; Katano, K.; Kazue, S.; Katsuki, S. Experimental and Aanalytical Considerations of Pulse Waveform for Efficient Sterilization Using Pulsed Electric Field. Proc. Inst. Electrost. Jpn. 2020, 43, 8–13. [Google Scholar]
- Bai-Lin, Q.; Qinghua, Z.; Barbosa-Canovas, G.V.; Swanson, B.G.; Pedrow, P.D. Inactivation of microorganisms by pulsed electric fields of different voltage waveforms. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 1047–1057. [Google Scholar] [CrossRef]
- Zukeran, A.; Sawano, H.; Ito, K.; Oi, R.; Kobayashi, I.; Wada, R.; Sawai, J. Investigation of inactivation process for microorganism collected in an electrostatic precipitator. J. Electrost. 2018, 93, 70–77. [Google Scholar] [CrossRef]
- Kakutani, K.; Matsuda, Y.; Nonomura, T.; Takikawa, Y.; Takami, T.; Toyoda, H. A Simple Electrostatic Precipitator for Trapping Virus Particles Spread via Droplet Transmission. Int. J. Environ. Res. Public Health 2021, 18, 4934. [Google Scholar] [CrossRef]
- Katsuki, S. Bacteria Decontamination by Pulsed Power. J. Plasma Fusion. Res. 2003, 79, 20–25. [Google Scholar] [CrossRef]
- Beveridge, J.R.; Wall, K.; MacGregor, S.J.; Anderson, J.G. The Influence of Pulse Duration of Monopolar and Bipolar Profile Pulsed Electric Fields on the Inactivation of Obesumba Cterium Rroteus—A Spoilage Microorganism. In Proceedings of the Conference Record of the Twenty-Sixth International Power Modulator Symposium, 2004 and 2004 High-Voltage Workshop, San Francisco, CA, USA, 23–26 May 2004; pp. 615–618. [Google Scholar] [CrossRef]
- Kajiwara, T.; Oide, T.; Baba, K.; Ohnishi, N.; Katsuki, S.; Akiyama, H.; Sasahara, R.; Inoue, K. Inactivation of Enterobacter Aerogenes in Carboxymethyl Cellulose Solution Using Intense Pulsed Electric Fields (IPEF) Combined with Moderate Thermal Treatment. IEEE Trans. Dielect. Electr. Insul. 2015, 22, 1849–1855. [Google Scholar] [CrossRef]
- Gusbeth, C.; Frey, W.; Volkmann, H.; Schwartz, T.; Bluhm, H. Pulsed electric field treatment for bacteria reduction and its impact on hospital wastewater. Chemosphere 2009, 75, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Baba, K.; Kajiwara, T.; Watanabe, S.; Katsuki, S.; Sasahara, R.; Inoue, K. Low-Temperature Pasteurization of Liquid Whole Egg Using Intense Pulsed Electric Fields. Electron. Comm. Jpn. 2018, 101, 87–94. [Google Scholar] [CrossRef]
- Ricci, A.; Parpinello, G.P.; Versari, A. Recent Advances and Applications of Pulsed Electric Fields (PEF) to Improve Polyphenol Extraction and Color Release during Red Winemaking. Beverages 2018, 4, 18. [Google Scholar] [CrossRef]
- Sakurauch, Y.; Kondo, E. Lethal Effect of High Electric Fields on Microorganisms. J. Agric. Chem. Soc. Jpn. 1980, 54, 837–844. [Google Scholar]
- Saito, K.; Nozawa, Y.; Minamitani, Y.; Fukata, H. Development of Non-Thermal Sterilization Treatment System without Impacting to Enzyme in Vegetable Drink by Pulsed Electric Field. IEEJ Trans. FM 2017, 137, 678–684. [Google Scholar] [CrossRef]
- Ishida, N.M.; Sugiarto, A.T.; Ohshima, T.; Sato, M. Killing Effect of Concentrated Pulsed Electric Field Apparatus. Jpn. J. Food Eng. 2003, 4, 47–51. [Google Scholar] [CrossRef]
- Kajiwara, T.; Oide, T.; Katsuki, S.; Sakugawa, T.; Akiyama, H. Liquid sterilization using intense electrical pulses combined with thermal post-treatment. In Proceedings of the 2014 IEEE International Power Modulator and High Voltage Conference (IPMHVC), Santa Fe, NM, USA, 1–5 June 2014; pp. 53–56. [Google Scholar] [CrossRef]
- Chen, J.; Tao, X.; Sun, A.; Wang, Y.; Liao, X.; Li, L.; Shi, Z. Influence of pulsed electric field and thermal treatments on the quality of blueberry juice. Int. J. Food Prop. 2014, 17, 1419–1427. [Google Scholar] [CrossRef]
- Kubokawa, H.; Imoto, S.; Ogi, I.; Kitashima, T.; Tanabe, K. Countermeasures for Wind Noise from Overhead Transmission Line. Wind. Eng. 2004, 17, 29–36. [Google Scholar] [CrossRef]
- Shimojima, K. Aerodynamic Noise generated by Overhead Transmission Line; Its Prediction and Control. J. INCE Jpn. 1994, 18, 19–22. [Google Scholar]
- Ueno, T.; Takada, K.; Furukawa, T.; Sakugawa, T. Aerosol Sterilization by Impulse High Voltage with Different Electrode Structures. In Proceedings of the 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), Prague, Czech Republic, 20–22 July 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Nomura, Y.; Yamamura, J.; Fukui, C.; Fujimaki, H.; Sakamoto, K.; Matsuo, K.; Kuromatsu, H.; Kikuchi, Y.; Haishima, Y. Performance Evaluation of Bactericidal Effect and Endotoxin Inactivation by Low-temperature Ozone/Hydrogen Peroxide Mixed Gas Exposure. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 1807–1816. [Google Scholar] [CrossRef]
- Cardoso, C.F.; Faria, J.d.A.F.; Walter, E.H.M. Modeling of Sporicidal Effect of Hydrogen Peroxide in the Sterilization of Low Density Polyethylene Film Inoculated With Bacillus Subtilis Spores. Food Control 2011, 22, 1559–1564. [Google Scholar] [CrossRef]
- Luechapattanaporn, K.; Wang, Y.; Wang, J.; Tang, J.; Hallberg, L.M.; Dunne, C.P. Sterilization of Scrambled Eggs in Military Polymeric Trays by Radio Frequency Energy. J. Food Sci. 2006, 70, E288–E294. [Google Scholar] [CrossRef]
- Murphy, R.Y.; Beard, B.L.; Martin, E.M.; Duncan, L.K.; Marcy, J.A. Comparative Study of Thermal Inactivation of Escherichia Coli O157:H7, Salmonella, and Listeria Monocytogenes in Ground Pork. J. Food Sci. 2004, 69, FMS97–FMS101. [Google Scholar] [CrossRef]
- Wang, H.; Feng, H.; Luo, Y. Dual-Phasic Inactivation of Escherichia coli O157:H7 with Peroxyacetic Acid, Acidic Electrolyzed Water and Chlorine on Cantaloupes and Fresh-cut Apples. J. Food Saf. 2006, 26, 335–347. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, H.; Chen, T.; Chiang, P.; Chen, Y.; Yeh, J.; Weng, W. A smart sterilization robot system with chlorine dioxide for spray disinfection. IEEE Sens. J. 2021, 21, 22047–22057. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, J.; Feng, X.; Li, H. Thermal-sprayed photocatalytic coatings for biocidal applications: A review. J. Therm. Spray Technol. 2020, 30, 1–24. [Google Scholar] [CrossRef]
- Feng, Z.; Cao, S.; Wang, J.; Kumar, P.; Haghighat, F. Indoor airborne disinfection with electrostatic disinfector (esd): Numerical simulations of esd performance and reduction of computing time. Build. Environ. 2021, 200, 107956. [Google Scholar] [CrossRef]
- ISO 11137-2:2013; Sterilization of Health Care Products—Radiation—Part 2: Establishing the Sterilization Dose. ISO: Geneva, Switzerland, 2013.
- ISO 7250-1:2017; Basic Human Body Measurements for Technological Design—Part 1: Body Measurement Definitions and Landmarks. ISO: Geneva, Switzerland, 2017.
- ISO 22197-2:2019; Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Air-Purification Performance of Semiconducting Photocatalytic Materials—Part 2. ISO: Geneva, Switzerland, 2019.
Coefficient | t Stat | p-Value | |
---|---|---|---|
Intercept | 5.20 × 106 | 22.9 | 3.57 × 10−59 |
Number of strands | −3.47 × 105 | −2.6 | 8.91 × 10−3 |
Voltage | −2.34 × 105 | −11.7 | 1.33 × 10−24 |
Frequency | −9.63 × 102 | −2.2 | 2.76 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ueno, T.; Takada, K.; Zaizen, S.; Sakugawa, T.; Ninomiya, J.; Furukawa, T. Disinfection of Bacteria in Aerosols by Applying High Voltage to Stranded Wire Electrodes. Microorganisms 2024, 12, 418. https://doi.org/10.3390/microorganisms12020418
Ueno T, Takada K, Zaizen S, Sakugawa T, Ninomiya J, Furukawa T. Disinfection of Bacteria in Aerosols by Applying High Voltage to Stranded Wire Electrodes. Microorganisms. 2024; 12(2):418. https://doi.org/10.3390/microorganisms12020418
Chicago/Turabian StyleUeno, Takahisa, Konosuke Takada, Shohei Zaizen, Takashi Sakugawa, Junko Ninomiya, and Takashi Furukawa. 2024. "Disinfection of Bacteria in Aerosols by Applying High Voltage to Stranded Wire Electrodes" Microorganisms 12, no. 2: 418. https://doi.org/10.3390/microorganisms12020418
APA StyleUeno, T., Takada, K., Zaizen, S., Sakugawa, T., Ninomiya, J., & Furukawa, T. (2024). Disinfection of Bacteria in Aerosols by Applying High Voltage to Stranded Wire Electrodes. Microorganisms, 12(2), 418. https://doi.org/10.3390/microorganisms12020418