Contamination and Control of Mycotoxins in Grain and Oil Crops
Abstract
:1. Introduction
2. Methodology
3. Status and Harmful Effects of Mycotoxin Contamination in Grain and Oil Crops
4. Environmental Factors of Mycotoxin Contamination in Grain and Oil Crops
4.1. Interaction between Environmental Factors Affecting Mycotoxin Contamination of Grain and Oil Crops
4.2. Influence of Interacting Environmental Factors on Mycotoxin Contamination of Grain and Oil Crops
5. The Control Strategies for Mycotoxin Contamination in Grain and Oil Crops
5.1. The Control of Mycotoxin Production
5.1.1. Biological Control of Antagonistic Microorganisms
5.1.2. Biological Control of Non-Toxigenic Fungal Strains
5.1.3. Biological Control of Mixed Strains
5.2. Bio-Detoxification of Mycotoxin
5.2.1. Biosorption of Mycotoxins
5.2.2. Biodegradation of Mycotoxins
5.3. Regulatory Mechanisms of Mycotoxins
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef] [PubMed]
- Tianpei, H.; Peiru, H.; Jieru, P.; Xiong, G. Health hazard to humans and prevention strategies of food-borne mycotoxins. J. Biosaf. Biosecur. 2011, 20, 5. [Google Scholar]
- Bhatnagar-Mathur, P.; Sunkara, S.; Bhatnagar-Panwar, M.; Waliyar, F.; Sharma, K. Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. Plant Sci. 2015, 234, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.E.; Moss, M.O. Mycotoxins: Formation, Analysis and Significance; Wiley: Hoboken, NJ, USA, 1985; p. 148. [Google Scholar]
- Rodriguez-Carrasco, Y.; Jose Ruiz, M.; Font, G.; Berrada, H. Exposure estimates to Fusarium mycotoxins through cereals intake. Chemosphere 2013, 93, 2297–2303. [Google Scholar] [CrossRef]
- Leong, Y.H.; Latiff, A.A.; Ahmad, N.I.; Rosma, A. Exposure measurement of aflatoxins and aflatoxin metabolites in human body fluids. A short review. Mycotoxin Res. 2012, 28, 79–87. [Google Scholar] [CrossRef]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens-the IARC Monographs classification. Mycotoxin Res. 2017, 33, 65–73. [Google Scholar] [CrossRef]
- Li, F. Vista of the farmer’s grain storage facilities in China. Sci. Technol. Cereals Oils Foods 2012, 20, 50–52. [Google Scholar]
- Berthiller, F.; Schuhmacher, R.; Adam, G.; Krska, R. Formation, determination and significance of masked and other conjugated mycotoxins. Anal. Bioanal. Chem. 2009, 395, 1243–1252. [Google Scholar] [CrossRef]
- Abia, W.A.; Warth, B.; Sulyok, M.; Krska, R.; Tchana, A.N.; Njobeh, P.B.; Dutton, M.F.; Moundipa, P.F. Determination of multi-mycotoxin occurrence in cereals, nuts and their products in Cameroon by liquid chromatography tandem mass spectrometry (LC-MS/MS). Food Control 2013, 31, 438–453. [Google Scholar] [CrossRef]
- Morcia, C.; Rattotti, E.; Stanca, A.M.; Tumino, G.; Rossi, V.; Ravaglia, S.; Germeier, C.U.; Herrmann, M.; Polisenska, I.; Terzi, V. Fusarium genetic traceability: Role for mycotoxin control in small grain cereals agro-food chains. J. Cereal Sci. 2013, 57, 175–182. [Google Scholar] [CrossRef]
- Serrano, A.B.; Font, G.; Ruiz, M.J.; Ferrer, E. Co-occurrence and risk assessment of mycotoxins in food and diet from Mediterranean area. Food Chem. 2012, 135, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Norlia, M.; Jinap, S.; Nor-Khaizura, M.A.; Radu, S.; Samsudin, N.I.; Azri, F.A. Aspergillus section Flavi and aflatoxins: Occurrence, detection, and identification in raw peanuts and peanut-based products along the supply chain. Front. Microbiol. 2019, 10, 2602. [Google Scholar] [CrossRef] [PubMed]
- Krska, R.; Schubert-Ullrich, P.; Molinelli, A.; Sulyok, M.; Macdonald, S.; Crews, C. Mycotoxin analysis: An update. Food Addit. Contam. 2008, 25, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.R.N.; Salleh, B.; Saad, B.; Abbas, H.K.; Abel, C.A.; Shier, W.T. An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev. 2010, 29, 3–26. [Google Scholar] [CrossRef]
- Yao, Y.; Ding, D.; Zhang, Y.; Chang, X.; Dong, L.; Zhang, L. Screening of maize endophytic antagonists against Aspergillus flavus and activities research of antagonistic strain B42-3. J. Chin. Cereals Oils Assoc. 2018, 33, 85–88. [Google Scholar]
- Du, L.; Gao, S.; Du, R.; Zhang, L.; Wang, Y.; Xiang, A.; Dong, L. Screening, identification and control effects of aflatoxin-contaminated antagonistic bacteria in corn. J. Anhui Agric. Sci. 2019, 47, 7–9+14. [Google Scholar]
- Afsah-Hejri, L.; Jinap, S.; Hajeb, P.; Radu, S.; Shakibazadeh, S. A review on mycotoxins in food and feed: Malaysia case study. Compr. Rev. Food Sci. Food Saf. 2013, 12, 629–651. [Google Scholar] [CrossRef] [PubMed]
- Shah, T.R.; Kamlesh, P.; Pradyuman, K. Maize—A potential source of human nutrition and health: A review. Cogent Food Agric. 2016, 2, 1166995. [Google Scholar]
- Chilaka, C.A.; De Boevre, M.; Atanda, O.O.; De Saeger, S. The status of Fusarium mycotoxins in Sub-Saharan Africa: A review of emerging trends and post-harvest mitigation strategies towards food control. Toxins 2017, 9, 19. [Google Scholar] [CrossRef]
- Zhang, E.; Du, T. Nutritional value and rational use of peanuts. Food Nutr. China 2003, 2, 29–30. [Google Scholar]
- Bankole, S.A.; Adebanjo, A. Mycotoxins in food in West Africa: Current situation and possibilities of controlling it. Afr. J. Biotechnol. 2003, 2, 254–263. [Google Scholar]
- Williams, J.H.; Phillips, T.D.; Jolly, P.E.; Stiles, J.K.; Jolly, C.M.; Aggarwal, D. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 2004, 80, 1106–1122. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.W.; Wang, L.W. Development status, existing problems and policy recommendations of peanut industry in China. China Oils Fats 2020, 45, 7. [Google Scholar]
- Daou, R.; Joubrane, K.; Maroun, R.G.; Rabbaa, L.; Khoury, A.E. Mycotoxins: Factors influencing production and control strategies. AIMS Agric. Food 2021, 6, 416–447. [Google Scholar] [CrossRef]
- Widstrom, N.W.; Mcmillian, W.W.; Beaver, R.W.; Wilson, D.M. Weather-Associated Changes in Aflatoxin Contamination of Preharvest Maize. J. Prod. Agric. 1990, 3, 196–199. [Google Scholar] [CrossRef]
- Abbas, H.K.; Accinelli, C.; Zablotowicz, R.M.; Abel, C.A.; Bruns, H.A.; Dong, Y.; Shier, W.T. Dynamics of mycotoxin and Aspergillus flavus levels in aging Bt and non-Bt corn residues under Mississippi no-till conditions. J. Agric. Food Chem. 2008, 56, 7578–7585. [Google Scholar] [CrossRef] [PubMed]
- Giorni, P.; Camardo Leggieri, M.; Magan, N.; Battilani, P. Comparison of temperature and moisture requirements for sporulation of Aspergillus flavus sclerotia on natural and artificial substrates. Fungal Biol. 2012, 116, 637–642. [Google Scholar] [CrossRef]
- Medina, A.; Rodriguez, A.; Magan, N. Effect of climate change on Aspergillus flavus and aflatoxin B1 production. Front. Microbiol. 2014, 5, 348. [Google Scholar] [CrossRef]
- Medina, A.; Rodriguez, A.; Sultan, Y.; Magan, N. Climate change factors and Aspergillus flavus: Effects on gene expression, growth and aflatoxin production. World Mycotoxin J. 2015, 8, 171–179. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, S.; Ding, X.; Li, P.; Zhang, Q. The microbial population structure and function of peanut peanut and their effects on aflatoxin contamination. LWT Food Sci. Technol. 2021, 148, 111285. [Google Scholar] [CrossRef]
- Sanchis, V.; Magan, N. Environmental conditions affecting mycotoxins. In Mycotoxins in Food; CRC Press: Boca Raton, FL, USA, 2004; pp. 174–189. [Google Scholar]
- Abdel-Hadi, A.; Schmidt-Heydt, M.; Parra, R.; Geisen, R.; Magan, N. A systems approach to model the relationship between aflatoxin gene cluster expression, environmental factors, growth and toxin production by Aspergillus flavus. J. R. Soc. Interface 2012, 9, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Payne, G.A.; Thompson, D.L.; Lillehoj, E.B.; Zuber, M.S.; Adkins, C.R. Effect of temperature on the preharvest infection of maize kernels by Aspergillus flavus. Phytopathology 1988, 78, 1376–1380. [Google Scholar] [CrossRef]
- Medina, A.; Schmidt-Heydt, M.; Rodriguez, A.; Parra, R.; Geisen, R.; Magan, N. Impacts of environmental stress on growth, secondary metabolite biosynthetic gene clusters and metabolite production of xerotolerant/xerophilic fungi. Curr. Genet. 2015, 61, 325–334. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.L.; Zhang, H.Y.; Zhang, C.X.; Yang, B.L.; Huang, S.J.; Liu, Y. Factors that affect the formation of mycotoxins: A literature review. Mycosystema 2020, 39, 15. [Google Scholar]
- Bebber, D.P.; Ramotowski, M.A.T.; Gurr, S.J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Chang. 2013, 3, 985–988. [Google Scholar] [CrossRef]
- Garcia-Cela, E.; Verheecke-Vaessen, C.; Gutierrez-Pozo, M.; Kiaitsi, E.; Gasperini, A.M.; Magan, N.; Medina, A. Unveiling the effect of interacting forecasted abiotic factors on growth and aflatoxin B1 production kinetics by Aspergillus flavus. Fungal Biol. 2021, 125, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Medina, A.; Akbar, A.; Baazeem, A.; Rodriguez, A.; Magan, N. Climate change, food security and mycotoxins: Do we know enough? Fungal Biol. Rev. 2017, 31, 143–154. [Google Scholar] [CrossRef]
- Klich, M.A. Environmental and developmental factors influencing aflatoxin production by Aspergillus flavus and Aspergillus parasiticus. Mycoscience 2007, 48, 71–80. [Google Scholar] [CrossRef]
- Kovac, T.; Sarkanj, B.; Crevar, B.; Kovac, M.; Loncaric, A.; Strelec, I.; Ezekiel, C.N.; Sulyok, M.; Krska, R. Aspergillus flavus nrrl 3251 growth, oxidative status, and aflatoxins production ability in vitro under different illumination regimes. Toxins 2018, 10, 528. [Google Scholar] [CrossRef]
- Paterson, R.; Lima, N. How will climate change affect mycotoxins in food? Food Res. Int. 2010, 43, 1902–1914. [Google Scholar] [CrossRef]
- Magan, N.; Medina, A.; Aldred, D. Possible climate-change effects on mycotoxin contamination of food crops pre- and postharvest. Plant Pathol. 2011, 60, 150–163. [Google Scholar] [CrossRef]
- Wu, F.; Bhatnagar, D.; Bui-Klimke, T.; Carbone, I.; Hellmich, R.; Munkvold, G.; Paul, P.; Payne, G.; Takle, E. Climate change impacts on mycotoxin risks in US maize. World Mycotoxin J. 2011, 4, 79–93. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, S.; Ding, X.; Zhang, Q.; Li, P. Topography effect on Aspergillus flavus occurrence and aflatoxin B1 contamination associated with peanut. Curr. Res. Microb. Sci. 2021, 2, 100021. [Google Scholar] [CrossRef]
- Mitchell, N.J.; Bowers, E.; Hurburgh, C.; Wu, F. Potential economic losses to the US corn industry from aflatoxin contamination. Food Addit. Contam. 2016, 33, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Shelby, R.A.; White, D.G.; Bauske, E.M. Differential fumonisin production in maize hybrids. Plant Dis. 1994, 78, 582–584. [Google Scholar] [CrossRef]
- Miller, J.D. Factors that affect the occurrence of fumonisin. Environ. Health Perspect. 2001, 109 (Suppl. 2), 321–324. [Google Scholar] [CrossRef]
- Battilani, P.; Pietri, A.; Barbano, C.; Scandolara, A.; Bertuzzi, T.; Marocco, A. Logistic regression modeling of cropping systems to predict fumonisin contamination in maize. J. Agric. Food Chem. 2008, 56, 10433–10438. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hadi, A.; Magan, N. Influence of physiological factors on growth, sporulation and ochratoxin A/B production of the new Aspergillus ochraceus grouping. World Mycotoxin J. 2009, 2, 429–434. [Google Scholar] [CrossRef]
- Vary, Z.; Mullins, E.; McElwain, J.C.; Doohan, F.M. The severity of wheat diseases increases when plants and pathogens are acclimatized to elevated carbon dioxide. Glob. Chang. Biol. 2015, 21, 2661–2669. [Google Scholar] [CrossRef]
- Magan, N. Mycotoxin contamination of food in Europe: Early detection and prevention strategies. Mycopathologia 2006, 162, 245–253. [Google Scholar] [CrossRef]
- Magan, N.; Aldred, D. Post-harvest control strategies: Minimizing mycotoxins in the food chain. Int. J. Food Microbiol. 2007, 119, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.L.L.; Pettersson, O.V.; Rice, T.; Hocking, A.D.; Schnürer, J. The extreme xerophilic mould Xeromyces bisporus—Growth and competition at various water activities. Int. J. Food Microbiol. 2011, 145, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Piecková, E.; Kunová, Z. Indoor fungi and their ciliostatic metabolites. Ann. Agric. Environ. Med. 2002, 9, 59–63. [Google Scholar] [PubMed]
- Prendergast, A.C. IPCC-intergovernmental panel on climate change. Choice 2008, 45, 1570–1571. [Google Scholar]
- Misihairabgwi, J.M.; Ezekiel, C.N.; Sulyok, M.; Shephard, G.S.; Krska, R. Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007–2016). Crit. Rev. Food Sci. Nutr. 2019, 59, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Jouany, J.P. Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Anim. Feed Sci. Technol. 2007, 137, 342–362. [Google Scholar] [CrossRef]
- Kabak, B.; Dobson, A.D.W.; Var, I. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar] [CrossRef]
- Melouk, H.A. Peanut Health Management; Amer Phytopathological Society: St. Paul, MN, USA, 1995. [Google Scholar]
- Nguyen, P.A.; Strub, C.; Fontana, A.; Schorr-Galindo, S. Crop molds and mycotoxins: Alternative management using biocontrol. Biol. Control 2017, 104, 10–27. [Google Scholar] [CrossRef]
- Wu, F.; Stacy, S.L.; Kensler, T.W. Global risk assessment of aflatoxins in maize and peanuts: Are regulatory standards adequately protective? Toxicol. Sci. 2013, 135, 251–259. [Google Scholar] [CrossRef]
- Awad, W.A.; Ghareeb, K.; Bohm, J.; Zentek, J. Decontamination and detoxification strategies for the Fusarium mycotoxin deoxynivalenol in animal feed and the effectiveness of microbial biodegradation. Food Addit. Contam. 2010, 27, 510–520. [Google Scholar] [CrossRef]
- Samuel, M.S.; Sivaramakrishna, A.; Mehta, A. Degradation and detoxification of aflatoxin B1 by Pseudomonas putida. Int. Biodeterior. Biodegrad. 2014, 86, 202–209. [Google Scholar] [CrossRef]
- Palumbo, J.D.; Baker, J.L.; Mahoney, N.E. Isolation of bacterial antagonists of Aspergillus flavus from almonds. Microb. Ecol. 2006, 52, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Matarese, F.; Sarrocco, S.; Gruber, S.; Seidl-Seiboth, V.; Vannacci, G. Biocontrol of Fusarium head blight: Interactions between Trichoderma and mycotoxigenic Fusarium. Microbiology 2012, 158, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Gajera, H.P.; Vakharia, D.N. Molecular and biochemical characterization of Trichoderma isolates inhibiting a phytopathogenic fungi Aspergillus niger Van Tieghem. Physiol. Mol. Plant Pathol. 2010, 74, 274–282. [Google Scholar] [CrossRef]
- Perveen, K.; Bokhari, N.A. Antagonistic activity of Trichoderma harzianum and Trichoderma viride isolated from soil of date palm field against Fusarium oxysporum. Afr. J. Microbiol. Res. 2012, 6, 3348–3353. [Google Scholar]
- Abbas, H.K.; Weaver, M.A.; Horn, B.W.; Carbone, I.; Monacell, J.T.; Shier, W.T. Selection of Aspergillus flavus isolates for biological control of aflatoxins in corn. Toxin Rev. 2011, 30, 59–70. [Google Scholar] [CrossRef]
- Abbas, H.K.; Zablotowicz, R.M.; Horn, B.W.; Phillips, N.A.; Johnson, B.J.; Jin, X.; Abel, C.A. Comparison of major biocontrol strains of non-aflatoxigenic Aspergillus flavus for the reduction of aflatoxins and cyclopiazonic acid in maize. Food Addit. Contam. 2011, 28, 198–208. [Google Scholar] [CrossRef]
- Ding, N.; Xing, F.G.; Liu, X.; Selvaraj, J.N.; Wang, L.M.; Zhao, Y.J.; Wang, Y.; Guo, W.; Dai, X.F.; Liu, Y. Variation in fungal microbiome (mycobiome) and aflatoxin in stored in-shell peanuts at four different areas of China. Front. Microbiol. 2015, 6, 1055. [Google Scholar] [CrossRef]
- Dorner, J.W. Management and prevention of mycotoxins in peanuts. Food Addit. Contam. 2008, 25, 203–208. [Google Scholar] [CrossRef]
- Dorner, J.W.; Cole, R.J. Effect of application of nontoxigenic strains of Aspergillus flavus and A. parasiticus on subsequent aflatoxin contamination of peanuts in storage. J. Stored Prod. Res. 2002, 38, 329–339. [Google Scholar] [CrossRef]
- Probst, C.; Bandyopadhyay, R.; Price, L.E.; Cotty, P.J. Identification of atoxigenic Aspergillus flavus isolates to reduce aflatoxin contamination of maize in Kenya. Plant Dis. 2011, 95, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Turbic, A.; Ahokas, J.T.; Haskard, C.A. Selective in vitro binding of dietary mutagens, individually or in combination, by lactic acid bacteria. Food Addit. Contam. 2002, 19, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Haskard, C.A.; El-Nezami, H.S.; Kankaanpaa, P.E.; Salminen, S.; Ahokas, J.T. Surface binding of aflatoxin B1 by lactic acid bacteria. Appl. Environ. Microbiol. 2001, 67, 3086–3091. [Google Scholar] [CrossRef] [PubMed]
- Teniola, O.D.; Addo, P.A.; Brost, I.M.; Färber, P.; Jany, K.D.; Alberts, J.F.; van Zyl, W.H.; Steyn, P.S.; Holzapfel, W.H. Degradation of aflatoxin B1 by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp. nov. DSM44556T. Int. J. Food Microbiol. 2005, 105, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Adebo, O.A.; Njobeh, P.B.; Gbashi, S.; Nwinyi, O.C.; Mavumengwana, V. Review on microbial degradation of aflatoxins. Crit. Rev. Food Sci. Nutr. 2017, 57, 3208–3217. [Google Scholar] [CrossRef]
- Oluwafemi, F.; Kumar, M.; Bandyopadhyay, R.; Ogunbanwo, T.; Ayanwande, K.B. Bio-detoxification of aflatoxin B1 in artificially contaminated maize grains using lactic acid bacteria. Toxin Rev. 2010, 29, 115–122. [Google Scholar] [CrossRef]
- Sangare, L.; Zhao, Y.J.; Folly, Y.M.E.; Chang, J.H.; Li, J.H.; Selvaraj, J.N.; Xing, F.G.; Zhou, L.; Wang, Y.; Liu, Y. Aflatoxin B1 degradation by a Pseudomonas strain. Toxins 2014, 6, 3028–3040. [Google Scholar] [CrossRef]
- Loi, M.; Fanelli, F.; Liuzzi, V.C.; Logrieco, A.F.; Mule, G. Mycotoxin biotransformation by native and commercial enzymes: Present and future perspectives. Toxins 2017, 9, 111. [Google Scholar] [CrossRef]
- Alberts, J.F.; Gelderblom, W.C.A.; Botha, A.; van Zyl, W.H. Degradation of aflatoxin B1 by fungal laccase enzymes. Int. J. Food Microbiol. 2009, 135, 47–52. [Google Scholar] [CrossRef]
- Cheng, J. Advances in research on biodegradation of mycotoxins in feed. Sci. Agric. Sin. 2012, 45, 6. [Google Scholar]
- Guan, S.; Zhao, L.; Ma, Q.; Zhou, T.; Wang, N.; Hu, X.; Ji, C. In Vitro efficacy of Myxococcus fulvus ANSM068 to biotransform aflatoxin B1. Int. J. Mol. Sci. 2010, 11, 4063–4079. [Google Scholar] [CrossRef]
- 1881/2006; Setting Maximum Levels for Certain Contaminants in Foodstuffs. Commission of European Union: Maastricht, The Netherlands, 2006.
- CXS 193-1995; General Standard for Contaminants and Toxins in Food and Feed. FAO: Washington, DC, USA, 1995.
- GB 2761-2017; National Standards for Food Safety Mycotoxin Limits in Food. NHC: Beijing, China; SFDA: Beijing, China, 2017.
- WHO. Evaluation of Certain Contaminants in Food; World Health Organization Technical Report Series; WHO: Geneva, Switzerland, 2017; Volume 1002, pp. 1–166. [Google Scholar]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.K.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; et al. Appropriateness to set a group health—Based guidance value for fumonisins and their modified forms. Efsa J. 2018, 16, e05172. [Google Scholar] [CrossRef]
- FDA. Guidance for Industry Fumonisin Levels in Human Foods and Animal Feeds; FDA: Rockwell, MD, USA, 2001.
- WHO. Evaluation of Certain Food Additives and Contaminants; World Health Organization Technical Report Series; WHO: Geneva, Switzerland, 2000; Volume 896, pp. 1–128. [Google Scholar]
- CONTAM. Appropriateness to set a group health-based guidance value for zearalenone and its modified forms. EFSA J. 2016, 14, e04425. [Google Scholar] [CrossRef]
- WHO. Evaluation of Certain Contaminants in Food: Ninety-Third Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- Oswald, I.P.; Knutsen, H.k.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-kraupp, B.J.E.J. Appropriateness to set a group health based guidance value for T2 and HT2 toxin and its modified forms. EFSA J. 2017, 15, e04655. [Google Scholar] [CrossRef]
- WHO. Safety Evaluation of Certain Contaminants in Food: Prepared by the Seventy-Second Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA); World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Grasl-Kraupp, B.; et al. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 2017, 15, e04718. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.K.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; et al. Appropriateness to set a group health based guidance value for nivalenol and its modified forms. EFSA J. 2017, 15, e04751. [Google Scholar] [CrossRef] [PubMed]
Mycotoxin | PMTDI (JECFA) | TDI (EFSA) | CXS 193-1995 [86] (FAO) | GB 2761-2017 [87] (China) | Commission Regulation (EC) No 1881/2006 (EU) [85] | FDA (The USA) |
---|---|---|---|---|---|---|
AFB1 | 20 µg/kg (maize, maize flour, maize products) [87] 5 µg/kg (barley, wheat, cereal, wheat flour) [87] | 2 µg/kg (all cereals and all products derived from cereals) [85] | ||||
AFB1 + AFB2 + AFG1 + AFG2 | 4 µg/kg (all cereals and all products derived from cereals) [85] | |||||
FB1, FB2, FB3 | 2 µg/kg bw/d [88] | 1 µg/kg bw/d [89] | ||||
FB1 + FB2 | 2000 µg/kg (maize flour and maize meal) [86] 4000 µg/kg (unprocessed maize kernels) [86] | 4000 µg/kg (unprocessed maize) [85] 1000 µg/kg (maize for direct human consumption, and maize products) [85] | ||||
FB1 + FB2 + FB3 | Guideline: 2 ppm (maize products with germ removed) [90] | |||||
ZEA | 0.5 µg/kg bw/d [91] | 0.25 µg/kg bw/d [92] | 60 µg/kg (wheat, wheat flour) [87] 60 µg/kg (maize, maize flour) [87] | 100 µg/kg (unprocessed grains other than maize) [85] 75 µg/kg (cereals for direct human consumption, or grain flour, bran, embryo) [85] | ||
T-2, HT-2 | 0.025 µg/kg bw/d [93] | 0.02 µg/kg bw/d [94] | ||||
DON | 1 µg/kg bw/d [95] | 1 µg/kg bw/d [96] | 1000 µg/kg (flour, semolina, semolina and flakes from wheat, maize or barley) [86] 2000 µg/kg (wheat, maize and barley for further processing) [86] | 1000 µg/kg (barley, wheat, cereal, wheat flour) [87] 1000 µg/kg (maize, maize flour) [87] | 1750 µg/kg (unprocessed durum wheat and barley) [85] 750 µg/kg (cereals for direct human consumption, or grain flour, bran, embryo) [85] | Recommended Standard: 1 ppm (cereals for direct human consumption, or grain flour, bran, embryo) [91] |
NIV | 1.2 µg/kg bw/d [97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Qu, Z.; Hou, J.; Yao, Y. Contamination and Control of Mycotoxins in Grain and Oil Crops. Microorganisms 2024, 12, 567. https://doi.org/10.3390/microorganisms12030567
Zhang C, Qu Z, Hou J, Yao Y. Contamination and Control of Mycotoxins in Grain and Oil Crops. Microorganisms. 2024; 12(3):567. https://doi.org/10.3390/microorganisms12030567
Chicago/Turabian StyleZhang, Chenchen, Zheng Qu, Jie Hou, and Yanpo Yao. 2024. "Contamination and Control of Mycotoxins in Grain and Oil Crops" Microorganisms 12, no. 3: 567. https://doi.org/10.3390/microorganisms12030567
APA StyleZhang, C., Qu, Z., Hou, J., & Yao, Y. (2024). Contamination and Control of Mycotoxins in Grain and Oil Crops. Microorganisms, 12(3), 567. https://doi.org/10.3390/microorganisms12030567