Effect of Co-Inoculation with Growth-Promoting Bacteria and Arbuscular Mycorrhizae on Growth of Persea americana Seedlings Infected with Phytophthora cinnamomi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria–Mycorrhiza Co-Inoculation Trial Design
2.2. Inoculating Seedlings with Bacterial Strains
2.3. Arbuscular Mycorrhiza Selection, Propagation, and Inoculation
2.4. Propagation and Inoculation of P. cinnamomi
2.5. Greenhouse Environmental Conditions
2.6. Determination of Harvest, Growth, and Nutrition Characteristics
2.7. P. cinnamomi Infection Severity
2.8. Statistical Analysis
3. Results
3.1. Effect of Bacteria–Mycorrhiza Co-Inoculation on P. Americana var. Zutano Seedlings’ Growth Parameters after Infection with P. cinnamomi
3.2. Principal Component Analysis (PCA)
3.3. Effect of Bacteria–Mycorrhiza Co-Inoculation on P. americana var. Zutano Macroelement Content after Infection with P. cinnamomi
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hurtado-Fernández, E.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Avocado Fruit—Persea americana. In Exotic Fruits; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Ramírez-Gil, J.G. Avocado Wilt Complex Disease, Implications and Management in Colombia. Rev. Fac. Nac. Agron. Medellín 2018, 71, 8525–8541. [Google Scholar] [CrossRef]
- Ramírez-Gil, J.; Ramelli, E.; Osorio, J.G.M. Economic Impact of the Avocado (Cv. Hass) Wilt Disease Complex in Antioquia, Colombia, Crops under Different Technological Management Levels. Crop Prot. 2017, 101, 103–115. [Google Scholar] [CrossRef]
- Hardham, A.R.; Blackman, L.M. Phytophthora cinnamomi. Mol. Plant Pathol. 2018, 19, 260–285. [Google Scholar] [CrossRef] [PubMed]
- Kurbetli, İ.; Sülü, G.; Aydoğdu, M.; Woodward, S.; Bayram, S. Outbreak of Phytophthora cinnamomi Causing Severe Decline of Avocado Trees in Southern Turkey. J. Phytopathol. 2020, 168, 533–541. [Google Scholar] [CrossRef]
- Ramírez-Gil, J.; Colombiana, J.M.-O.-A. Development and Validation of Severity Scales of Avocado Wilt Complex Caused by Phytophthora cinnamomi, Verticillium dahliae and Hypoxia-Anoxia Disorder. Agron. Colomb. 2020, 38, 85–100. [Google Scholar] [CrossRef]
- Sumida, C.H.; Fantin, L.H.; Braga, K.; Canteri, M.G.; Homechin, M. Control of Root Rot (Phytophthora cinnamomi) in Avocado (Persea americana) with Bioagents. Summa Phytopathol. 2020, 46, 205–211. [Google Scholar] [CrossRef]
- Méndez-Bravo, A.; Cortazar-Murillo, E.M.; Guevara-Avendaño, E.; Ceballos-Luna, O.; Rodríguez-Haas, B.; Kiel-Martínez, A.L.; Hernández-Cristóbal, O.; Guerrero-Analco, J.A.; Reverchon, F. Plant Growth-Promoting Rhizobacteria Associated with Avocado Display Antagonistic Activity against Phytophthora cinnamomi through Volatile Emissions. PLoS ONE 2018, 13, e0194665. [Google Scholar] [CrossRef]
- Shu, B.; Liu, L.; Jue, D.; Wang, Y.; Wei, Y.; Shi, S. Effects of Avocado (Persea americana Mill.) Scion on Arbuscular Mycorrhizal and Root Hair Development in Rootstock. Arch. Agron. Soil Sci. 2017, 63, 1951–1962. [Google Scholar] [CrossRef]
- Mickan, B.S.; Abbott, L.K.; Solaiman, Z.M.; Mathes, F.; Siddique, K.H.M.; Jenkins, S.N. Soil Disturbance and Water Stress Interact to Influence Arbuscular Mycorrhizal Fungi, Rhizosphere Bacteria and Potential for N and C Cycling in an Agricultural Soil. Biol. Fertil. Soils 2019, 55, 53–66. [Google Scholar] [CrossRef]
- Gómez, S.P.M.; Berdugo, S.E.B.; Valencia, C.M. Bioprospecting of Fungi Mycorrhizal as an Alternative for the Strengthening of the Cultivation of Avocado (Persea americana Miller) in Colombia. Rev. Investig. Agrar. Ambient. 2017, 8, 71–79. [Google Scholar]
- Eisenman, H.C.; Greer, E.M.; McGrail, C.W. The Role of Melanins in Melanotic Fungi for Pathogenesis and Environmental Survival. Appl. Microbiol. Biotechnol. 2020, 104, 4247–4257. [Google Scholar] [CrossRef]
- Kadam, S.B.; Pable, A.A.; Barvkar, V.T. Mycorrhiza Induced Resistance (MIR): A Defence Developed through Synergistic Engagement of Phytohormones, Metabolites and Rhizosphere. Funct. Plant Biol. 2020, 47, 880–890. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Zou, Y.N.; Wu, Q.S.; Kuča, K. Mycorrhiza-Induced Plant Defence Responses in Trifoliate Orange Infected by Phytophthora parasitica. Acta Physiol. Plant 2021, 43, 45. [Google Scholar] [CrossRef]
- Colavolpe, M.B.; Silva, M.d.C.; Maguire, V.G.; Costa, A.; Videira e Castro, I.; Ruiz, O.A. Antagonistic Compounds from Controversial Bacteria with Suppressing Effects on the Diseases Caused by Phytophthora cinnamomi. Arch. Phytopathol. Plant Prot. 2020, 53, 70–81. [Google Scholar] [CrossRef]
- Virgen, M.E.; Avila, N.D.D.; Velasco, C.R.; Esquivel, G.L.; Campos, O.C.; Ayón, C.C. Identificación y Actividad Antagónica in Vitro de Aislados de Bacterias Contra Hongos de Importancia Agrícola. Rev. Bio Cienc. 2020, 7, 12. [Google Scholar]
- Mamani, J.; Aragón, L.; Molina, L. Pseudomonasof the Rhizosphere of Avocado (Persea americana Mill.) with Biocontrol Activity of Phytophthora cinnamomi Rands Isolated in the Central Coast of Peru. Peruv. J. Agron. 2018, 2, 2616–4477. [Google Scholar] [CrossRef]
- Syed-Ab-Rahman, S.F.; Carvalhais, L.C.; Chua, E.; Xiao, Y.; Wass, T.J.; Schenk, P.M. Identification of Soil Bacterial Isolates Suppressing Different Phytophthora spp. and Promoting Plant Growth. Front. Plant Sci. 2018, 871, 1502. [Google Scholar] [CrossRef]
- Castañeda, W.; Toro, M.; Solorzano, A.; Zúñiga-Dávila, D. Production and Nutritional Quality of Tomatoes (Solanum lycopersicum Var. Cerasiforme) Are Improved in the Presence of Biochar and Inoculation with Arbuscular Mycorrhizae. Am. J. Plant Sci. 2020, 11, 426–436. [Google Scholar] [CrossRef]
- Hepper, C.M.; O’Shea, J. Vesicular-Arbuscular Mycorrhizal Infection in Lettuce (Lactuca sativa) in Relation to Calcium Supply. Plant Soil 1984, 82, 61–67. [Google Scholar] [CrossRef]
- Giovannetti, M.; Mosse, B. An Evaluation of Techniques for Measuring Vesicular Arbuscular Mycorrhizal Infection in Roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Viera, W.; Campaña, D.; Gallardo, D.; Vásquez, W.; Viteri, P.; Sotomayor, A. Native Mycorrhizae for Improving Seedling Growth in Avocado Nursery (Persea americana Mill.). Indian J. Sci. Technol. 2017, 10, 1–13. [Google Scholar] [CrossRef]
- Banuelos, J.; Trejo, D.; Lara, L.; Gavito, M.; Carreón, Y. Effects of Seven Different Mycorrhizal Inoculum in Persea americana in Sterile and Non-Sterile Soil. Trop. Subtrop. Agroecosyst. 2013, 16, 423–429. [Google Scholar]
- Tamayo-Velez, A.; Osorio, N.W. Co-Inoculation with an Arbuscular Mycorrhizal Fungus and a Phosphate-Solubilizing Fungus Promotes the Plant Growth and Phosphate Uptake of Avocado Plantlets in a Nursery. Botany 2017, 95, 539–545. [Google Scholar] [CrossRef]
- Huber, D.; Römheld, V.; Weinmann, M. Relationship between nutrition, plant diseases and pests. In Marschner’s Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2012; pp. 283–298. [Google Scholar]
- Marschner, P. Rhizosphere biology. In Marschner’s Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2012; pp. 369–388. [Google Scholar]
- Ortiz-Castro, R.; López-Bucio, J.S.; López-Bucio, J. Physiological and molecular mechanisms of bacterial phytostimulation. In Advances in PGPR Research; Singh, H.B., Sarma, B.K., Keswani, C., Eds.; CABI: Wallingford, UK, 2017; pp. 16–28. [Google Scholar]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of nutrients: Micronutrients. In Marschner’s Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 2012; pp. 191–248. [Google Scholar]
- Lara-Chávez, M.B.N.; del Carmen Ávila-Val, T.; Aguirre-Paleo, S.; Vargas-Sandoval, M. Arbuscular Mycorrhizal Fungi Identification in Avocado Trees Infected with Phytophthora cinnamomi Rands under Biocontrol. Trop. Subtrop. Agroecosyst. 2013, 16, 415–421. [Google Scholar]
- Corcobado, T.; Vivas, M.; Moreno, G.; Solla, A. Ectomycorrhizal Symbiosis in Declining and Non-Declining Quercus Ilex Trees Infected with or Free of Phytophthora cinnamomi. For. Ecol. Manag. 2014, 324, 72–80. [Google Scholar] [CrossRef]
- Moreira, A.C.; Domingos, A.C.; Fontes, A.M.; Semedo, J.; Melo, E.; Machado, H.; Reis, M.; Horta, M.; Cravador, A. Evaluation of Cork and Holm Oak Seedling Viability to Phytophthora cinnamomi Infection Treated with Compost and Mycorrhizae Fungi. In Proceedings of the Integrated Protection in Oak Forests, Tlemcen, Algeria, 25–28 October 2013. [Google Scholar]
- Tzec-Interián, J.A.; Desgarennes, D.; Carrión, G.; Monribot-Villanueva, J.L.; Guerrero-Analco, J.A.; Ferrera-Rodríguez, O.; Santos-Rodríguez, D.L.; Liahut-Guin, N.; Caballero-Reyes, G.E.; Ortiz-Castro, R. Characterization of Plant Growth-Promoting Bacteria Associated with Avocado Trees (Persea americana Miller) and Their Potential Use in the Biocontrol of Scirtothrips Perseae (Avocado Thrips). PLoS ONE 2020, 15, e0231215. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Rodríguez, J.J.; López-Gómez, R.; Suárez-Rodríguez, L.M.; Salgado-Garciglia, R.; Rodríguez-Zapata, L.C.; Ochoa-Zarzosa, A.; López-Meza, J.E. Antibacterial Activity of Defensin PaDef from Avocado Fruit (Persea americana Var. Drymifolia) Expressed in Endothelial Cells against Escherichia coli and Staphylococcus aureus. BioMed Res. Int. 2013, 2013, 986273. [Google Scholar] [CrossRef] [PubMed]
- Santoyo, G.; del Orozco-Mosqueda, M.C.; Govindappa, M. Mechanisms of Biocontrol and Plant Growth-Promoting Activity in Soil Bacterial Species of Bacillus and Pseudomonas: A Review. Biocontrol Sci. Technol. 2012, 22, 855–872. [Google Scholar] [CrossRef]
- Lourenço, D.d.A.; Branco, I.; Choupina, A. A Systematic Review about Biological Control of Phytopathogenic Phytophthora cinnamomi. Mol. Biol. Rep. 2022, 49, 9947–9962. [Google Scholar] [CrossRef]
- Ramírez Gil, J.G.; Castañeda Sánchez, D.A.; Morales Osorio, J.G. Microbiological Alternatives for Phytophthora cinnamomi Rands., Management in Persea americana Mill. under Greenhouse Conditions. Cultiv. Trop. 2014, 35, 19–27. [Google Scholar]
- Hawkesford, M.J.; Cakmak, I.; Coskun, D.; De Kok, L.J.; Lambers, H.; Schjoerring, J.K.; White, P.J. Functions of macronutrients. In Marschner’s Mineral Nutrition of Plants; Academic Press: Cambridge, MA, USA, 2023; pp. 201–281. [Google Scholar]
- He, Y.; Pantigoso, H.A.; Wu, Z.; Vivanco, J.M. Co-inoculation of Bacillus sp. and Pseudomonas putida at Different Development Stages Acts as a Biostimulant to Promote Growth, Yield and Nutrient Uptake of Tomato. J. Appl. Microbiol. 2019, 127, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Vafadar, F.; Amooaghaie, R.; Otroshy, M. Effects of Plant-Growth-Promoting Rhizobacteria and Arbuscular Mycorrhizal Fungus on Plant Growth, Stevioside, NPK, and Chlorophyll Content of Stevia rebaudiana. J. Plant Interact. 2013, 9, 128–136. [Google Scholar] [CrossRef]
- Ribeiro, V.P.; Marriel, I.E.; Sousa, S.M.D.; Lana, U.G.D.P.; Mattos, B.B.; Oliveira, C.A.D.; Gomes, E.A. Endophytic Bacillus Strains Enhance Pearl Millet Growth and Nutrient Uptake under Low-P. Braz. J. Microbiol. 2018, 49, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Laslo, É.; Mara, G. Is PGPR an Alternative for NPK Fertilizers in Sustainable Agriculture. In Microbial Interventions in Agriculture and Environment: Volume 1: Research Trends, Priorities and Prospects; Springer: Berlin/Heidelberg, Germany, 2019; pp. 51–62. [Google Scholar] [CrossRef]
- Negi, Y.; Sajwan, P.; Uniyal, S. Enhancement in Yield and Nutritive Qualities of Strawberry Fruits by the Application of Organic Manures and Biofertilizers. Sci. Hortic. 2021, 283, 110038. [Google Scholar] [CrossRef]
Treatment | Scale Value | Outbreak Appearance and Disease Symptom | Root Appearance |
---|---|---|---|
GFI/B. subtilis | 1 | Visible disease symptoms. General yellowing of leaves. | Diseased rootlets between 10 y 15% |
GFI/P. putida | 1 | Visible disease symptoms. General yellowing of leaves. | Diseased rootlets between 10 y 15% |
GFI/without bacteria | 1 | Visible disease symptoms. General yellowing of leaves. | Diseased rootlets between 10 y 15% |
GWI/B. subtilis | 1 | Visible disease symptoms. General yellowing of leaves. | Diseased rootlets between 10 y 15% |
GWI/P. putida | 1 | Visible disease symptoms. General yellowing of leaves. | Diseased rootlets between 10 y 15% |
GWI/without bacteria | 3 | Generalized chlorosis, wilting, and defoliation. | Diseased rootlets > 70.1%. |
Without mycorrhiza/B. subtilis | 2 | Generalized yellowing of leaves, stunted growth, and mild wilting. | Diseased rootlets between 15,1 y 70% |
Without mycorrhiza/P. putida | 2 | Generalized yellowing of leaves, stunted growth, and mild wilting. | Diseased rootlets between 15,1 y 70% |
Without mycorrhiza/without bacteria | 3 | Generalized chlorosis, wilting, and defoliation. | Diseased rootlets > 70.1%. |
Treatment | Number of Leaves | Fresh Aerial Biomass (g) | Dry Aerial Biomass (g) | Fresh Root Biomass (g) | Dry Root Biomass (g) | Root Humidity (g) | Root Length/Root Weight |
---|---|---|---|---|---|---|---|
Media | Media | Media | Media | Media | Media | Media | |
GWI/B. subtilis | 16.66 ± 2.07 ab | 31.57 ± 7.97 a | 16.59 ± 3.98 ab | 9.13 ± 2.94 a | 3.18 ± 1.62 a | 5.94 ± 1.32 ab | 15.39 ± 7.23 b |
GWI/P. putida | 24.66 ± 5.96 bc | 72.42 ± 10.04 b | 33.49 ± 6.31 cd | 21.09 ± 1.7 b | 7.92 ± 0.49 a | 13.16 ± 1.2 d | 2.34 ± 0.58 a |
GWI/without bacteria | 17.33 ± 4.41 ab | 44.88 ± 15.41 a | 18.82 ± 6.41 ab | 10.45 ± 2.53 a | 4.50 ± 1.38 a | 5.95 ± 1.19 ab | 2.89 ± 0.32 a |
GFI/B. subtilis | 35.66 ± 6.95 d | 82.20 ± 18.31 b | 35.71 ± 8.12 cd | 15.05 ± 4.94 ab | 6.18 ± 1.79 a | 8.87 ± 3.15 abcd | 2.98 ± 0.42 a |
GFI/P. putida | 24.00 ± 4.65 bc | 66.03 ± 23.51 b | 26.71 ± 9.7 bc | 16.00 ± 5.66 ab | 5.76 ± 1.64 a | 10.24 ± 4.03 bcd | 2.80 ± 0.77 a |
GFI/without bacteria | 18.00 ± 8.53 ab | 29.95 ± 11.73 a | 11.37 ± 3.82 a | 11.59 ± 3.33 a | 4.45 ± 0.72 a | 7.14 ± 2.67 abc | 3.57 ± 0.39 a |
Without mycorrhiza/B.subtilis | 31.00 ± 13.18 cd | 74.21 ± 11.47 b | 35.48 ± 7.93 cd | 32.66 ± 19.1 c | 13.97 ± 10.42 b | 18.69 ± 8.69 e | 2.09 ± 1.38 a |
Without mycorrhiza/P. putida | 27.00 ± 5.37 c | 83.47 ± 22.11 b | 41.45 ± 15.13 d | 17.19 ± 5.02 ab | 6.31 ± 2.03 a | 10.88 ± 3.08 cd | 2.56 ± 0.84 a |
Without mycorrhiza/without bacteria | 15.00 ± 4.98 a | 34.91 ± 12.33 a | 11.50 ± 8.04 a | 7.85 ± 0.8 a | 3.22 ± 0.37 a | 5.30 ± 0.62 a | 3.30 ± 0.54 a |
Treatment | N | P | K | Ca | Mg | S |
---|---|---|---|---|---|---|
mg g−1 DM | ||||||
GWI/B. subtilis | 19.0 ± 0.8 a | 1.2 ± 0.21 a | 14.2 ± 0.1 d | 16.0 ± 0.1 i | 8.8 ± 0.1 f | 1.8 ± 0.1 bc |
GWI/P. putida | 21.8 ± 0.1 f | 1.4 ± 0.22 a | 17.7 ± 0.3 i | 12.6 ± 0.2 f | 6.9 ± 0.1 c | 2.1 ± 0.1 d |
GWI/without bacteria | 20.2 ± 0.2 b | 1.4 ± 0.29 a | 13.2 ± 0.3 a | 9.2 ± 0.1 a | 5.5 ± 0.2 a | 1.9 ± 0.1 c |
GFI/B. subtilis | 20.4 ± 0.1 c | 1.3 ± 0.11 a | 13.7 ± 0.1 b | 10.8 ± 0.1 c | 7.0 ± 0.2 c | 1.9 ± 0.1 c |
GFI/P. putida | 21.3 ± 0.3 e | 1.2 ± 0.10 a | 16.5 ± 0.2 h | 11.9 ± 0.2 e | 6.5 ± 0.2 b | 1.6 ± 0.1 a |
GFI/Sin bacteria | 19.0 ± 0.7 a | 1.2 ± 0.21 a | 15.5 ± 0.1 g | 11.0 ± 0.1 d | 6.5 ± 0.2 b | 1.7 ± 0.1 ab |
Without mycorrhiza/B. subtilis | 23.8 ± 0.5 g | 1.4 ± 0.09 a | 15.1 ± 0.1 f | 13.9 ± 0.2 g | 8.3 ± 0.2 e | 2.2 ± 0.1 d |
Without mycorrhiza/P. putida | 24.6 ± 0.2 h | 1.4 ± 0.18 a | 14.0 ± 0.1 c | 15.6 ± 0.1 h | 7.5 ± 0.1 d | 2.6 ± 0.2 e |
Without mycorrhiza/without bacteria | 2.07 ± 0.1 d | 1.4 ± 0.08 a | 14.7 ± 0.4 e | 9.6 ± 0.2 b | 6.4 ± 0.2 b | 2.2 ± 0.1 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solórzano-Acosta, R.; Toro, M.; Zúñiga-Dávila, D. Effect of Co-Inoculation with Growth-Promoting Bacteria and Arbuscular Mycorrhizae on Growth of Persea americana Seedlings Infected with Phytophthora cinnamomi. Microorganisms 2024, 12, 721. https://doi.org/10.3390/microorganisms12040721
Solórzano-Acosta R, Toro M, Zúñiga-Dávila D. Effect of Co-Inoculation with Growth-Promoting Bacteria and Arbuscular Mycorrhizae on Growth of Persea americana Seedlings Infected with Phytophthora cinnamomi. Microorganisms. 2024; 12(4):721. https://doi.org/10.3390/microorganisms12040721
Chicago/Turabian StyleSolórzano-Acosta, Richard, Marcia Toro, and Doris Zúñiga-Dávila. 2024. "Effect of Co-Inoculation with Growth-Promoting Bacteria and Arbuscular Mycorrhizae on Growth of Persea americana Seedlings Infected with Phytophthora cinnamomi" Microorganisms 12, no. 4: 721. https://doi.org/10.3390/microorganisms12040721
APA StyleSolórzano-Acosta, R., Toro, M., & Zúñiga-Dávila, D. (2024). Effect of Co-Inoculation with Growth-Promoting Bacteria and Arbuscular Mycorrhizae on Growth of Persea americana Seedlings Infected with Phytophthora cinnamomi. Microorganisms, 12(4), 721. https://doi.org/10.3390/microorganisms12040721