A Review: Microbes and Their Effect on Growth Performance of Litopenaeus vannamei (White Leg Shrimps) during Culture in Biofloc Technology System
Abstract
:1. Introduction
2. Microbes in BFT during Shrimp Culture
2.1. Phytoplankton
2.2. Zooplankton
3. White Leg Shrimp Microbial Composition
4. Association between Water and Gut Microbial Communities
5. Probiotics
5.1. Probiotics Action Mechanism
5.2. Probiotic and Pathogen Association in Biofloc
6. Microbial Effect on Shrimp Growth
7. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mohapatra, S.; Chakraborty, T.; Kumar, V.; Deboeck, G.; Mohanta, K.N. Aquaculture and Stress Management: A Review of Probiotic Intervention. Anim. Physiol. Anim. Nutr. 2013, 97, 405–430. [Google Scholar] [CrossRef]
- Ahmad, I.; Rani, A.; Verma, A.K.; Maqsood, M. Biofloc Technology: An Emerging Avenue in Aquatic Animal Healthcare and Nutrition. Aquac. Int. 2017, 25, 1215–1226. [Google Scholar] [CrossRef]
- Li, E.; Xu, C.; Wang, X.; Wang, S.; Zhao, Q.; Zhang, M. Gut Microbiota and Its Modulation for Healthy Farming of Pacific White Shrimp Litopenaeus vannamei. Rev. Fish. Sci. Aquac. 2018, 26, 381–399. [Google Scholar] [CrossRef]
- Farzanfar, A. The use of probiotics in shrimp aquaculture. Fems. Immunol. Med. Microbiol. 2006, 48, 149–158. [Google Scholar] [CrossRef]
- Emerenciano, M.; Ballester, E.; Cavalli, R.; Wasielesky, W. Biofloc Technology Application as A Food Source in a Limited Water Exchange Nursery System for Pink Shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquac. Res. 2012, 43, 447–457. [Google Scholar] [CrossRef]
- Abakari, G.; Wu, X.; He, X.; Fan, L.; Luo, G. Bacteria in Biofloc Technology Aquaculture Systems: Roles and Mediating Factors. Rev. Aquac. 2022, 14, 1260–1284. [Google Scholar] [CrossRef]
- Ballester, E.L.C.; Abreu, P.C.; Cavalli, R.O.; Emerenciano, M.; Abreu, L.; Wasielesky, W. Effect of Practical Diets with Different Protein Levels on The Performance of Farfantepenaeus paulensis Juveniles Nursed in a Zero Exchange Suspended Microbial Flocs Intensive System. Aquac. Nutr. 2010, 16, 163–172. [Google Scholar] [CrossRef]
- Blumberg, R.; Powrie, F. Philippines: Aquaculture department, Southeast Asian Fisheries Development Center. ‘Microbiota, Disease, and Back to Health: A metastable journey’. Pediatr. Neurol. 2016, 52, 566–584. [Google Scholar]
- Crab, R.; Defoirdt, T.; Bossier, P.; Verstraete, W. Biofloc Technology in Aquaculture: Beneficial Effects and Future Challenges. Aquaculture 2012, 356, 351–356. [Google Scholar] [CrossRef]
- Huang, Z.; Li, X.; Wang, L.; Shao, Z. Changes in The Intestinal Bacterial Community During the Growth of White Shrimp, Litopenaeus vannamei. Aquac. Res. 2014, 47, 1737–1746. [Google Scholar] [CrossRef]
- Zoqratt, M.; Eng, W.; Thai, B.; Austin, C.; Gan, H. Microbiome Analysis of Pacific White Shrimp Gut and Rearing Water from Malaysia and Vietnam: Implications for Aquaculture Research And Management. Peer J. 2018, 6, E5826. [Google Scholar] [CrossRef]
- Wasielesky, W.J.; Atwood, H.; Stokes, A.; Browdy, C. Effect of Natural Production in A Zero Exchange Suspended Microbial Floc Based Super-Intensive Culture System for White Shrimp Litopenaeus vannamei. Aquaculture 2006, 258, 396–403. [Google Scholar] [CrossRef]
- Verschuere, L.; Rombaut, G.; Sorgeloos, P.; Verstraete, W. Probiotic Bacteria as Biological Control Agents in Aquaculture. Microbiol. Mol. Biol. Rev. 2000, 64, 655–671. [Google Scholar] [CrossRef]
- Sun, Z.; Xuan, Y.; Zhang, H.; Jiang, M.; Pan, Y.; Zhang, Y.; Gong, Y.; Lu, X.; Yu, D.; Xue, R. Bacterial Diversity in The Penaeus Vannamei Boone Intestine and Aquaculture Environment. J. Fish. Sci. China 2016, 32, 594–605. [Google Scholar]
- Schveitzer, R.; Arantes, R.; Costódio, P.; Do-Espírito, S.C.; Arana, L.; Seiffert, W.; Andreatta, E. Effect of Different Biofloc Levels on Microbial Activity, Water Quality and Performance of Litopenaeus vannamei in a Tank System Operated with no Water Exchange. Aquac. Eng. 2013, 56, 59–70. [Google Scholar] [CrossRef]
- Ju, Z.Y.; Forster, I.P.; Conquest, L.; Dominy, W.; Kuo, W.C.; David, H.F. Determination of Microbial Community Structures of Shrimp Floc Cultures by Biomarkers and Analysis of Floc Amino Acid Profiles. Aquac. Res. 2008, 39, 118–133. [Google Scholar] [CrossRef]
- Pacheco-Vega, J.M.; Cadena-Roa, M.A.; Leyva-Flores, J.A.; Zavala-Leala, O.I.; P’Erezbravo, E.; Ruiz-Velazco, J.M.J. Effect of Isolated Bacteria and Microalgae on The Biofloc Characteristics in the Pacific White Shrimp Culture. Aquac. Rep. 2018, 11, 24–30. [Google Scholar] [CrossRef]
- Mohammad, H.K.; Alireza, M.; Maurício, G.; Coelho, E. Microorganisms in Biofloc Aquaculture System. Aquac. Rep. 2022, 26, 101300. [Google Scholar]
- Qin, Y.; Hou, J.; Deng, M.; Liu, Q.; Wu, C.; Ji, Y.; He, X. Bacterial Abundance and Diversity in Pond Water Supplied with Different Feeds. Sci. Rep. 2016, 6, E35232. [Google Scholar] [CrossRef]
- Cardona, E.; Gueguen, Y.; Magre, K.; Lorgeoux, B.; Piquemal, D.; Pierrat, F.; Noguier, F.; Saulnier, D. Bacterial Community Characterization of Water and Intestine of the Shrimp Litopenaeus vannamei in a Biofloc System. BMC Microbiol. 2016, 16, 157. [Google Scholar] [CrossRef]
- Becerril-Cort´Es, D.; Monroy-Dosta, M.C.; Emerenciano, M.G.C.; Castro-Mejía, G.; Cienfuegos-Martínez, K.; Lara-Andrade, R. Nutritional Importance for Aquaculture and Ecological Function of Microorganisms That Make Up Biofloc, A Review. Int. J. Aquat. Sci. 2017, 8, 69–77. [Google Scholar]
- Wei, G.; Shan, D.; Li, G.; Li, X.; Tian, R.; He, J.; Shao, Z. Prokaryotic Communities Vary with Floc Size in A Biofloc-Technology Based Aquaculture System. Aquaculture 2020, 529, 735632. [Google Scholar] [CrossRef]
- Hari, B.; Kurup, B.M.; Varghese, J.T.; Schrama, J.W.; Verdegem, M.C.J. Effects of Carbohydrate Addition on Production in Extensive Shrimp Culture Systems. Aquaculture 2004, 241, 179–194. [Google Scholar] [CrossRef]
- Manan, H.; Moh, J.H.Z.; Kasan, N.A.; Suratman, S.; Ikhwanuddin, M. Identification of Biofloc Microscopic Composition as the Natural Bioremediation in Zero Water Exchange of Pacific White Shrimp, Penaeus Vannamei, Culture in Closed Hatchery System. Appl. Water Sci. 2017, 7, 2437–2446. [Google Scholar] [CrossRef]
- Ferreira, M.; Melo, F.; Lima, J.; Andrade, H.; Severi, W.; Correia, E. Bioremediation and Biocontrol of Commercial Probiotic in Marine Shrimp Culture with Biofloc. Lat. Am. J. Aquat. Res. 2017, 45, 167–176. [Google Scholar] [CrossRef]
- Kumar, V.; Roy, S.; Behera, B.K.; Swain, H.S.; Das, B.K. Biofloc Microbiome with Bioremediation and Health Benefits. Front. Microbiol. 2021, 12, 741164. [Google Scholar] [CrossRef]
- Sandoval-Vargas, L.; Jim´Enez-Amaya, M.; Rodríguez-Pulido, J.; Guaje-Ramírez, D.; Ramírez-Merlano, J.; Medina-Robles, V. Applying Biofloc Technology in the Culture of Juvenile of Piaractus brachypomus (Cuvier, 1818): Effects on Zootechnical Performance and Water Quality. Aquac. Res. 2020, 51, 3865–3878. [Google Scholar] [CrossRef]
- Marinho, Y.F.; Brito, L.O.; Silva Campos, C.V.F.; Severi, W.; Andrade, H.A.; Galvez, A.O. Effect of the Addition of Chaetoceros calcitrans, Navicula Sp. and Phaeodactylum tricornutum (Diatoms) on Phytoplankton Composition and Growth of Litopenaeus vannamei (Boone) Post larvae Reared in a Biofloc System. Aquac. Res. 2017, 48, 4155–4164. [Google Scholar] [CrossRef]
- Nasrullah, B.A.; Muhammad, F.; Ating, Y.; Anik, M.H. Phytoplankton Community at Intensive Cultivation System of Whiteleg Shrimp, Litopenaeus vannamei in Probolinggo, East Java. Int. J. Fish. Aquat. Stud. 2018, 6, 42–46. [Google Scholar]
- Lukwambe, B.; Qiuqian, L.; Wu, J.; Zhang, D.; Wang, K.; Zheng, Z. The Effects of Commercial Microbial Agents (Probiotics) on Phytoplankton Community Structure in Intensive White Shrimp (Litopenaeus vannamei) Aquaculture Ponds. Aquac. Int. 2015, 23, 1443–1455. [Google Scholar] [CrossRef]
- Burford, M.; Peterson, E.; Baiano, J.; Preston, N. Bacteria in Shrimp Pond Sediments: Their Role in Mineralizing Nutrients and Some Suggested Sampling Strategies. Aquac. Res. 2008, 29, 843–849. [Google Scholar] [CrossRef]
- Abreu, J.L.; Brito, L.O.; Lima, P.C.; Silva, S.M.; Severi, W.; G´Alvez, A.O. Effects of addition of navicula sp. (Diatom) in different densities to post larvae of shrimp Litopenaeus vannamei reared in a BFT System: Growth, survival, productivity, and fatty acid Profile. Aquac. Res. 2019, 50, 2231–2239. [Google Scholar] [CrossRef]
- Godoy, L.C.; Odebrecht, C.; Ballester, E.; Martins, T.G.; Wasielesky, W. Effect of Diatom Supplementation During the Nursery Rearing of Litopenaeus vannamei (Boone, 1931) In A Heterotrophic Culture System. Aquac. Int. 2012, 20, 559–569. [Google Scholar] [CrossRef]
- Emerenciano, M.G.C.; Rombenso, A.N.; Vieira, F.N.; Martins, M.A.; Coman, G.J.; Truong, H.H.; Noble, T.H.; Simon, C.J. Intensification of Penaeid Shrimp Culture: An Applied Review of Advances in Production Systems, Nutrition and Breeding. Animals 2022, 12, 236. [Google Scholar] [CrossRef]
- Hargreaves, J.A. Biofloc Production Systems for Aquaculture; No. 4503; SRAC Publication: Stoneville, MS, USA, 2013; pp. 1–12. [Google Scholar]
- Ray, A.J.; Seaborn, G.; Leffler, J.W.; Wilde, S.B.; Lawson, A.; Browdy, C.L. Characterization of Microbial Communities in Minimal Exchange, Intensive Aquaculture Systems, and the Effects of Suspended Solids Management. Aquaculture 2010, 310, 130–138. [Google Scholar] [CrossRef]
- Martínez-Córdova, L.R.; Emerenciano, M.; Miranda-Baeza, A.; Martínez-Porchas, M. Microbial-Based Systems for Aquaculture of Fish and Shrimp: An Updated Review. Rev. Aquac. 2015, 7, 131–148. [Google Scholar] [CrossRef]
- Kim, S.; Pang, Z.; Seo, H.; Cho, Y.; Samocha, T.; Jang, I. Effect of Bioflocs on Growth and Immune Activity of Pacific White Shrimp, Litopenaeus vannamei Post larvae. Aquac. Res. 2014, 45, 362–371. [Google Scholar] [CrossRef]
- Brito, L.O.; Dos Santos, I.G.S.; De Abreu, J.L.; De Araújo, M.T.; Severi, W.; G’Alvez, A.O. Effect of the Addition of Diatoms (Navicula spp.) And Rotifers (Brachionus plicatilis) On Water Quality and Growth of The Litopenaeus vannamei Post Larvae Reared in A Biofloc System. Aquac. Res. 2016, 47, 3990–3997. [Google Scholar] [CrossRef]
- Deng, Y.; Xu, X.; Yin, X.; Lu, H.; Chen, G.; Yu, J.; Ruan, Y. Effect of Stock Density on the Microbial Community in Biofloc Water and Pacific White Shrimp (Litopenaeus vannamei) Gut Microbiota. Appl. Microbiol. Biotechnol. 2019, 103, 4241–4252. [Google Scholar] [CrossRef]
- Hostins, B.; Lara, G.; Decamp, O.; Cesar, D.E.; Wasielesky, W. Efficacy and Variations in Bacterial Density in The Gut of Litopenaeus vannamei Reared in A BFT System and In Clear Water Supplemented with A Commercial Probiotic Mixture. Aquaculture 2017, 480, 58–64. [Google Scholar] [CrossRef]
- Ghanbari, M.; Kneifel, W.; Domig, K. A New View of The Fish Gut Microbiome: Advances from Next-Generation Sequencing. Aquaculture 2015, 448, 464–475. [Google Scholar] [CrossRef]
- Cornejo-Granados, F.; Lopez-Zavala, A.; Gallardo-Becerra, L.; Mendoza-Vargas, A.; Sanchez, F.; Vichido, R. Microbiome of Pacific White Leg Shrimp Reveals Differential Bacterial Community Composition Between Wild, Aquacultured and Ahpnd/Ems Outbreak Conditions. Sci. Rep. 2017, 7, 11783. [Google Scholar] [CrossRef]
- Kasan, N.A.; Ghazali, N.A.; Ikhwanuddin, M.; Ibrahim, Z. Isolation of Potential Bacteria as Inoculum for Biofloc Formation in Pacific White Leg Shrimp, Litopenaeus vannamei Culture Ponds. Pak. J. Biol. Sci. 2017, 20, 306–313. [Google Scholar] [CrossRef]
- Buruiana, C.T.; Profir, A.G.; Vizireanu, C. Effects of Probiotic Bacillus Species in Aquaculture—An Overview. Ann. Univ. Dunarea Galati 2014, 38, 9–17. [Google Scholar]
- Villaseñor, I.E.L.; Voltolina, D.; Gomez-Gil, B.; Ascencio, F.; Campa-Córdova, A.I.; Audelo-Naranjo, J.M.; Zamudio-Armenta, O.O. Probiotic Modulation of the Gut Bacterial Community of Juvenile Litopenaeus vannamei Challenged with Vibrio Parahemolyticus Caim 170. Lat. Am. J. Aquat. Res. 2015, 43, 766–775. [Google Scholar] [CrossRef]
- Ayazo-Genes, J.; Pertúz-Buelvas, V.; Jim´Enez-Velasquez, C.; Espinosa-Araujo, J.; Atenciogarcía, V.; Prieto-Guevara, M. Describing the Planktonic and Bacterial Communities Associated with Bocachico Prochilodus Magdalenae Fish Culture with Biofloc Technology. Rev. MVZ Cordoba 2019, 24, 7209–7217. [Google Scholar] [CrossRef]
- Meiling, Z.; Yuhong, S.; Ke, C.; Na, Y.; Zhigang, Z.; Liqiao, C.; Zhenyu, D.; Erchao, L. Characterization of the Intestinal Microbiota in Pacific White Shrimp, Litopenaeus vannamei, Fed Diets with Different Lipid Sources. Aquaculture 2014, 434, 449–455. [Google Scholar]
- Tzuc, J.T.; Escalante, D.R.; Herrera, R.R.; Cortes, G.G.; Ortiz, M.L.A. Microbiota from Litopenaeus vannamei: Digestive Tract Microbial Community of Pacific White Shrimp (Litopenaeus vannamei). Springerplus 2014, 3, 280. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Li, Z.J.; Chen, Y.Q.; Lin, H.Z.; Yang, Y.Y.; Yang, K. Effects of Probiotics on Growth and Activities of Digestive Enzymes of Litopenaeus vannamei. J. Fish. Sci. China 2004, 11, 580–584. [Google Scholar]
- Tepaamorndech, S.; Nookaew, I.; Higdon, S.M.; Santiyanont, P.; Phromson, M.; Chantarasakha, K.; Mhuantong, W.; Plengvidhya, V.; Visessanguan, W. Metagenomics in Bioflocs and Their Effects on Gut Microbiome and Immune Responses In Pacific White Shrimp. Fish Shellfish Immunol. 2020, 106, 733–741. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Yuan, J.; Liu, B. Solexa Sequencing and Analysis of the Intestinal Microorganisms Metagenome in Litopenaeus vannamei. Haiyang Kexue 2012, 36, 9–14. (In Chinese) [Google Scholar]
- Luis-Villasenor, I.E.; Voltolina, D.; Audelo-Naranjo, J.M.; Pacheco-Marges, M.R.; Herreraespericueta, V.E.; Romero-Beltran, E. Effects Of Biofloc Promotion on Water Quality, Growth, Biomass Yield and Heterotrophic Community in Litopenaeus vannamei (Boone, 1931) Experimental Intensive Culture. Ital. J. Anim. Sci. 2016, 14, 332–337. [Google Scholar]
- Khoa, T.N.D.; Tao, C.T.; Van, K.L.; Hai, T.N. Super-Intensive Culture of White Leg Shrimp (Litopenaeus vannamei) In Outdoor Biofloc Systems with Different Sunlight Exposure Levels: Emphasis on Commercial Applications. Aquaculture 2020, 524, 735277. [Google Scholar] [CrossRef]
- Augustine, D.; Jacob, J.C.; Philip, R. Exclusion of Vibrio spp. by an Antagonistic Marine Actinomycete Streptomyces Rubrolavendulae M56. Aquac. Res. 2016, 47, 2951–2960. [Google Scholar] [CrossRef]
- Fan, L.; Barry, K.; Hu, G.; Meng, S.; Song, C.; Qiu, L.; Zheng, Y.; Wu, W.; Qu, J.; Chen, J. Characterizing Bacterial Communities in Tilapia Pond Surface Sediment and their Responses to Pond Differences and Temporal Variations. World J. Microbiol. Biotechnol. 2017, 33, E1. [Google Scholar] [CrossRef]
- Huang, F.; Pan, L.; Song, M.; Tian, C.; Gao, S. Microbiota Assemblages of Water, Sediment, And Intestine and Their Associations with Environmental Factors and Shrimp Physiological Health. Appl. Microbiol. Biotechnol. 2018, 102, 8585–8598. [Google Scholar] [CrossRef]
- Aguillera-Rivera, D.; Prieto-Davo, A.; Escalante, K.; Chávez, C.; Cuzon, G.; Gaxiola, G. Probiotic Effect of Floc on Vibrios in the Pacific White Shrimp Litopenaeus vannamei. Aquaculture 2014, 424, 215–219. [Google Scholar] [CrossRef]
- Abumourad, I.M.K.; Abbas, W.T.; Awaad, S.M.; Authman, N.; El-Shafei, K.; Sharaf, O.M.; Ibrahim, G.A.; Sadek, Z.I.; El-Sayed, H.S. Evaluation of lactobacillus plantarum as a probiotic in aquaculture: Emphasis on growth performance and innate immunity. J. Appl. Sci. Res. 2013, 9, 572–582. [Google Scholar]
- Sapcharoen, P.; Rengpipat, S. Effects of the Probiotic bacillus Subtilis (Bp11 and Bs11) On the Growth and Survival of Pacific White Shrimp, Litopenaeus vannamei. Aquac. Nutr. 2013, 19, 946–954. [Google Scholar] [CrossRef]
- Kongnum, K.; Hongpattarakere, T. Effect of Lactobacillus Plantarum Isolated from Digestive Tract of Wild Shrimp on Growth and Survival of White Shrimp (Litopenaeus vannamei) Challenged with Vibrio harveyi. Fish Shellfish Immunol. 2012, 32, 170–177. [Google Scholar] [CrossRef]
- Ziaei-Nejad, S.; Rezaei, M.; Takami, G.; Lovett, D.; Mirvaghefi, A.; Shakouri, M. The Effect of Bacillus spp. Bacteria Used as Probiotics on Digestive Enzyme Activity, Survival and Growth in the Indian White Shrimp Fenneropenaeus indicus. Aquaculture 2006, 252, 516–524. [Google Scholar] [CrossRef]
- Liu, X.F.; Li, Y.; Li, J.R.; Cai, L.Y.; Li, X.X.; Chen, J.R.; Lyu, S.X. Isolation and Characterisation of Bacillus spp. Antagonistic to Vibrio Parahemolyticus for Use as Probiotics in Aquaculture. World J. Micobriol. Biotechnol. 2015, 31, 795–803. [Google Scholar] [CrossRef]
- Li, J.; Tan, B.; Mai, K. Dietary Probiotic Bacillus and Isomalt oligosaccharides Influence the Intestine Microbial Populations, Immune Responses and Resistance to White Spot Syndrome Virus in Shrimp (Litopenaeus vannamei). Aquaculture 2009, 291, 35–40. [Google Scholar] [CrossRef]
- García, B.M.; Marrero, R.M.; Campa-Córdova, A.I.; Mazon-Suastegui, J.M. Probiotic effect of Streptomyces strains alone or in combination with Bacillus and Lactobacillus in juveniles of the white shrimp Litopenaeus vannamei. Aquacult. Int. 2017, 25, 927–939. [Google Scholar]
- Balcazár, J.L.; Rojas-Luna, T.; Cunningham, D.P. Effect of the Addition of Four Potential Probiotic Strains on the Survival of Pacific White Shrimp (Litopenaeus vannamei) Following Immersion Challenge with Vibrio parahaemolyticus. J. Invertebr. Pathol. 2007, 96, 147–150. [Google Scholar] [CrossRef]
- Kumar, V.; Roy, S.; Meena, D.K.; Sarkar, U.K. Application of Probiotics in Shrimp Aquaculture: Importance, Mechanisms of Action, and Methods of Administration. Rev. Fish. Sci. Aquac. 2016, 24, 342–368. [Google Scholar] [CrossRef]
- Adel, M.; El-Sayed, A.F.M.; Yeganeh, S.; Dadar, M.; Giri, S.S. Effect of Potential Probiotic Lactococcus lactis Subsp. Lactis on Growth Performance, Intestinal Microbiota, Digestive Enzyme Activities, And Disease Resistance of Litopenaeus vannamei. Probiot. Antimicrob. Proteins 2017, 9, 150–156. [Google Scholar] [CrossRef]
- Liu, X.; Steele, J.C.Y.; Meng, X.Z. Usage, Residue, And Human Health Risk of Antibiotics in Chinese Aquaculture: A Review. Environ. Pollut. 2017, 223, 161–169. [Google Scholar] [CrossRef]
- Abriouel, H.; Franz, C.M.; Omar, N.B.; Alvez, A. Diversity and applications of Bacillus bacteriocins fems. Microbiol. Rev. 2011, 35, 201–232. [Google Scholar]
- Das, S.; Ward, L.R.; Burke, C. Screening of Marine Streptomyces spp. For Potential Use as Probiotics in Aquaculture. Aquaculture 2010, 305, 32–41. [Google Scholar] [CrossRef]
- Ngovan, H.; Ravi, F. A Review of Probiotics in Shrimp Aquaculture. J. Appl. Aquac. 2010, 22, 251–266. [Google Scholar]
- Hu, X.; Cao, Y.; Wen, G.; Zhang, X.; Xu, Y.; Xu, W.; Li, Z. Effect of combined use of Bacillus and molasses on microbial communities in shrimp cultural enclosure systems. Aquac. Res. 2016, 48, 2691–2705. [Google Scholar] [CrossRef]
- Akhter, N.; Wu, B.; Memon, A.; Mohsin, M. Probiotics and Prebiotics Associated with Aquaculture: A Review. Fish Shellfish Immunol. 2015, 45, 733–741. [Google Scholar] [CrossRef]
- Kewcharoen, W.; Srisapoome, P. Probiotic Effects of Bacillus spp. From Pacific White Shrimp (Litopenaeus vannamei) on Water Quality and Shrimp Growth, Immune Responses, And Resistance to Vibrio parahaemolyticus (Ahpnd Strains). Fish Shellfish Immunol. 2019, 94, 175–189. [Google Scholar] [CrossRef]
- Nimrat, S.; Suksawat, S.; Boonthai, T.; Vuthiphandchai, V. Potential Bacillus Probiotics Enhance Bacterial Numbers, Water Quality and Growth During Early Development of White Shrimp (Litopenaeus vannamei). Vet. Microbiol. 2012, 159, 443–450. [Google Scholar] [CrossRef]
- Lee, W.J.; Hase, K. Gut Microbiota-Generated Metabolites in Animal Health and Disease. Nat. Chem. Biol. 2014, 10, 416–424. [Google Scholar] [CrossRef]
- Qiao, F.; Liu, Y.K.; Sun, Y.H.; Wang, X.D.; Chen, K.; Li, T.Y.; Li, E.C.; Zhang, M.L. Influence of Different Dietary Carbohydrate Sources on the Growth and Intestinal Microbiota of Litopenaeus vannamei at Low Salinity. Aquacult. Nutr. 2017, 23, 444–452. [Google Scholar] [CrossRef]
- Lin, H.Z.; Guo, Z.; Yang, Y.; Zheng, W.; Li, Z.J. Effect of Dietary Probiotics on Apparent Digestibility Coefficients of Nutrients of White Shrimp Litopenaeus vannamei Boone. Aquac. Res. 2004, 35, 1441–1447. [Google Scholar] [CrossRef]
- Guo, H.; Huang, L.; Hu, S.; Chen, C.; Huang, X.; Liu, W. Effects of Carbon/Nitrogen Ratio on Growth, Intestinal Microbiota and Metabolome of Shrimp (Litopenaeus vannamei). Front. Microbiol. 2020, 11, 652. [Google Scholar] [CrossRef]
- Kureshy, N.; Davis, D. Protein Requirement for Maintenance and Maximum Weight Gain for the Pacific White Shrimp, Litopenaeus vannamei. Aquaculture 2002, 204, 125–143. [Google Scholar] [CrossRef]
- Round, J.; Mazmanian, S.K. The Gut Microbiota Shapes Intestinal Immune Responses During Health and Disease. Nat. Rev. Immunol. 2009, 9, 313. [Google Scholar] [CrossRef]
- Hu, Y.; Tan, B.; Mai, K.; Ai, Q.; Zheng, S.; Cheng, K. Effects of dietary probiotic on growth, immunity, and intestinal bacteria of juvenile Litopenaeus vannamei. J. Fish. Sci. China 2008, 15, 244–251. [Google Scholar]
- Holmström, C.; Egan, S.; Franks, A.; McCloy, S.; Kjelleberg, S. Antifouling activities expressed by marine surface associated Pseudoalteromonas species. FEMS Microbiol. Ecol. 2002, 41, 47–58. [Google Scholar] [CrossRef]
- Emerenciano, M.G.C.; Gaxiola, G.; Cuzon, G. Biofloc Technology (BFT): A Review for Aquaculture Applications and Animal Food Industry. In Biomass Now: Cultivation and Utilization; Matovic, M.D., Ed.; Intech: Belfast, PE, Canada, 2013; pp. 301–308. [Google Scholar]
Plankton | Group | Effect on L. vannamei | Reference |
---|---|---|---|
Phytoplankton | Bacillariophyta | Rich in nutrients like fatty acids, improved shrimp development. Involved in biofiltration, helped to remove nitrogenous waste. | Nasrullah et al. (2018) [29] Lukwambe et al. (2015) [30] Abreu et al. (2019) [32] Martínez-Córdova et al. (2015) [37] |
Cyanophyta | Involved in eutrophication, in result poor water quality, Showed variable effects of growth. | Nasrullah et al. (2018) [29] Lukwambe et al. (2015) [30] Martínez-Córdova et al. (2015) [37] | |
Chlorophyta | Different types of vitamins and proteins present, healthy growth. | Nasrullah et al. (2018) [29] Lukwambe et al. (2015) [30] Martínez-Córdova et al. (2015) [37] | |
Dinophyte | Involved in eutrophication, some species have negative effect on growth of shrimp. | Nasrullah et al. (2018) [29] Lukwambe et al. (2015) [30] Martínez-Córdova et al. (2015) [37] | |
Euglenophyta | Excellent source of protein content, improved immune responses, also improved disease resistance. | Nasrullah et al. (2018) [29] Lukwambe et al. (2015) [30] Martínez-Córdova et al. (2015) [37] | |
Zooplankton | Rotifers | Can assimilate 50–60% raw protein, enhanced the immune system, increased the survival rate. | Ju et al. (2008) [16] Martínez-Córdova et al. (2015) [37] Ray et al. (2010) [36] Kim et al. (2014) [38] |
Cladocerans | Protein absorption rate is 50–68%, Containing essential fatty acids, Improve shrimp growth rate. | Ju et al. (2008) [16] Martínez-Córdova et al. (2015) [37] Ray et al. (2010) [36] | |
Copecodes | Provide beneficial fatty acids, improved the growth rate. | Ju et al. (2008) [16] Martínez-Córdova et al. (2015) [37] Ray et al. (2010) [36] | |
Artemia | High nutritional values, (containing omega-3 help in digestion. They also contain proteins and immunostimulants, which enhance the immune system. | Ju et al. (2008) [16] Martínez-Córdova et al. (2015) [37] Ray et al. (2010) [36] | |
Nematodes | Serve as excellent nutrient sources, consist of 40–50% protein and 15–20% lipid content, improved the growth rate. | Ju et al. (2008) [16] Martínez-Córdova et al. (2015) [37] Hargreaves [35] Ray et al. (2010) [36] | |
Protozoans | Some protozoans are parasites like vorticella, Cause water pollution, increase stress in culturing environment, increase mortality. | Ju et al. (2008) [16] Martínez-Córdova et al. (2015) [37] Ray et al. (2010) [36] |
Taxonomy | Indoor | Ponds | Wild | References |
---|---|---|---|---|
Proteobacteria | 89.6 ± 3.7 | 50.8 ± 5.2 | 62.0 | Tzuc et al. (2014) [49] |
90.3 ± 3.2 | 49.6 ± 4.2 | 48.3 | Meiling et al. (2014) [48] | |
86.0 ± 2.1 | 48.3 ± 5.7 | 55.2 | Sun et al. (2016) [14] | |
92.1 ± 7.2 | 55.0 ± 3.0 | 57.2 | Mohammad et al. (2022) [18] | |
Rhodobacteraceae | 82.4 ± 3.6 | 5.4 ± 6.1 | 2.8 | Tzuc et al. (2014) [49] |
79.3 ± 1.2 | 6.2 ± 1.8 | 3.7 | Meiling et al. (2014) [48] | |
75.7 ± 6.1 | 6.4 ± 1.1 | 4.4 | Sun et al. (2016) [14] | |
80.8 ± 4.1 | 5.2 ± 2.1 | 3.3 | Mohammad et al. (2022) [18] | |
Vibrionaceae | 0.04 ± 0.0 | 45.8 ± 4.9 | 56.5 | Tzuc et al. (2014) [49] |
1.21 ± 0.1 | 22.4 ± 3.7 | 46.7 | Meiling et al. (2014) [48] | |
0.08 ± 0.0 | 36.7 ± 6.8 | 55.2 | Sun et al. (2016) [14] | |
2.02 ± 0.2 | 0.08 ± 0.01 | 49.3 | Mohammad et al. (2022) [18] | |
Firmicutes | 4.4 ± 0.8 | 1.9 ± 0.6 | 3.7 | Tzuc et al. (2014) [49] |
2.7 ± 1.2 | 1.4 ± 1.0 | 2.9 | Meiling et al. (2014) [48] | |
3.3 ± 1.3 | 1.8 ± 1.1 | 3.3 | Sun et al. (2016) [14] | |
4.7 ± 2.1 | 2.8 ± 0.9 | 4.0 | Mohammad et al. (2022) [18] | |
Other Proteobacteria | 0.6 ± 0.2 | 37.0 ± 5.9 | 17.7 | Tzuc et al. (2014) [49] |
2.2 ± 0.6 | 13.6 ± 3.2 | 12.44 | Meiling et al. (2014) [48] | |
1.9 ± 1.1 | 25.6 ± 5.1 | 14.12 | Sun et al. (2016) [14] | |
2.0 ± 1.3 | 22.9 ± 2.6 | 13.33 | Mohammad et al. (2022) [18] | |
Bacteroidetes | 0.01 ± 0.0 | 8.9 ± 3.4 | 3.5 | Tzuc et al. (2014) [49] |
0.24 ± 0.1 | 6.7 ± 2.1 | 4.4 | Meiling et al. (2014) [48] | |
1.02 ± 0.1 | 7.0 ± 3.0 | 3.7 | Sun et al. (2016) [14] | |
0.28 ± 0.2 | 8.1 ± 0.8 | 4.1 | Mohammad et al. (2022) [18] | |
Fusobacteria | 2.5 ± 2.2 | 1.5 ± 0.4 | 1.2 | Tzuc et al. (2014) [49] |
2.8 ± 1.8 | 2.4 ± 0.9 | 2.2 | Meiling et al. (2014) [48] | |
3.3 ± 1.7 | 3.2 ± 1.2 | 2.6 | Sun et al. (2016) [14] | |
3.0 ± 1.2 | 1.3 ± 0.9 | 2.9 | Mohammad et al. (2022) [18] | |
Cyanobacteria | 2.8 ± 1.2 | 0.6 ± 0.1 | 0.1 | Tzuc et al. (2014) [49] |
1.4 ± 0.9 | 1.8 ± 0.4 | 0.5 | Meiling et al. (2014) [48] | |
3.6 ± 2.2 | 1.1 ± 1.3 | 1.8 | Sun et al. (2016) [14] | |
2.3 ± 1.8 | 1.1 ± 0.8 | 0.8 | Mohammad et al. (2022) [18] | |
Candidatus Saccharibacteria | 0.01 ± 0.00 | 1.7 ± 0.6 | 7.3 | Tzuc et al. (2014) [49] |
0.06 ± 0.01 | 1.2 ± 0.2 | 8.4 | Meiling et al. (2014) [48] | |
0.20 ± 0.02 | 2.0 ± 0.8 | 8.6 | Sun et al. (2016) [14] | |
0.08 ± 0.01 | 2.2 ± 1.3 | 7.7 | Mohammad et al. (2022) [18] | |
Actinobacteria | 3.5 ± 1.0 | 0.08 ± 0.1 | 0.3 | Tzuc et al. (2014) [49] |
4.1 ± 1.4 | 1.02 ± 0.5 | 0.8 | Meiling et al. (2014) [48] | |
5.7 ± 2.7 | 1.80 ± 0.4 | 1.0 | Sun et al. (2016) [14] | |
3.2 ± 1.0 | 0.20 ± 0.1 | 0.5 | Mohammad et al. (2022) [18] |
Biofloc with Probiotics | Biofloc with No Probiotics | Clear Water with Probiotics | Clear Water with No Probiotics | References | |
---|---|---|---|---|---|
Bacillus spp. | 17.26 ± 4.1 | 3.58 ± 3.0 | 32.85 ± 2.4 | 1.90 ± 1.0 | Sapcharoen and Rengpipat (2013) [60] |
19.33 ± 3.1 | 4.01 ± 2.2 | 24.43 ± 3.0 | 2.34 ± 0.9 | García et al., 2017 [65] | |
24.22 ± 2.1 | 5.21 ± 1.9 | 27.60 ± 3.0 | 2.90 ± 0.9 | Huang et al., 2016 [10] | |
21.16 ± 1.7 | 3.92 ± 3.0 | 29.18 ± 4.1 | 2.22 ± 1.0 | Abumourad et al., 2013 [59] | |
Vibrio spp. | 1.75 ± 0.49 | 17.77 ± 9.80 | 3.54 ± 0.53 | 7.74 ± 3.24 | Sapcharoen and Rengpipat (2013) [60] |
3.73 ± 0.60 | 12.23 ± 3.80 | 2.22 ± 1.07 | 16.23 ± 2.33 | García et al., 2017 [65] | |
2.48 ± 1.01 | 8.98 ± 2.09 | 2.48 ± 2.00 | 18.21 ± 2.22 | Huang et al., 2016 [10] | |
1.29 ± 0.05 | 18.08 ± 4.41 | 3.11 ± 2.12 | 17.16 ± 5.01 | Abumourad et al., 2013 [59] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raza, B.; Zheng, Z.; Zhu, J.; Yang, W. A Review: Microbes and Their Effect on Growth Performance of Litopenaeus vannamei (White Leg Shrimps) during Culture in Biofloc Technology System. Microorganisms 2024, 12, 1013. https://doi.org/10.3390/microorganisms12051013
Raza B, Zheng Z, Zhu J, Yang W. A Review: Microbes and Their Effect on Growth Performance of Litopenaeus vannamei (White Leg Shrimps) during Culture in Biofloc Technology System. Microorganisms. 2024; 12(5):1013. https://doi.org/10.3390/microorganisms12051013
Chicago/Turabian StyleRaza, Bilal, Zhongming Zheng, Jinyong Zhu, and Wen Yang. 2024. "A Review: Microbes and Their Effect on Growth Performance of Litopenaeus vannamei (White Leg Shrimps) during Culture in Biofloc Technology System" Microorganisms 12, no. 5: 1013. https://doi.org/10.3390/microorganisms12051013
APA StyleRaza, B., Zheng, Z., Zhu, J., & Yang, W. (2024). A Review: Microbes and Their Effect on Growth Performance of Litopenaeus vannamei (White Leg Shrimps) during Culture in Biofloc Technology System. Microorganisms, 12(5), 1013. https://doi.org/10.3390/microorganisms12051013