Novel Tick-Borne Anaplasmataceae Genotypes in Tropical Birds from the Brazilian Pantanal Wetland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Bird Sampling
2.2. Molecular Assays
2.2.1. DNA Extraction and PCR for Avian Endogenous Gene (β-Actin)
2.2.2. Molecular Screening for Anaplasma spp. and Ehrlichia spp. Targeting the groEL Gene by a Multiplex Quantitative Real-Time (q)PCR
2.2.3. Molecular Screening for Anaplasmataceae Agents Targeting the 16S rRNA Gene by Conventional PCR
2.2.4. PCR Assays for Molecular Characterization
2.3. Gel Electrophoresis and Amplicon Purification
2.4. Sequencing and nBLAST Analysis
2.5. Phylogenetic Analyses
3. Results
3.1. Molecular Screening for Endogenous Gene Avian ß-Actin
3.2. Molecular Screening for Anaplasma spp. and Ehrlichia spp. by a Quantitative Real-Time PCR Based on the groEL Gene
3.3. Molecular Screening for Anaplasmataceae Agents by a cPCR Based on the 16S rRNA Gene and Molecular Characterization
3.4. Phylogenetic Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cutler, S.J.; Fooks, A.R.; van der Poel, W.H.M. Public Health Threat of New, Reemerging, and Neglected Zoonoses in the Industrialized World. Emerg. Infect. Dis. 2010, 16, 1–7. [Google Scholar] [CrossRef]
- Dumler, J.S.; Barbet, A.F.; Bekker, C.P.J.; Dasch, G.A.; Palmer, G.H.; Ray, S.C.; Rikihisa, Y.; Rurangirwa, F.R. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: Unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int. J. Syst. Evol. Microbiol. 2001, 51, 2145–2165. [Google Scholar] [CrossRef]
- Eshoo, M.W.; Carolan, H.E.; Massire, C.; Chou, D.M.; Crowder, C.D.; Rounds, M.A.; Phillipson, C.A.; Schutzer, S.E.; Ecker, D.J. Survey of ixodes pacificus ticks in California reveals a diversity of microorganisms and a novel and widespread Anaplasmataceae species. PLoS ONE 2015, 10, e0135828. [Google Scholar] [CrossRef]
- Ouass, S.; Boulanger, N.; Lelouvier, B.; Insonere, J.L.M.; Lacroux, C.; Krief, S.; Asalu, E.; Rahola, N.; Duron, O. Diversity and phylogeny of the tick-borne bacterial genus Candidatus Allocryptoplasma (Anaplasmataceae). Parasite 2023, 30, 13. [Google Scholar] [CrossRef]
- Friedman, C.S.; Andree, K.B.; A Beauchamp, K.; Moore, J.D.; Robbins, T.T.; Shields, J.D.; Hedrick, R.P. ‘Candidatus Xenohaliotis californiensis’, a newly described pathogen of abalone, Haliotis spp., along the west coast of North America. Int. J. Syst. Evol. Microbiol. 2000, 50, 847–855. [Google Scholar] [CrossRef]
- Kwan, J.C.; Schmidt, E.W. Bacterial endosymbiosis in a chordate host: Long-term co-evolution and conservation of secondary metabolism. PLoS ONE 2013, 8, e80822. [Google Scholar] [CrossRef]
- Nicholson, W.L. Family Anaplasmataceae (Anaplasmosis, Ehrlichiosis, Neorickettsiosis, and Neoehrlichiosis), 5th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780323401814. [Google Scholar]
- Lotrič-Furlan, S.; Petrovec, M.; Zupanc, T.A.; Nicholson, W.L.; Sumner, J.W.; Childs, J.E.; Strle, F. Human granulocytic ehrlichiosis in Europe: Clinical and laboratory findings for four patients from Slovenia. Clin. Infect. Dis. 1998, 27, 424–428. [Google Scholar] [CrossRef]
- Dumler, J.S.; Choi, K.S.; Garcia-Garcia, J.C.; Barat, N.S.; Scorpio, D.G.; Garyu, J.W.; Grab, D.J.; Bakken, J.S. Human granulocytic anaplasmosis and Anaplasma phagocytophilum. Emerg. Infect. Dis. 2005, 11, 1828–1834. [Google Scholar] [CrossRef]
- Dittrich, S.; Phuklia, W.; Turner, G.D.H.; Rattanavong, S.; Chansamouth, V.; Dumler, S.J.; Ferguson, D.J.P.; Paris, D.H.; Newton, P.N. Neorickettsia sennetsu as a neglected cause of fever in South-East Asia. PLoS Negl. Trop. Dis. 2015, 9, e0003908. [Google Scholar] [CrossRef]
- Silaghi, C.; Beck, R.; Oteo, J.A.; Pfeffer, M.; Sprong, H. Neoehrlichiosis: An emerging tick-borne zoonosis caused by Candidatus Neoehrlichia mikurensis. Exp. Appl. Acarol. 2016, 68, 279–297. [Google Scholar] [CrossRef]
- Dumler, J.S.; Madigan, J.E.; Pusterla, N.; Bakken, J.S. Ehrlichioses in humans: Epidemiology, clinical presentation, diagnosis, and treatment. Clin. Infect. Dis. 2007, 45, 45–51. [Google Scholar] [CrossRef]
- Gubler, D.J. The Global Threat of Emergent/Re-emergent Vector-Borne Diseases. In Vector Biology, Ecology and Control; Springer: Dordrecht, The Netherlands, 2010; pp. 39–62. [Google Scholar]
- André, M.R. Diversity of Anaplasma and Ehrlichia/Neoehrlichia Agents in Terrestrial Wild Carnivores Worldwide: Implications for Human and Domestic Animal Health and Wildlife Conservation. Front. Vet. Sci. 2018, 5, 293. [Google Scholar] [CrossRef]
- Ogden, N.H.; Lindsay, L.R.; Hanincová, K.; Barker, I.K.; Bigras-Poulin, M.; Charron, D.F.; Heagy, A.; Francis, C.M.; O’Callaghan, C.J.; Schwartz, I.; et al. Role of migratory birds in introduction and range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi and Anaplasma phagocytophilum in Canada. Appl. Environ. Microbiol. 2008, 74, 1780–1790. [Google Scholar] [CrossRef]
- Hoffman, T.; Wilhelmsson, P.; Barboutis, C.; Fransson, T.; Jaenson, T.G.T.; Lindgren, P.-E.; Von Loewenich, F.D.; Lundkvist, Å.; Olsen, B.; Salaneck, E. A divergent Anaplasma phagocytophilum variant in an Ixodes tick from a migratory bird; Mediterranean basin. Infect. Ecol. Epidemiol. 2020, 10, 1729653. [Google Scholar] [CrossRef]
- Paulauskas, A.; Radzijevskaja, J.; Rosef, O. Anaplasma in ticks feeding on migrating birds and questing ticks in Lithuania and Norway. Clin. Microbiol. Infect. 2009, 15, 34–36. [Google Scholar] [CrossRef]
- Grech-Angelini, S.; Stachurski, F.; Vayssier-Taussat, M.; Devillers, E.; Casabianca, F.; Lancelot, R.; Uilenberg, G.; Moutailler, S. Tick-borne pathogens in ticks (Acari: Ixodidae) collected from various domestic and wild hosts in Corsica (France), a Mediterranean island environment. Transbound. Emerg. Dis. 2020, 67, 745–757. [Google Scholar] [CrossRef]
- Capligina, V.; Salmane, I.; Keišs, O.; Vilks, K.; Japina, K.; Baumanis, V.; Ranka, R. Prevalence of tick-borne pathogens in ticks collected from migratory birds in Latvia. Ticks Tick-Borne Dis. 2014, 5, 75–81. [Google Scholar] [CrossRef]
- Oh, M.R.; Moon, K.H.; Kim, S.Y.; Kim, Y.G.; Choi, C.Y.; Kang, C.W.; Kim, H.J.; Lee, K.K.; Yun, Y.M. Prevalence of anaplasma sp. in thrushes (Family Turdidae) in Jeju island, Republic of Korea. J. Vet. Clin. 2014, 31, 206–211. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Z.; Niu, Q.; Tian, Z.; Liu, J.; Guan, G.; Liu, G.; Luo, J.; Wang, X.; Yin, H. Tick-borne zoonotic pathogens in birds in Guangxi, Southwest China. Parasites Vectors 2015, 8, 637. [Google Scholar] [CrossRef]
- Sándor, A.D.; Kalmár, Z.; Mihalca, A.D. Anaplasma phagocytophilum in ticks and tissues collected from wild birds in Romania. Sci. Parasitol. 2015, 16, 103–111. [Google Scholar]
- Vanstreels, R.E.T.; Yabsley, M.J.; Parsons, N.J.; Swanepoel, L.; Pistorius, P.A. A novel candidate species of Anaplasma that infects avian erythrocytes. Parasit. Vectors 2018, 11, 525. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Leal, S.; Clemes, Y.S.; Lopes, M.G.; Acosta, I.C.L.; Serpa, M.C.A.; Mayorga, L.F.S.P.; Gennari, S.M.; González-Acuña, D.; Labruna, M.B. Novel Ehrlichia sp. detected in Magellanic penguins (Sphenicus magellanicus) and in the seabird tick Ixodes uriae from Magdalena Island, southern Chile. Ticks Tick-Borne Dis. 2019, 10, 101256. [Google Scholar] [CrossRef]
- Hornok, S.; Boldogh, S.A.; Takács, N.; Juhász, A.; Kontschán, J.; Földi, D.; Koleszár, B.; Morandini, P.; Gyuranecz, M.; Szekeres, S. Anaplasmataceae closely related to Ehrlichia chaffeensis and Neorickettsia helminthoeca from birds in Central Europe, Hungary. Antonie Van Leeuwenhoek 2020, 113, 1067–1073. [Google Scholar] [CrossRef] [PubMed]
- Machado, R.Z.; André, M.R.; Werther, K.; De Sousa, E.; Gavioli, F.A.; Alves, J.R.F. Migratory and carnivorous birds in Brazil: Reservoirs for Anaplasma and Ehrlichia species? Vector-Borne Zoonotic Dis. 2012, 12, 705–708. [Google Scholar] [CrossRef]
- Mongruel, A.C.B.; Benevenute, J.L.; Ikeda, P.; André, M.R.; Machado, R.Z.; de Carrasco, A.O.T.; Seki, M.C. Detection of anaplasma sp. Phylogenetically related to A. phagocytophilum in a free-living bird in Brazil. Rev. Bras. Parasitol. Vet. 2017, 26, 505–510. [Google Scholar] [CrossRef]
- Werther, K.; de Luzzi, M.C.; Gonçalves, L.R.; de Oliveira, J.P.; Alves Junior, J.R.F.; Machado, R.Z.; André, M.R. Arthropod-borne agents in wild Orinoco geese (Neochen jubata) in Brazil. Comp. Immunol. Microbiol. Infect. Dis. 2017, 55, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, A.B.V.; André, M.R.; Calchi, A.C.; de Santi, M.; Guimarães, A.; Pires, J.R.; Baldani, C.D.; Werther, K.; Machado, R.Z. Molecular and serological detection of arthropod-borne pathogens in carnivorous birds from Brazil. Vet. Parasitol. Reg. Stud. Rep. 2021, 23, 100539. [Google Scholar] [CrossRef]
- Woolhouse, M.E.J.; Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 2005, 11, 1842–1847. [Google Scholar] [CrossRef]
- Reed, K.D.; Meece, J.K.; Henkel, J.S.; Shukla, S.K. Birds, migration and emerging zoonoses: West nile virus, lyme disease, influenza A and enteropathogens. Clin. Med. Res. 2003, 1, 5–12. [Google Scholar] [CrossRef]
- Elfving, K.; Olsen, B.; Bergström, S.; Waldenström, J.; Lundkvist, Å.; Sjöstedt, A.; Mejlon, H.; Nilsson, K. Dissemination of spotted fever rickettsia agents in Europe by migrating birds. PLoS ONE 2010, 5, e8572. [Google Scholar] [CrossRef]
- De Pinho, J.B.; Aragona, M.; Hakamada, K.Y.P.; Marini, M.Â. Migration patterns and seasonal forest use by birds in the Brazilian Pantanal. Bird Conserv. Int. 2017, 27, 371–387. [Google Scholar] [CrossRef]
- Fecchio, A.; Martins, T.F.; Bell, J.A.; De LaTorre, G.M.; Bueno, E.R.; Malaquias, M.J.; Pinho, J.B.; Labruna, M.B.; Dias, R.I. Host movement and time of year influence tick parasitism in Pantanal birds. Exp. Appl. Acarol. 2020, 82, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Mitsch, W.J.; Bernal, B.; Hernandez, M.E. Ecosystem services of wetlands. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 1–4. [Google Scholar] [CrossRef]
- Alabí Córdova, A.S.; Fecchio, A.; Calchi, A.C.; Dias, C.M.; Machado, R.Z.; André, M.R. Molecular evidence of Bartonella spp. in tropical wild birds from the Brazilian Pantanal, the largest wetland in South America. Vet. Res. Commun. 2024; Online ahead of print. [Google Scholar] [CrossRef]
- Jetz, W.; Thomas, G.H.; Joy, J.B.; Hartmann, K.; Mooers, A.O. The global diversity of birds in space and time. Nature 2012, 491, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Hatai, H.; Ochiai, K.; Murakami, M.; Imanishi, S.; Tomioka, Y.; Toyoda, T.; Ohashi, K.; Umemura, T. Prevalence of Fowl Glioma-Inducing Virus in Chickens of Zoological Gardens in Japan and Nucleotide Variation in the Env Gene. J. Vet. Med. Sci. 2008, 70, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Benevenute, J.L.; Dumler, J.S.; Ogrzewalska, M.; Roque, A.L.R.; Mello, V.V.C.; de Sousa, K.C.M.; Gonçalves, L.R.; D’Andrea, P.S.; de Lemos, E.R.S.; Machado, R.Z.; et al. Corrigendum to ‘Assessment of a quantitative 5′ nuclease real-time polymerase chain reaction using groEL gene for Ehrlichia and Anaplasma species in rodents in Brazil’ [Ticks and Tick-Borne Diseases 8 (2017) 646–656/4]. Ticks Tick-Borne Dis. 2023, 14, 102245. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Lefever, S.; Hellemans, J.; Pattyn, F.; Przybylski, D.R.; Taylor, C.; Geurts, R.; Untergasser, A.; Vandesompele, J.; RDML Consortium. RDML: Structured language and reporting guidelines for real-time quantitative PCR data. Nucleic Acids Res. 2009, 37, 2065–2069. [Google Scholar] [CrossRef]
- Parola, P.; Roux, V.; Camicas, J.-L.; Baradji, I.; Brouqui, P.; Raoult, D.; Rabarijaona, L.; Rakotomanana, F.; Ranaivo, L.; Raharimalala, L.; et al. Detection of ehrlichiae in African ticks by polymerase chain reaction. Trans. R. Soc. Trop. Med. Hyg. 2000, 94, 707–708. [Google Scholar] [CrossRef]
- Doyle, C.K.; Labruna, M.B.; Breitschwerdt, E.B.; Tang, Y.-W.; Corstvet, R.E.; Hegarty, B.C.; Bloch, K.C.; Li, P.; Walker, D.H.; McBride, J.W. Detection of Medically Important Ehrlichia by Quantitative Multicolor TaqMan Real-Time Polymerase Chain Reaction of the dsb Gene. J. Mol. Diagn. 2005, 7, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Onoda, E.; Tai, H.; Fujita, H.; Sakabe, S.; Azuma, K.; Akachi, S.; Oishi, S.; Abe, F.; Ando, S.; et al. Diversity unearthed by the estimated molecular phylogeny and ecologically quantitative characteristics of uncultured Ehrlichia bacteria in Haemaphysalis ticks, Japan. Sci. Rep. 2021, 11, 687. [Google Scholar] [CrossRef] [PubMed]
- Gofton, A.W.; Doggett, S.; Ratchford, A.; Ryan, U.; Irwin, P. Phylogenetic characterisation of two novel Anaplasmataceae from Australian Ixodes holocyclus ticks: ‘Candidatus Neoehrlichia Australis’ and ‘Candidatus Neoehrlichia Arcana’. Int. J. Syst. Evol. Microbiol. 2016, 66, 4256–4261. [Google Scholar] [CrossRef]
- O’Nion, V.L.; Montilla, H.J.; Qurollo, B.A.; Maggi, R.G.; Hegarty, B.C.; Tornquist, S.J.; Breitschwerdt, E.B. Potentially novel Ehrlichia species in horses, Nicaragua. Emerg. Infect. Dis. 2015, 21, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Inayoshi, M.; Naitou, H.; Kawamori, F.; Masuzawa, T.; Ohashi, N. Characterization of Ehrlichia species from Ixodes ovatus ticks at the foot of Mt. Fuji, Japan. Microbiol. Immunol. 2004, 48, 737–745. [Google Scholar] [CrossRef]
- Tabara, K.; Arai, S.; Kawabuchi, T.; Itagaki, A.; Ishihara, C.; Satoh, H.; Okabe, N.; Tsuji, M. Molecular survey of Babesia microti, Ehrlichia species and Candidatus neoehrlichia mikurensis in wild rodents from Shimane Prefecture, Japan. Microbiol. Immunol. 2007, 51, 359–367. [Google Scholar] [CrossRef]
- Zobba, R.; Anfossi, A.G.; Pinna Parpaglia, M.L.; Dore, G.M.; Chessa, B.; Spezzigu, A.; Rocca, S.; Visco, S.; Pittau, M.; Alberti, A. Molecular Investigation and Phylogeny of Anaplasma spp. in Mediterranean Ruminants Reveal the Presence of Neutrophil-Tropic Strains Closely Related to A. platys. Appl. Environ. Microbiol. 2014, 80, 271–280. [Google Scholar] [CrossRef]
- Wen, B.; Jian, R.; Zhang, Y.; Chen, R. Simultaneous detection of Anaplasma marginale and a new Ehrlichia species closely related to Ehrlichia chaffeensis by sequence analyses of 16s ribosomal DNA in Boophilus microplus ticks from Tibet. J. Clin. Microbiol. 2002, 40, 3286–3290. [Google Scholar] [CrossRef]
- Li, H.; Jiang, J.F.; Liu, W.; Zheng, Y.C.; Huo, Q.B.; Tang, K.; Zuo, S.Y.; Liu, K.; Jiang, B.G.; Yang, H.; et al. Human Infection with Candidatus Neoehrlichia mikurensis, China. Emerg. Infect. Dis. 2012, 18, 1636–1639. [Google Scholar] [CrossRef]
- Eberhardt, A.T.; Manzoli, D.E.; Fernandez, C.; Zurvera, D.; Monje, L.D. Anaplasma species infecting questing ticks in the Iberá wetlands ecoregion, Argentina. Exp. Appl. Acarol. 2023, 89, 485–496. [Google Scholar] [CrossRef]
- Monje, L.D.; Fernandez, C.; Percara, A. Detection of Ehrlichia sp. strain San Luis and Candidatus Rickettsia andeanae in Amblyomma parvum ticks. Ticks Tick-Borne Dis. 2018, 10, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Rejmanek, D.; Bradburd, G.; Foley, J. Molecular characterization reveals distinct genospecies of Anaplasma phagocytophilum from diverse North American hosts. J. Med. Microbiol. 2012, 61, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lv, Y.; Zhang, F.; Zhang, W.; Wang, J.; Cui, Y.; Wang, R.; Jian, F.; Zhang, L.; Ning, C. Molecular and phylogenetic analysis of Anaplasma spp. in sheep and goats from six provinces of China. J. Vet. Sci. 2016, 17, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, D.M.; Saito, T.B.; Hagiwara, M.K.; Machado, R.Z.; Labruna, M.B. Diagnóstico sorológico de erliquiose canina com antígeno brasileiro de Ehrlichia canis. Ciência Rural. 2007, 37, 796–802. [Google Scholar] [CrossRef]
- de Fernandes, S.J.; Matos, C.A.; Freschi, C.R.; de Souza Ramos, I.A.; Machado, R.Z.; André, M.R. Diversity of Anaplasma species in cattle in Mozambique. Ticks Tick-Borne Dis. 2019, 10, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Altschul, S. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Ostell, J.; Pruitt, K.D.; Sayers, E.W. GenBank. Nucleic Acids Res. 2018, 46, D41. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Trifinopoulos, J.; Nguyen, L.-T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef] [PubMed]
- Felsenstein, J. Phylogenies and the Comparative Method. Am. Nat. 1985, 125, 818–829. [Google Scholar] [CrossRef]
- Rambaut, A. Molecular Evolution, Phylogenetics and Epidemiology. Available online: http://tree.bio.ed.ac.uk/ (accessed on 5 April 2024).
- Ioannou, I.; Chochlakis, D.; Kasinis, N.; Anayiotos, P.; Lyssandrou, A.; Papadopoulos, B.; Tselentis, Y.; Psaroulaki, A. Carriage of Rickettsia spp., Coxiella burnetii and Anaplasma spp. by endemic and migratory wild birds and their ectoparasites in Cyprus. Clin. Microbiol. Infect. 2009, 15, 158–160. [Google Scholar] [CrossRef]
- Calchi, A.C.; Vultão, J.G.; Alves, M.H.; Yogui, D.R.; Desbiez, A.L.J.; De Santi, M.; Santana, M.D.S.; da Silva, T.M.V.; Werther, K.; Teixeira, M.M.G.; et al. Ehrlichia spp. and Anaplasma spp. in Xenarthra mammals from Brazil, with evidence of novel ‘Candidatus Anaplasma spp.’. Sci. Rep. 2020, 10, 12615. [Google Scholar] [CrossRef]
- Perles, L.; Herrera, H.M.; Barreto, W.T.G.; de Macedo, G.C.; Calchi, A.C.; Machado, R.Z.; André, M.R. Multi-Locus Sequencing Reveals Putative Novel Anaplasmataceae Agents, ‘Candidatus Ehrlichia dumleri’ and Anaplasma sp., in Ring-Tailed Coatis (Carnivora: Nasua nasua) from Urban Forested Fragments at Midwestern Brazil. Microorganisms 2022, 10, 2379. [Google Scholar] [CrossRef] [PubMed]
- Perles, L.; Barreto, W.T.G.; Santos, F.M.; Duarte, L.L.; de Macedo, G.C.; Barros-Battesti, D.M.; Herrera, H.M.; Machado, R.Z.; André, M.R. Molecular Survey of Hemotropic Mycoplasma spp. and Bartonella spp. in Coatis (Nasua nasua) from Central-Western Brazil. Pathogens 2023, 12, 538. [Google Scholar] [CrossRef]
- André, M.R.; Dumler, J.S.; Scorpio, D.G.; Teixeira, R.H.F.; Allegretti, S.M.; Machado, R.Z. Molecular detection of tick-borne bacterial agents in Brazilian and exotic captive carnivores. Ticks Tick-Borne Dis. 2012, 3, 247–253. [Google Scholar] [CrossRef]
- André, M.R.; Baccarim Denardi, N.C.; Marques de Sousa, K.C.; Gonçalves, L.R.; Henrique, P.C.; Grosse Rossi Ontivero, C.R.; Lima Gonzalez, I.H.; Cabral Nery, C.V.; Fernandes Chagas, C.R.; Monticelli, C.; et al. Arthropod-borne pathogens circulating in free-roaming domestic cats in a zoo environment in Brazil. Ticks Tick-Borne Dis. 2014, 5, 545–551. [Google Scholar] [CrossRef]
- Mendoza-Roldan, J.A.; Ravindran Santhakumari Manoj, R.; Latrofa, M.S.; Iatta, R.; Annoscia, G.; Lovreglio, P.; Stufano, A.; Dantas-Torres, F.; Davoust, B.; Laidoudi, Y.; et al. Role of reptiles and associated arthropods in the epidemiology of rickettsioses: A one health paradigm. PLoS Negl. Trop. Dis. 2021, 15, e0009090. [Google Scholar] [CrossRef]
- Sarih, M.; M’Ghirbi, Y.; Bouattour, A.; Gern, L.; Baranton, G.; Postic, D. Detection and identification of Ehrlichia spp. in ticks collected in Tunisia and Morocco. J. Clin. Microbiol. 2005, 43, 1127–1132. [Google Scholar] [CrossRef]
- Banović, P.; Díaz-Sánchez, A.A.; Simin, V.; Foucault-Simonin, A.; Galon, C.; Wu-Chuang, A.; Mijatović, D.; Obregón, D.; Moutailler, S.; Cabezas-Cruz, A. Clinical Aspects and Detection of Emerging Rickettsial Pathogens: A “One Health” Approach Study in Serbia, 2020. Front. Microbiol. 2022, 12, 797399. [Google Scholar] [CrossRef] [PubMed]
- Reis, C.; Cote, M.; Paul, R.E.L.; Bonnet, S. Questing ticks in suburban forest are infected by at least six tick-borne pathogens. Vector-Borne Zoonotic Dis. 2011, 11, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Štefančíková, A.; Derdáková, M.; Lenčáková, D.; Ivanová, R.; Stanko, M.; Čisláková, L.; Peťko, B. Serological and molecular detection of Borrelia burgdorferi sensu lato and Anaplasmataceae in rodents. Folia Microbiol. 2008, 53, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Ogrzewalska, M.; Machado, C.; Rozental, T.; Forneas, D.; Cunha, L.E.; de Lemos, E.R.S. Microorganisms in the ticks Amblyomma dissimile Koch 1844 and Amblyomma rotundatum Koch 1844 collected from snakes in Brazil. Med. Vet. Entomol. 2019, 33, 154–161. [Google Scholar] [CrossRef]
- Kočíková, B.; Majláth, I.; Víchová, B.; Maliničová, L.; Pristaš, P.; Connors, V.A.; Majláthová, V. Candidatus Cryptoplasma Associated with Green Lizards and Ixodes ricinus Ticks, Slovakia, 2004–2011. Emerg. Infect. Dis. 2018, 24, 2348–2351. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alabí Córdova, A.S.; Fecchio, A.; Calchi, A.C.; Dias, C.M.; Mongruel, A.C.B.; das Neves, L.F.; Lee, D.A.B.; Machado, R.Z.; André, M.R. Novel Tick-Borne Anaplasmataceae Genotypes in Tropical Birds from the Brazilian Pantanal Wetland. Microorganisms 2024, 12, 962. https://doi.org/10.3390/microorganisms12050962
Alabí Córdova AS, Fecchio A, Calchi AC, Dias CM, Mongruel ACB, das Neves LF, Lee DAB, Machado RZ, André MR. Novel Tick-Borne Anaplasmataceae Genotypes in Tropical Birds from the Brazilian Pantanal Wetland. Microorganisms. 2024; 12(5):962. https://doi.org/10.3390/microorganisms12050962
Chicago/Turabian StyleAlabí Córdova, Amir Salvador, Alan Fecchio, Ana Cláudia Calchi, Clara Morato Dias, Anna Claudia Baumel Mongruel, Lorena Freitas das Neves, Daniel Antonio Braga Lee, Rosangela Zacarias Machado, and Marcos Rogério André. 2024. "Novel Tick-Borne Anaplasmataceae Genotypes in Tropical Birds from the Brazilian Pantanal Wetland" Microorganisms 12, no. 5: 962. https://doi.org/10.3390/microorganisms12050962
APA StyleAlabí Córdova, A. S., Fecchio, A., Calchi, A. C., Dias, C. M., Mongruel, A. C. B., das Neves, L. F., Lee, D. A. B., Machado, R. Z., & André, M. R. (2024). Novel Tick-Borne Anaplasmataceae Genotypes in Tropical Birds from the Brazilian Pantanal Wetland. Microorganisms, 12(5), 962. https://doi.org/10.3390/microorganisms12050962