Endometrial Cancer: A Pilot Study of the Tissue Microbiota
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort and Sample Collection
2.2. DNA Isolation
2.3. Droplet Digital PCR Assay (ddPCR) and Estimation of Bacterial DNA Content
2.4. Metabarcoding Amplicon Library Preparation and Illumina-Based Sequencing
2.5. Bioinformatics Analysis
3. Results
3.1. Patients, Metadata, and Sampling Sites
3.2. Absolute Quantification of Bacterial DNA
3.3. Metabarcoding Analysis
3.4. Taxonomic Composition of the Endometrial Samples
3.5. Main Microbial Differences between Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Human Microbiome Project Consortium. A framework for human microbiome research. Nature 2012, 486, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The Human Microbiome Project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Braundmeier, A.G.; Lenz, K.M.; Inman, K.S.; Chia, N.; Jeraldo, P.; Walther-António, M.R.S.; Berg Miller, M.E.; Yang, F.; Creedon, D.J.; Nelson, H.; et al. Individualized medicine and the microbiome in reproductive tract. Front. Physiol. 2015, 6, 97. [Google Scholar] [CrossRef] [PubMed]
- Shahanavaj, K.; Gil-Bazo, I.; Castiglia, M.; Bronte, G.; Passiglia, F.; Carreca, A.P.; Del Pozo, J.L.; Russo, A.; Peeters, M.; Rolfo, C. Cancer and the microbiome: Potential applications as new tumor biomarker. Expert Rev. Anticancer Ther. 2015, 15, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Song, X.; Wei, W.; Zhong, H.; Dai, J.; Lan, Z.; Li, F.; Yu, X.; Feng, Q.; Wang, Z.; et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat. Commun. 2017, 8, 875. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, C.M.; Haick, A.; Nkwopara, E.; Garcia, R.; Rendi, M.; Agnew, K.; Fredricks, D.N.; Eschenbach, D. Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women. Am. J. Obstet. Gynecol. 2015, 212, 611.e1–611.e9. [Google Scholar] [CrossRef] [PubMed]
- Dellino, M.; Cascardi, E.; Laganà, A.S.; Di Vagno, G.; Malvasi, A.; Zaccaro, R.; Maggipinto, K.; Cazzato, G.; Scacco, S.; Tinelli, R.; et al. Lactobacillus crispatus M247 oral administration: Is it really an effective strategy in the management of papillomavirus-infected women? Infect. Agent. Cancer 2022, 17, 53. [Google Scholar] [CrossRef]
- Winters, A.D.; Romero, R.; Gervasi, M.T.; Gomez-Lopez, N.; Tran, M.R.; Garcia-Flores, V.; Pacora, P.; Jung, E.; Hassan, S.S.; Hsu, C.-D.; et al. Does the endometrial cavity have a molecular microbial signature? Sci. Rep. 2019, 9, 9905. [Google Scholar] [CrossRef]
- Baker, J.M.; Chase, D.M.; Herbst-Kralovetz, M.M. Uterine Microbiota: Residents, Tourists, or Invaders? Front. Immunol. 2018, 9, 317111. [Google Scholar] [CrossRef]
- Leoni, C.; Ceci, O.; Manzari, C.; Fosso, B.; Volpicella, M.; Ferrari, A.; Fiorella, P.; Pesole, G.; Cicinelli, E.; Ceci, L.R. Human Endometrial Microbiota at Term of Normal Pregnancies. Genes 2019, 10, 971. [Google Scholar] [CrossRef] [PubMed]
- Gressel, G.M.; Usyk, M.; Frimer, M.; Kuo, D.Y.S.; Burk, R.D. Characterization of the endometrial, cervicovaginal and anorectal microbiota in post-menopausal women with endometrioid and serous endometrial cancers. PLoS ONE 2021, 16, e0259188. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.M.; Hokenstad, A.N.; Chen, J.; Sung, J.; Jenkins, G.D.; Chia, N.; Nelson, H.; Mariani, A.; Walther-Antonio, M.R.S. Postmenopause as a key factor in the composition of the Endometrial Cancer Microbiome (ECbiome). Sci. Rep. 2019, 9, 19213. [Google Scholar] [CrossRef]
- Walther-António, M.R.S.; Chen, J.; Multinu, F.; Hokenstad, A.; Distad, T.J.; Cheek, E.H.; Keeney, G.L.; Creedon, D.J.; Nelson, H.; Mariani, A.; et al. Potential contribution of the uterine microbiome in the development of endometrial cancer. Genome Med. 2016, 8, 122. [Google Scholar] [CrossRef] [PubMed]
- Dellino, M.; Cerbone, M.; Laganà, A.S.; Vitagliano, A.; Vimercati, A.; Marinaccio, M.; Baldini, G.M.; Malvasi, A.; Cicinelli, E.; Damiani, G.R.; et al. Upgrading Treatment and Molecular Diagnosis in Endometrial Cancer—Driving New Tools for Endometrial Preservation? Int. J. Mol. Sci. 2023, 24, 9780. [Google Scholar] [CrossRef] [PubMed]
- Gullo, G.; Cucinella, G.; Chiantera, V.; Dellino, M.; Cascardi, E.; Török, P.; Herman, T.; Garzon, S.; Uccella, S.; Laganà, A.S. Fertility-Sparing Strategies for Early-Stage Endometrial Cancer: Stepping towards Precision Medicine Based on the Molecular Fingerprint. Int. J. Mol. Sci. 2023, 24, 811. [Google Scholar] [CrossRef]
- Manzari, C.; Oranger, A.; Fosso, B.; Piancone, E.; Pesole, G.; D’Erchia, A.M. Accurate quantification of bacterial abundance in metagenomic DNAs accounting for variable DNA integrity levels. Microb. Genom. 2020, 6, e000417. [Google Scholar] [CrossRef] [PubMed]
- Větrovský, T.; Baldrian, P. The Variability of the 16S rRNA Gene in Bacterial Genomes and Its Consequences for Bacterial Community Analyses. PLoS ONE 2013, 8, e57923. [Google Scholar] [CrossRef]
- Land, M.; Hauser, L.; Jun, S.-R.; Nookaew, I.; Leuze, M.R.; Ahn, T.-H.; Karpinets, T.; Lund, O.; Kora, G.; Wassenaar, T.; et al. Insights from 20 years of bacterial genome sequencing. Funct. Integr. Genom. 2015, 15, 141–161. [Google Scholar] [CrossRef]
- Stecher, B.; Chaffron, S.; Käppeli, R.; Hapfelmeier, S.; Freedrich, S.; Weber, T.C.; Kirundi, J.; Suar, M.; McCoy, K.D.; von Mering, C.; et al. Like will to like: Abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. 2010, 6, e1000711. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.; Peplies, J.; Glöckner, F.O. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196. [Google Scholar] [CrossRef]
- Katoh, K.; Toh, H. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 2010, 26, 1899–1900. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Gloor, G.B.; Macklaim, J.M.; Pawlowsky-Glahn, V.; Egozcue, J.J. Microbiome Datasets Are Compositional: And This Is Not Optional. Front. Microbiol. 2017, 8, 2224. [Google Scholar] [CrossRef] [PubMed]
- Davis, N.M.; Proctor, D.M.; Holmes, S.P.; Relman, D.A.; Callahan, B.J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 2018, 6, 226. [Google Scholar] [CrossRef]
- Kissling, W.D.; Ahumada, J.A.; Bowser, A.; Fernandez, M.; Fernández, N.; García, E.A.; Guralnick, R.P.; Isaac, N.J.B.; Kelling, S.; Los, W.; et al. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev. Camb. Philos. Soc. 2018, 93, 600–625. [Google Scholar] [CrossRef]
- Leoni, C.; Volpicella, M.; Fosso, B.; Manzari, C.; Piancone, E.; Dileo, M.C.G.; Arcadi, E.; Yakimov, M.; Pesole, G.; Ceci, L.R. A Differential Metabarcoding Approach to Describe Taxonomy Profiles of Bacteria and Archaea in the Saltern of Margherita di Savoia (Italy). Microorganisms 2020, 8, 936. [Google Scholar] [CrossRef]
- Franasiak, J.M.; Scott, R.T. Reproductive tract microbiome in assisted reproductive technologies. Fertil. Steril. 2015, 104, 1364–1371. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I.; Franasiak, J.M. Endometrial microbiota—New player in town. Fertil. Steril. 2017, 108, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Perez-Muñoz, A.M.; Schio, P.; Poloni, R.; Fernandez-Martinez, A.; Rivera-Calzada, A.; Cezar, J.C.; Salas-Colera, E.; Castro, G.R.; Kinney, J.; Leon, C.; et al. In operando evidence of deoxygenation in ionic liquid gating of YBa2Cu3O7-X. Proc. Natl. Acad. Sci. USA 2017, 114, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Veloo, A.C.M.; De Vries, E.D.; Jean-Pierre, H.; Van Winkelhoff, A.J. Anaerococcus nagyae sp. nov., isolated from human clinical specimens. Anaerobe 2016, 38, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.P.; Adley, C.C. Sphingomonas paucimobilis: A persistent Gram-negative nosocomial infectious organism. J. Hosp. Infect. 2010, 75, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.; Nielsen, T.B.; Bonomo, R.A.; Pantapalangkoor, P.; Luna, B.; Spellberg, B. Clinical and Pathophysiological Overview of Acinetobacter Infections: A Century of Challenges. Clin. Microbiol. Rev. 2017, 30, 409–447. [Google Scholar] [CrossRef] [PubMed]
- Sommer, F.; Bäckhed, F. The gut microbiota—Masters of host development and physiology. Nat. Rev. Microbiol. 2013, 11, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Wu, Y.; Sow, S.O.; Sur, D.; Breiman, R.F.; et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 2013, 382, 209–222. [Google Scholar] [CrossRef]
- Hollingshead, S.; Tang, C.M. An Overview of Neisseria meningitidis. In Neisseria Meningitidis; Seib, K.L., Peak, I.R., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2019; Volume 1969, pp. 1–16. ISBN 978-1-4939-9201-0. [Google Scholar]
- Sung, J.J.Y.; Coker, O.O.; Chu, E.; Szeto, C.H.; Luk, S.T.Y.; Lau, H.C.H.; Yu, J. Gastric microbes associated with gastric inflammation, atrophy and intestinal metaplasia 1 year after Helicobacter pylori eradication. Gut 2020, 69, 1572–1581. [Google Scholar] [CrossRef]
- Felföldi, T.; Heéger, Z.; Vargha, M.; Márialigeti, K. Detection of potentially pathogenic bacteria in the drinking water distribution system of a hospital in Hungary. Clin. Microbiol. Infect. 2010, 16, 89–92. [Google Scholar] [CrossRef]
- Siavashifar, M.; Rezaei, F.; Motallebirad, T.; Azadi, D.; Absalan, A.; Naserramezani, Z.; Golshani, M.; Jafarinia, M.; Ghaffari, K. Species diversity and molecular analysis of opportunistic Mycobacterium, Nocardia and Rhodococcus isolated from the hospital environment in a developing country, a potential resources for nosocomial infection. Genes Environ. 2021, 43, 2. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Shang, Y.; Wu, B.; Yang, E.; Luo, Y.; Li, X. Intestinal bacteria detected in cancer and adjacent tissue from patients with colorectal cancer. Oncol. Lett. 2018, 17, 1115–1127. [Google Scholar] [CrossRef]
- Xu, C.-L.; Wang, C.; Li, G.-B.; Zhao, T.; Zhou, R.-L.; Chen, J. Antibiotic administration aggravates asthma by disrupting gut microbiota and the intestinal mucosal barrier in an asthma mouse model. Exp. Ther. Med. 2024, 27, 157. [Google Scholar] [CrossRef]
- Gao, F.; Yu, B.; Rao, B.; Sun, Y.; Yu, J.; Wang, D.; Cui, G.; Ren, Z. The effect of the intratumoral microbiome on tumor occurrence, progression, prognosis and treatment. Front. Immunol. 2022, 13, 1051987. [Google Scholar] [CrossRef]
- Yang, Y.; Dai, D.; Jin, W.; Huang, Y.; Zhang, Y.; Chen, Y.; Wang, W.; Lin, W.; Chen, X.; Zhang, J.; et al. Microbiota and metabolites alterations in proximal and distal gastric cancer patients. J. Transl. Med. 2022, 20, 439. [Google Scholar] [CrossRef]
- Zhang, G.; Hamaker, B.R. Slowly Digestible Starch: Concept, Mechanism, and Proposed Extended Glycemic Index. Crit. Rev. Food Sci. Nutr. 2009, 49, 852–867. [Google Scholar] [CrossRef]
- Newman, N.K.; Macovsky, M.S.; Rodrigues, R.R.; Bruce, A.M.; Pederson, J.W.; Padiadpu, J.; Shan, J.; Williams, J.; Patil, S.S.; Dzutsev, A.K.; et al. Transkingdom Network Analysis (TkNA): A systems framework for inferring causal factors underlying host–microbiota and other multi-omic interactions. Nat. Protoc. 2024, ahead of print. [Google Scholar] [CrossRef]
- Muller, E.; Shiryan, I.; Borenstein, E. Multi-omic integration of microbiome data for identifying disease-associated modules. Nat. Commun. 2023, 15, 2621. [Google Scholar] [CrossRef]
Cancer | Control | p-Value | |
---|---|---|---|
n. | 8 | 6 | |
Age (years), mean (SEM) | 65.13 (1.17) | 43.06 (0.98) | 0.0011 # |
Weight (kg), mean (SEM) | 78.38 (3.08) | 69.21 (2.11) | 0.8338 # |
Height (cm), mean (SEM) | 158.63 (0.54) | 129.15 (1.06) | 0.3600 # |
BMI, mean (SEM) | 31.15 (1.19) | 26.88 (0.93) | 0.6902 # |
Pregnancies, mean (SEM) | 3.875 (0.50) | 2.94 (0.14) | 0.4295 # |
Miscarriages, mean (SEM) | 2.13 (0.35) | 1.33 (0.07) | 0.4262 # |
Smoking, n. (%) | 1 (12.5) | 0 (0) | 0.9999 § |
Menopause, n. (%) | 7 (87.5) | 1 (16.7) | 0.0256 § |
Tumor grade | |||
G1, n. (%) | 2 (25) | n.a. | |
G2, n. (%) | 4 (50) | n.a. | |
G3, n. (%) | 2 (25) | n.a. | |
FIGO grade | |||
1A, n. (%) | 5 (63) | n.a. | |
1B, n. (%) | 3 (38) | n.a. | |
pT | |||
pTIa, n. (%) | 7 (88) | n.a. | |
pTIb, n. (%) | 1 (13) | n.a. | |
Histological type | |||
Endometrioid, n. (%) | 7 (88) | n.a. | |
Squamous, n. (%) | 1 (13) | n.a. |
Copies of 16S rRNA Gene/ng of eDNA | Bacterial DNA fg/ng of eDNA | |||||
---|---|---|---|---|---|---|
Patients | Site_3 | S.D. | Site_12 | S.D. | Site 3 | Site 12 |
P8_C | 2.8 | 2.5 | 1.3 | 0.6 | 3.9 | 1.8 |
P11_C | 1.0 | 0.9 | 0.5 | 0.4 | 1.4 | 0.7 |
P14_C | 0.5 | 0.2 | 1.6 | 1.2 | 0.7 | 2.2 |
P15_C | 2.1 | 0.7 | 2.0 | 0.8 | 2.9 | 2.8 |
P16_C | 1.4 | 0.3 | 0.5 | 0.6 | 2.0 | 0.7 |
P18_C | 1.0 | 0.5 | 1.3 | 1.6 | 1.4 | 1.8 |
P2_K | 2.1 | 0.6 | 1.4 | 0.7 | 2.9 | 2.0 |
P4_K | 1.3 | 2.3 | 1.0 | 0.3 | 1.8 | 1.4 |
P9_K | 1.3 | 1.4 | 0.8 | 0.1 | 1.8 | 1.1 |
P10_K | 1.1 | 1.3 | 0.8 | 0.7 | 1.5 | 1.1 |
P12_K | 2.1 | 0.6 | 2.5 | 0.5 | 2.9 | 3.5 |
P17_K | 1.2 | 1.9 | 0.6 | 0.5 | 1.7 | 0.8 |
P19_K | 0.7 | 0.6 | 0.7 | 0.1 | 1.0 | 1.0 |
P21_K | 1.8 | 1.2 | 2.1 | 1.0 | 2.5 | 2.9 |
Cancer Site 3 | Cancer Site 12 | Control Site 3 | Control Site 12 | |||||
---|---|---|---|---|---|---|---|---|
Average | Distribution | Average | Distribution | Average | Distribution | Average | Distribution | |
Corynebacterium | 8% | 100% | 3% | 100% | 14% | 100% | 2% | 100% |
Ralstonia | 18% | 100% | 21% | 100% | 20% | 100% | 33% | 100% |
Pseudomonas | 2% | 88% | 5% | 67% | 6% | 67% | ||
Cutibacterium | 38% | 100% | 31% | 100% | 34% | 100% | 21% | 100% |
Staphylococcus | 3% | 100% | 3% | 88% | 3% | 100% | 2% | 100% |
Streptococcus | 2% | 100% | 1% | 63% | 2% | 67% | 2% | 67% |
Anaerococcus | 1% | 63% | 1% | 50% | 1% | 50% | 1% | 50% |
Burkholderia-Caballeronia-Paraburkholderia | 1% | 88% | 2% | 100% | 3% | 83% | 3% | 100% |
Sphingomonas | 1% | 63% | 2% | 75% | ||||
Acinetobacter | 3% | 50% | ||||||
Actinomyces | 1% | 50% | ||||||
Escherichia-Shigella | 6% | 88% | ||||||
Hydrogenophaga | 1% | 50% | ||||||
Lactobacillus | 2% | 88% | 4% | 100% | ||||
Methylobacterium-Methylorubrum | 1% | 50% | 1% | 63% | ||||
Neisseria | 1% | 50% | ||||||
Rhodococcus | 1% | 50% | ||||||
Rothia | 1% | 50% | ||||||
Total | 78% | 79% | 81% | 72% | ||||
Different genera | 13 | 14 | 8 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leoni, C.; Vinci, L.; Marzano, M.; D’Erchia, A.M.; Dellino, M.; Cox, S.N.; Vitagliano, A.; Visci, G.; Notario, E.; Filomena, E.; et al. Endometrial Cancer: A Pilot Study of the Tissue Microbiota. Microorganisms 2024, 12, 1090. https://doi.org/10.3390/microorganisms12061090
Leoni C, Vinci L, Marzano M, D’Erchia AM, Dellino M, Cox SN, Vitagliano A, Visci G, Notario E, Filomena E, et al. Endometrial Cancer: A Pilot Study of the Tissue Microbiota. Microorganisms. 2024; 12(6):1090. https://doi.org/10.3390/microorganisms12061090
Chicago/Turabian StyleLeoni, Claudia, Lorenzo Vinci, Marinella Marzano, Anna Maria D’Erchia, Miriam Dellino, Sharon Natasha Cox, Amerigo Vitagliano, Grazia Visci, Elisabetta Notario, Ermes Filomena, and et al. 2024. "Endometrial Cancer: A Pilot Study of the Tissue Microbiota" Microorganisms 12, no. 6: 1090. https://doi.org/10.3390/microorganisms12061090
APA StyleLeoni, C., Vinci, L., Marzano, M., D’Erchia, A. M., Dellino, M., Cox, S. N., Vitagliano, A., Visci, G., Notario, E., Filomena, E., Cicinelli, E., Pesole, G., & Ceci, L. R. (2024). Endometrial Cancer: A Pilot Study of the Tissue Microbiota. Microorganisms, 12(6), 1090. https://doi.org/10.3390/microorganisms12061090