Displacement of Hospital-Acquired, Methicillin-Resistant Staphylococcus aureus Clones by Heterogeneous Community Strains in Kenya over a 13-Year Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. MRSA Strain Collection
2.3. Nucleic Acid Extraction
2.4. ONT Sequencing, Quality Control Check, and Bioinformatics Analysis
2.5. Identification of Resistance and Virulence Determinants
2.6. Molecular Typing
3. Results
3.1. Clinical and Demographic Characteristics of the Study Population
3.2. Antimicrobial Susceptibility Patterns
3.3. Antimicrobial Resistance Determinants
3.4. Strain Diversity
3.5. Temporal Changes in MRSA Strain Diversity
3.6. Panton–Valentine Leucocidin (PVL) and Arginine Catabolic Mobile Element (ACME) Genes
4. Discussion
4.1. Antimicrobial Resistance Patterns of MRSA
4.2. Molecular Epidemiology of MRSA in Kenya
4.3. PVL and ACME Gene Carriage
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Schouls, L.M.; Veldman, K.; Brouwer, M.S.M.; Dierikx, C.; Witteveen, S.; Van Santen-Verheuvel, M.; Hendrickx, A.P.A.; Landman, F.; Hengeveld, P.; Wullings, B.; et al. Cfr and fexA Genes in Methicillin-Resistant Staphylococcus aureus from Humans and Livestock in the Netherlands. Commun. Med. 2022, 2, 135. [Google Scholar] [CrossRef]
- Sabat, A.J.; Köck, R.; Akkerboom, V.; Hendrix, R.; Skov, R.L.; Becker, K.; Friedrich, A.W. Novel Organization of the Arginine Catabolic Mobile Element and Staphylococcal Cassette Chromosome Mec Composite Island and Its Horizontal Transfer between Distinct Staphylococcus aureus Genotypes. Antimicrob. Agents Chemother. 2013, 57, 5774–5777. [Google Scholar] [CrossRef]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G. Methicillin-Resistant Staphylococcus aureus: An Overview of Basic and Clinical Research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef]
- Highlander, S.K.; Hultén, K.G.; Qin, X.; Jiang, H.; Yerrapragada, S.; Mason, E.O.; Shang, Y.; Williams, T.M.; Fortunov, R.M.; Liu, Y.; et al. Subtle Genetic Changes Enhance Virulence of Methicillin Resistant and Sensitive Staphylococcus aureus. BMC Microbiol. 2007, 7, 99. [Google Scholar] [CrossRef]
- Lawal, O.U.; Ayobami, O.; Abouelfetouh, A.; Mourabit, N.; Kaba, M.; Egyir, B.; Abdulgader, S.M.; Shittu, A.O. A 6-Year Update on the Diversity of Methicillin-Resistant Staphylococcus aureus Clones in Africa: A Systematic Review. Front. Microbiol. 2022, 13, 860436. [Google Scholar] [CrossRef]
- Chen, H.; Yin, Y.; Van Dorp, L.; Shaw, L.P.; Gao, H.; Acman, M.; Yuan, J.; Chen, F.; Sun, S.; Wang, X.; et al. Drivers of Methicillin-Resistant Staphylococcus aureus (MRSA) Lineage Replacement in China. Genome Med. 2021, 13, 171. [Google Scholar] [CrossRef] [PubMed]
- Hsu, L.-Y.; Harris, S.R.; Chlebowicz, M.A.; Lindsay, J.A.; Koh, T.-H.; Krishnan, P.; Tan, T.-Y.; Hon, P.-Y.; Grubb, W.B.; Bentley, S.D.; et al. Evolutionary Dynamics of Methicillin-Resistant Staphylococcus aureus within a Healthcare System. Genome Biol. 2015, 16, 81. [Google Scholar] [CrossRef]
- Ellington, M.J.; Hope, R.; Livermore, D.M.; Kearns, A.M.; Henderson, K.; Cookson, B.D.; Pearson, A.; Johnson, A.P. Decline of EMRSA-16 amongst Methicillin-Resistant Staphylococcus aureus Causing Bacteraemias in the UK between 2001 and 2007. J. Antimicrob. Chemother. 2010, 65, 446–448. [Google Scholar] [CrossRef]
- Abdulgader, S.M.; Shittu, A.O.; Nicol, M.P.; Kaba, M. Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus in Africa: A Systematic Review. Front. Microbiol. 2015, 6, 140419. [Google Scholar] [CrossRef] [PubMed]
- Omuse, G.; Kabera, B.; Revathi, G. Low Prevalence of Methicillin Resistant Staphylococcus aureus as Determined by an Automated Identification System in Two Private Hospitals in Nairobi, Kenya: A Cross Sectional Study. BMC Infect. Dis. 2014, 14, 669. [Google Scholar] [CrossRef] [PubMed]
- Gitau, W.; Masika, M.; Musyoki, M.; Museve, B.; Mutwiri, T. Antimicrobial Susceptibility Pattern of Staphylococcus aureus Isolates from Clinical Specimens at Kenyatta National Hospital. BMC Res. Notes 2018, 11, 226. [Google Scholar] [CrossRef] [PubMed]
- Wangai, F.K.; Masika, M.M.; Maritim, M.C.; Seaton, R.A. Methicillin-Resistant Staphylococcus aureus (MRSA) in East Africa: Red Alert or Red Herring? BMC Infect. Dis. 2019, 19, 596. [Google Scholar] [CrossRef] [PubMed]
- Aiken, A.M.; Mutuku, I.M.; Sabat, A.J.; Akkerboom, V.; Mwangi, J.; Scott, J.A.G.; Morpeth, S.C.; Friedrich, A.W.; Grundmann, H. Carriage of Staphylococcus aureus in Thika Level 5 Hospital, Kenya: A Cross-Sectional Study. Antimicrob. Resist. Infect. Control 2014, 3, 22. [Google Scholar] [CrossRef] [PubMed]
- Kyany’a, C.; Nyasinga, J.; Matano, D.; Oundo, V.; Wacira, S.; Sang, W.; Musila, L. Phenotypic and Genotypic Characterization of Clinical Staphylococcus aureus Isolates from Kenya. BMC Microbiol. 2019, 19, 245. [Google Scholar] [CrossRef] [PubMed]
- Omuse, G.; Van Zyl, K.N.; Hoek, K.; Abdulgader, S.; Kariuki, S.; Whitelaw, A.; Revathi, G. Molecular Characterization of Staphylococcus aureus Isolates from Various Healthcare Institutions in Nairobi, Kenya: A Cross Sectional Study. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 51. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, M100, 31st ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of Long, Error-Prone Reads Using Repeat Graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Schultz, M.B.; Zobel, J.; Holt, K.E. Bandage: Interactive Visualization of de Novo Genome Assemblies. Bioinformatics 2015, 31, 3350–3352. [Google Scholar] [CrossRef]
- Khrenova, M.G.; Panova, T.V.; Rodin, V.A.; Kryakvin, M.A.; Lukyanov, D.A.; Osterman, I.A.; Zvereva, M.I. Nanopore Sequencing for De Novo Bacterial Genome Assembly and Search for Single-Nucleotide Polymorphism. Int. J. Mol. Sci. 2022, 23, 8569. [Google Scholar] [CrossRef]
- Larsen, M.V.; Cosentino, S.; Lukjancenko, O.; Saputra, D.; Rasmussen, S.; Hasman, H.; Sicheritz-Pontén, T.; Aarestrup, F.M.; Ussery, D.W.; Lund, O. Benchmarking of Methods for Genomic Taxonomy. J. Clin. Microbiol. 2014, 52, 1529–1539. [Google Scholar] [CrossRef] [PubMed]
- Clausen, P.T.L.C.; Aarestrup, F.M.; Lund, O. Rapid and Precise Alignment of Raw Reads against Redundant Databases with KMA. BMC Bioinform. 2018, 19, 307. [Google Scholar] [CrossRef] [PubMed]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for Predictions of Phenotypes from Genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef] [PubMed]
- Clausen, P.T.L.C.; Zankari, E.; Aarestrup, F.M.; Lund, O. Benchmarking of Methods for Identification of Antimicrobial Resistance Genes in Bacterial Whole Genome Data. J. Antimicrob. Chemother. 2016, 71, 2484–2488. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic Resistome Surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef] [PubMed]
- Sherry, N.L.; Horan, K.A.; Ballard, S.A.; Gonҫalves Da Silva, A.; Gorrie, C.L.; Schultz, M.B.; Stevens, K.; Valcanis, M.; Sait, M.L.; Stinear, T.P.; et al. An ISO-Certified Genomics Workflow for Identification and Surveillance of Antimicrobial Resistance. Nat. Commun. 2023, 14, 60. [Google Scholar] [CrossRef] [PubMed]
- Joensen, K.G.; Scheutz, F.; Lund, O.; Hasman, H.; Kaas, R.S.; Nielsen, E.M.; Aarestrup, F.M. Real-Time Whole-Genome Sequencing for Routine Typing, Surveillance, and Outbreak Detection of Verotoxigenic Escherichia coli. J. Clin. Microbiol. 2014, 52, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef] [PubMed]
- Bartels, M.D.; Petersen, A.; Worning, P.; Nielsen, J.B.; Larner-Svensson, H.; Johansen, H.K.; Andersen, L.P.; Jarløv, J.O.; Boye, K.; Larsen, A.R.; et al. Comparing Whole-Genome Sequencing with Sanger Sequencing for Spa Typing of Methicillin-Resistant Staphylococcus aureus. J. Clin. Microbiol. 2014, 52, 4305–4308. [Google Scholar] [CrossRef]
- Mellmann, A.; Weniger, T.; Berssenbrügge, C.; Rothgänger, J.; Sammeth, M.; Stoye, J.; Harmsen, D. Based Upon Repeat Pattern (BURP): An Algorithm to Characterize the Long-Term Evolution of Staphylococcus aureus Populations Based on Spa Polymorphisms. BMC Microbiol. 2007, 7, 98. [Google Scholar] [CrossRef]
- International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC). Classification of Staphylococcal Cassette Chromosome Mec (SCC Mec): Guidelines for Reporting Novel SCC Mec Elements. Antimicrob. Agents Chemother. 2009, 53, 4961–4967. [Google Scholar] [CrossRef] [PubMed]
- Nyasinga, J.; Kyany’a, C.; Okoth, R.; Oundo, V.; Matano, D.; Wacira, S.; Sang, W.; Musembi, S.; Musila, L. A Six-Member SNP Assay on the iPlex MassARRAY Platform Provides a Rapid and Affordable Alternative for Typing Major African Staphylococcus aureus Types. Access Microbiol. 2019, 1, e000018. [Google Scholar] [CrossRef] [PubMed]
- Njenga, J.; Nyasinga, J.; Munshi, Z.; Muraya, A.; Omuse, G.; Ngugi, C.; Revathi, G. Genomic Characterization of Two Community-Acquired Methicillin-Resistant Staphylococcus aureus with Novel Sequence Types in Kenya. Front. Med. 2022, 9, 966283. [Google Scholar] [CrossRef] [PubMed]
- Obanda, B.A.; Cook, E.A.J.; Fèvre, E.M.; Bebora, L.; Ogara, W.; Wang, S.-H.; Gebreyes, W.; Ngetich, R.; Wandede, D.; Muyodi, J.; et al. Characteristics of Staphylococcus aureus Isolated from Patients in Busia County Referral Hospital, Kenya. Pathogens 2022, 11, 1504. [Google Scholar] [CrossRef] [PubMed]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-Access Bacterial Population Genomics: BIGSdb Software, the PubMLST.Org Website and Their Applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef] [PubMed]
- Asadollahi, P.; Delpisheh, A.; Maleki, M.H.; Azizi Jalilian, F.; Alikhani, M.Y.; Asadollahi, K.; Soroush, S.; Hematian, A.; Emaneini, M.; Taherikalani, M. Enterotoxin and Exfoliative Toxin Genes Among Methicillin-Resistant Staphylococcus aureus Isolates Recovered From Ilam, Iran. Avicenna J. Clin. Microbiol. Infect. 2014, 1, 20208. [Google Scholar] [CrossRef]
- El-Baghdady, K.; El-Borhamy, M.; Abd El-Ghafar, H. Prevalence of Resistance and Toxin Genes in Community-Acquired and Hospital-Acquired Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Iran. J. Basic Med. Sci. 2020, 23, 1251. [Google Scholar] [CrossRef]
- Obanda, B.A.; Gibbons, C.L.; Fèvre, E.M.; Bebora, L.; Gitao, G.; Ogara, W.; Wang, S.-H.; Gebreyes, W.; Ngetich, R.; Blane, B.; et al. Multi-Drug Resistant Staphylococcus aureus Carriage in Abattoir Workers in Busia, Kenya. Antibiotics 2022, 11, 1726. [Google Scholar] [CrossRef] [PubMed]
- Manyahi, J.; Moyo, S.J.; Aboud, S.; Langeland, N.; Blomberg, B. Predominance of PVL-Negative Community-Associated Methicillin-Resistant Staphylococcus aureus Sequence Type 8 in Newly Diagnosed HIV-Infected Adults, Tanzania. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1477–1485. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, B.; Rao, L.; Wang, X.; Zhao, H.; Li, M.; Yu, F. Molecular Characteristics of Rifampin-Sensitive and -Resistant Isolates and Characteristics of rpoB Gene Mutations in Methicillin-Resistant Staphylococcus aureus. Infect. Drug Resist. 2021, 14, 4591–4600. [Google Scholar] [CrossRef]
- Emaneini, M.; Bigverdi, R.; Kalantar, D.; Soroush, S.; Jabalameli, F.; Noorazar Khoshgnab, B.; Asadollahi, P.; Taherikalani, M. Distribution of Genes Encoding Tetracycline Resistance and Aminoglycoside Modifying Enzymes in Staphylococcus aureus Strains Isolated from a Burn Center. Ann. Burns Fire Disasters 2013, 26, 76–80. [Google Scholar] [PubMed]
- Kime, L.; Waring, T.; Mohamad, M.; Mann, B.F.; O’Neill, A.J. Resistance to Antibacterial Antifolates in Multidrug-Resistant Staphylococcus aureus: Prevalence Estimates and Genetic Basis. J. Antimicrob. Chemother. 2023, 78, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, F.; Ghajavand, H.; Havaei, R.; Jami, M.-S.; Khademi, F.; Heydari, L.; Shahin, M.; Havaei, S. Distribution of Erm Genes among Staphylococcus aureus Isolates with Inducible Resistance to Clindamycin in Isfahan, Iran. Adv. Biomed. Res. 2016, 5, 62. [Google Scholar] [CrossRef] [PubMed]
- Vandendriessche, S.; De Boeck, H.; Deplano, A.; Phoba, M.-F.; Lunguya, O.; Falay, D.; Dauly, N.; Verhaegen, J.; Denis, O.; Jacobs, J. Characterisation of Staphylococcus aureus Isolates from Bloodstream Infections, Democratic Republic of the Congo. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.M.; Goodman, A.L.; Horner, C.; Jenkins, A.; Brown, E.M. Treatment of Methicillin-Resistant Staphylococcus aureus (MRSA): Updated Guidelines from the UK. JAC-Antimicrob. Resist. 2021, 3, dlaa114. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, R.A.; Mekuria, Z.; Wang, S.-H.; Mediavilla, J.R.; Kreiswirth, B.; Seyoum, E.T.; Mariam, S.H.; Gebreyes, W.A.; Kefale, T.A.; Guma, G.T.; et al. Clonal Diversity of Staphylococcus aureus Isolates in Clinical Specimens from Selected Health Facilities in Ethiopia. BMC Infect. Dis. 2023, 23, 399. [Google Scholar] [CrossRef] [PubMed]
- Breurec, S.; Zriouil, S.B.; Fall, C.; Boisier, P.; Brisse, S.; Djibo, S.; Etienne, J.; Fonkoua, M.C.; Perrier-Gros-Claude, J.D.; Pouillot, R.; et al. Epidemiology of Methicillin-Resistant Staphylococcus aureus Lineages in Five Major African Towns: Emergence and Spread of Atypical Clones. Clin. Microbiol. Infect. 2011, 17, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Liu, J.; Guo, W.; Meng, H.; Huang, Q.; He, L.; Gao, Q.; Lv, H.; Liu, Y.; Wang, Y.; et al. Decreasing Methicillin-Resistant Staphylococcus aureus (MRSA) Infections Is Attributable to the Disappearance of Predominant MRSA ST239 Clones, Shanghai, 2008–2017. Emerg. Microbes Infect. 2019, 8, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.L.; Hedge, J.; Wilson, D.J.; MacLean, R.C. Evolutionary Processes Driving the Rise and Fall of Staphylococcus aureus ST239, a Dominant Hybrid Pathogen. mBio 2021, 12, e02168-21. [Google Scholar] [CrossRef]
- Ndhlovu, G.O.N.; Abotsi, R.E.; Shittu, A.O.; Abdulgader, S.M.; Jamrozy, D.; Dupont, C.L.; Mankahla, A.; Nicol, M.P.; Hlela, C.; Levin, M.E.; et al. Molecular Epidemiology of Staphylococcus aureus in African Children from Rural and Urban Communities with Atopic Dermatitis. BMC Infect. Dis. 2021, 21, 348. [Google Scholar] [CrossRef]
- Utsi, L.; Pichon, B.; Arunachalam, N.; Kerrane, A.; Batten, E.; Denton, M.; Townsend, R.; Agwuh, K.N.; Hughes, G.J.; Kearns, A. Circulation of a Community Healthcare-Associated Multiply-Resistant Meticillin-Resistant Staphylococcus aureus Lineage in South Yorkshire Identified by Whole Genome Sequencing. J. Hosp. Infect. 2019, 103, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Baguma, A.; Musinguzi, B.; Orikiriza, P.; Bazira, J. Diversity and Distribution of Spa Types among Methicillin Resistant Staphylococcus aureus Isolated from Humans and Livestock in Kabale District-South Western Uganda. J. Vet. Heal. Sci. 2021, 3, 283–290. [Google Scholar]
- Monecke, S.; Slickers, P.; Ellington, M.J.; Kearns, A.M.; Ehricht, R. High Diversity of Panton–Valentine Leukocidin-Positive, Methicillin-Susceptible Isolates of Staphylococcus aureus and Implications for the Evolution of Community-Associated Methicillin-Resistant S. aureus. Clin. Microbiol. Infect. 2007, 13, 1157–1164. [Google Scholar] [CrossRef] [PubMed]
- Egyir, B.; Guardabassi, L.; Sørum, M.; Nielsen, S.S.; Kolekang, A.; Frimpong, E.; Addo, K.K.; Newman, M.J.; Larsen, A.R. Molecular Epidemiology and Antimicrobial Susceptibility of Clinical Staphylococcus aureus from Healthcare Institutions in Ghana. PLoS ONE 2014, 9, e89716. [Google Scholar] [CrossRef] [PubMed]
- Rakonjac, B.; Lepšanović, Z.; Šuljagić, V.; Jovčić, B.; Kojić, M.; Larsen, A.R.; Đurić, M.; Ćirković, I. Predominance of T355/ST152/SCCmec V Clonal Type among PVL-Positive MRSA Isolates in a Tertiary Care Hospital in Belgrade, Serbia. PLoS ONE 2022, 17, e0273474. [Google Scholar] [CrossRef] [PubMed]
- Baig, S.; Rhod Larsen, A.; Martins Simões, P.; Laurent, F.; Johannesen, T.B.; Lilje, B.; Tristan, A.; Schaumburg, F.; Egyir, B.; Cirkovic, I.; et al. Evolution and Population Dynamics of Clonal Complex 152 Community-Associated Methicillin-Resistant Staphylococcus aureus. mSphere 2020, 5, e00226-20. [Google Scholar] [CrossRef] [PubMed]
- Maina, E.K.; Kiiyukia, C.; Wamae, C.N.; Waiyaki, P.G.; Kariuki, S. Characterization of Methicillin-Resistant Staphylococcus aureus from Skin and Soft Tissue Infections in Patients in Nairobi, Kenya. Int. J. Infect. Dis. 2013, 17, e115–e119. [Google Scholar] [CrossRef] [PubMed]
- Omuse, G.; Shivachi, P.; Kariuki, S.; Revathi, G. Prevalence of Panton Valentine Leukocidin in Carriage and Infective Strains of Staphylococcus aureus at a Referral Hospital in Kenya. Open J. Med. Microbiol. 2013, 03, 5–11. [Google Scholar] [CrossRef]
- Darboe, S.; Dobreniecki, S.; Jarju, S.; Jallow, M.; Mohammed, N.I.; Wathuo, M.; Ceesay, B.; Tweed, S.; Basu Roy, R.; Okomo, U.; et al. Prevalence of Panton-Valentine Leukocidin (PVL) and Antimicrobial Resistance in Community-Acquired Clinical Staphylococcus aureus in an Urban Gambian Hospital: A 11-Year Period Retrospective Pilot Study. Front. Cell. Infect. Microbiol. 2019, 9, 170. [Google Scholar] [CrossRef]
- Kawaguchiya, M.; Urushibara, N.; Ghosh, S.; Kuwahara, O.; Morimoto, S.; Ito, M.; Kudo, K.; Kobayashi, N. Genetic Diversity of Emerging Panton–Valentine Leukocidine/Arginine Catabolic Mobile Element (ACME)-Positive ST8 SCCmec-IVa Meticillin-Resistant Staphylococcus aureus (MRSA) Strains and ACME-Positive CC5 (ST5/ST764) MRSA Strains in Northern Japan. J. Med. Microbiol. 2013, 62, 1852–1863. [Google Scholar] [CrossRef]
- Park, S.G.; Lee, H.S.; Park, J.Y.; Lee, H. Molecular Epidemiology of Staphylococcus aureus in Skin and Soft Tissue Infections and Bone and Joint Infections in Korean Children. J. Korean Med. Sci. 2019, 34, e315. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, N.A.; Hussein, N.R. Characterization of Different Virulent Factors in Methicillin-Resistant Staphylococcus aureus Isolates Recovered from Iraqis and Syrian Refugees in Duhok City, Iraq. PLoS ONE 2020, 15, e0237714. [Google Scholar] [CrossRef] [PubMed]
- Shore, A.C.; Rossney, A.S.; Brennan, O.M.; Kinnevey, P.M.; Humphreys, H.; Sullivan, D.J.; Goering, R.V.; Ehricht, R.; Monecke, S.; Coleman, D.C. Characterization of a Novel Arginine Catabolic Mobile Element (ACME) and Staphylococcal Chromosomal Cassette Mec Composite Island with Significant Homology to Staphylococcus Epidermidis ACME Type II in Methicillin-Resistant Staphylococcus aureus Genotype ST22-MRSA-IV. Antimicrob. Agents Chemother. 2011, 55, 1896–1905. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Conly, J.; McClure, J.-A.; Kurwa, H.A.; Zhang, K. Arginine Catabolic Mobile Element in Evolution and Pathogenicity of the Community-Associated Methicillin-Resistant Staphylococcus aureus Strain USA300. Microorganisms 2020, 8, 275. [Google Scholar] [CrossRef] [PubMed]
Variable | Indicator | Value |
---|---|---|
Age | Mean [SD] | 37.5 [±25.8] yrs |
Median [IQR] | 38.5 [15.8–61] yrs | |
Sex | Male | 62.5% (60/96) |
Female | 37.5% (36/96) | |
Admission status | Inpatient | 54% (52/96) |
Outpatient | 46% (44/96) | |
Specimens | SSTI | 26% (25/96) |
Respiratory | 25% (24/96) | |
Blood | 14.5% (14/96) | |
Tissue | 11.5% (11/96) | |
Nasal carriage | 11.5% (11/96) | |
Urine | 5.5% (5/96) | |
Vaginal swab | 3% (3/96) | |
Miscellaneous | 3% (3/96) | |
Year of isolation | 2010–2017 | 37.5% (36/96) |
2018–2023 | 62.5% (60/96) | |
Geographical origin | Nairobi County | 72% (69/96) |
Kiambu County | 10.4% (10/96) | |
Machakos County | 4% (4/96) | |
Others | 13.6% (13/96) |
SCCmec Type | SCCmec Subtype | Frequency |
---|---|---|
SCCmec II(2A) | * | 1 |
SCCmec III(3A) | * | 9 |
SCCmec IV(2B) | SCCmec IVc(2B) | 2 |
SCCmec IVd(2B) | 2 | |
SCCmec IVg(2B) | 2 | |
SCCmec IV(2B) | 4 | |
SCCmec IV(2B&5) | 17 | |
SCCmec IVa(2B) | 36 | |
SCCmec V(5C) | SCCmec Vc(5C2&5) | 1 |
SCCmec V(5C2) | 4 | |
SCCmec V(5C2&5) | 8 |
Clonal Complex | Sequence Type | spa Type | SCCmec Type | 2010–2017 | 2018–2023 | Total | ||
---|---|---|---|---|---|---|---|---|
This Study (n = 31) | Others (n = 46) | This Study (n = 55) | Others (n = 4) | |||||
CC1 (n = 2) | ST8511 * | t127 | IV | – | – | 2 | – | 2 |
CC5 (n = 8) | ST6 ^ | t304/t648 | IV | 1 | – | 3 | – | 4 |
ST5 | t13150 | II | – | 1 | – | – | 1 | |
ST4166 ^ | t442/t6100 | IV | 1 | – | 1 | – | 2 | |
ST7895 | t002 | II | – | – | 1 | – | 1 | |
CC8 (n = 82) | ST789 | t091 | V | – | 1 | – | – | 1 |
ST2416 | t1476 | IV | – | – | 2 | – | 2 | |
ST4803 ^ | t008, t024, t064, t104, t121, t211, t1476 | IV, V | 9 | – | 21 | – | 30 | |
ST4705 | t2029 | III | – | 1 | – | – | 1 | |
ST6610 | t293 | IV | 2 | – | – | – | 2 | |
ST7635 ^ | t030/t037 | III | 2 | – | 1 | 1 | 4 | |
ST7894 | t037/t11766 | III | 6 | – | – | – | 6 | |
ST8 ^ | t1476/t104 | IV | – | 4 | – | 1 | 5 | |
ST239 ** | t037 | III | – | 6 | – | – | 6 | |
ST241 ** | t037/t2029 | III, IV | – | 23 | – | – | 23 | |
ST7460 | t1476 | IV | – | – | 1 | 1 | 2 | |
CC22 (n=7) | ST957 | t223/t852/t005 | IV | 3 | – | – | – | 3 |
ST22 | t005/t022 | IV | – | 4 | – | – | 4 | |
CC30 (n = 9) | ST4789 | t964 | IV | – | – | 1 | – | 1 |
ST4618 ^ | t318 | IV | 2 | – | 3 | – | 5 | |
ST30 ^ | t318 | IV | – | 1 | – | 1 | 2 | |
ST39 | t007 | II | – | 1 | – | – | 1 | |
Singletons (n = 28) | ST88 | t1339 | NA | – | 1 | – | – | 1 |
ST152 ^ | t355/t8987/t11541 | IV | – | 2 | 12 | – | 14 | |
ST1633 ^ | t355 | IV | 2 | – | 1 | – | 3 | |
ST2167 | t1855/t16503 | IV | – | – | 4 | – | 4 | |
ST7670 | t657/t345 | V | 3 | – | – | – | 3 | |
ST4440 | t091 | V | – | – | 1 | – | 1 | |
ST753 | t011 | V | – | – | 1 | – | 1 | |
ST140 | NA | IV | – | 1 | – | – | 1 |
Period | Total MRSA | No. of SCCmec III (3A) a,b | SCCmec III (3A) (%) | Reference |
---|---|---|---|---|
2010–13 | 32 | 14 | 44 | [17] |
2011 | 6 | 6 | 100 | [15] |
2015 | 6 | 4 | 66 | [33] |
2015 | 2 | 1 | 50 | [35] |
2015–17 | 8 | 5 | 63 | [16] |
2010–17 | 30 | 8 | 27 | This study |
2018–23 | 4 | 1 | 25 | [34] |
2018–23 | 56 | 1 | 2 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyasinga, J.; Munshi, Z.; Kigen, C.; Nyerere, A.; Musila, L.; Whitelaw, A.; Ziebuhr, W.; Revathi, G. Displacement of Hospital-Acquired, Methicillin-Resistant Staphylococcus aureus Clones by Heterogeneous Community Strains in Kenya over a 13-Year Period. Microorganisms 2024, 12, 1171. https://doi.org/10.3390/microorganisms12061171
Nyasinga J, Munshi Z, Kigen C, Nyerere A, Musila L, Whitelaw A, Ziebuhr W, Revathi G. Displacement of Hospital-Acquired, Methicillin-Resistant Staphylococcus aureus Clones by Heterogeneous Community Strains in Kenya over a 13-Year Period. Microorganisms. 2024; 12(6):1171. https://doi.org/10.3390/microorganisms12061171
Chicago/Turabian StyleNyasinga, Justin, Zubair Munshi, Collins Kigen, Andrew Nyerere, Lillian Musila, Andrew Whitelaw, Wilma Ziebuhr, and Gunturu Revathi. 2024. "Displacement of Hospital-Acquired, Methicillin-Resistant Staphylococcus aureus Clones by Heterogeneous Community Strains in Kenya over a 13-Year Period" Microorganisms 12, no. 6: 1171. https://doi.org/10.3390/microorganisms12061171
APA StyleNyasinga, J., Munshi, Z., Kigen, C., Nyerere, A., Musila, L., Whitelaw, A., Ziebuhr, W., & Revathi, G. (2024). Displacement of Hospital-Acquired, Methicillin-Resistant Staphylococcus aureus Clones by Heterogeneous Community Strains in Kenya over a 13-Year Period. Microorganisms, 12(6), 1171. https://doi.org/10.3390/microorganisms12061171