A Probiotic Bacterium with Activity against the Most Frequent Bacteria and Viruses Causing Pediatric Diarrhea: Bifidobacterium longum subsp. infantis CECT 7210 (B. infantis IM1®)
Abstract
:1. Introduction
2. Relevant Literature
2.1. Isolation, Identification, and Phenotypic and Genotypic Characterization of B. longum subsp. infantis IM1®
2.2. Pre-Clinical Studies in Cell Lines
2.3. Purification and Identification of the Active Substance against Rotavirus Produced by B. infantis IM1®
2.4. Studies in Animal Models with B. infantis against Pathogens That Cause Diarrhea
2.4.1. Study of the Antirotaviral Capacity of B. infantis IM1® In Vivo in a Mouse Model
2.4.2. In Vivo Study of the Antibacterial Capacity of B. infantis IM1® in Weaned Piglets
2.5. Clinical Studies
3. Discussion
4. Conclusions
5. Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jesudason, T.; Rodarte, A.; Tordrup, D.; Carias, C.; Chen, Y.-H. Systematic review of rotavirus vaccination cost-effectiveness in high income settings utilising dynamic transmission modelling techniques. Vaccine 2023, 41, 5221–5232. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, H.B.; Estes, M.K. Rotaviruses: From Pathogenesis to Vaccination. Gastroenterology 2009, 136, 1939–1951. [Google Scholar] [CrossRef]
- Estes, M.K.; Kapikian, A. Rotaviruses. In Fields Virology, 5th ed.; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007; pp. 1946–1974. [Google Scholar]
- Lundgren, O.; Peregrin, A.T.; Persson, K.; Kordasti, S.; Uhnoo, I.; Svensson, L. Role of the Enteric Nervous System in the Fluid and Electrolyte Secretion of Rotavirus Diarrhea. Science 2000, 287, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Glass, R.I.; Parashar, U.D.; Bresee, J.S.; Turcios, R.; Fischer, T.K.; Widdowson, M.-A.; Jiang, B.; Gentsch, J.R. Rotavirus vaccines: Current prospects and future challenges. Lancet 2006, 368, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Crawford, S.E.; Ramani, S.; Tate, J.E.; Parashar, U.D.; Svensson, L.; Hagbom, M.; Franco, M.A.; Greenberg, H.B.; O’Ryan, M.; Kang, G.; et al. Rotavirus infection. Nat. Rev. Dis. Prim. 2017, 3, 17083. [Google Scholar] [CrossRef] [PubMed]
- Van de Perre, P. Transfer of antibody via mother’s milk. Vaccine 2003, 21, 3374–3376. [Google Scholar] [CrossRef] [PubMed]
- Getchell, M.; Mantaring, E.J.; Yee, K.; Pronyk, P. Cost-effectiveness of sub-national geographically targeted vaccination programs: A systematic review. Vaccine 2023, 41, 2320–2328. [Google Scholar] [CrossRef] [PubMed]
- Phua, K.; Lim, F.; Lau, Y.; Nelson, E.; Huang, L.; Quak, S.; Lee, B.; Teoh, Y.; Tang, H.; Boudville, I.; et al. Safety and efficacy of human rotavirus vaccine during the first 2 years of life in Asian infants: Randomised, double-blind, controlled study. Vaccine 2009, 27, 5936–5941. [Google Scholar] [CrossRef] [PubMed]
- Vesikari, T.; Karvonen, A.; Prymula, R.; Schuster, V.; Tejedor, J.; Cohen, R.; Meurice, F.; Han, H.; Damaso, S.; Bouckenooghe, A. Efficacy of human rotavirus vaccine against rotavirus gastroenteritis during the first 2 years of life in European infants: Randomised, double-blind controlled study. Lancet 2007, 370, 1757–1763. [Google Scholar] [CrossRef]
- Doggen, K.; van Hoek, A.J.; Luyten, J. Accounting for Adverse Events Following Immunization in Economic Evaluation: Systematic Review of Economic Evaluations of Pediatric Vaccines Against Pneumococcus, Rotavirus, Human Papillomavirus, Meningococcus and Measles-Mumps-Rubella-Varicella. PharmacoEconomics 2023, 41, 481–497. [Google Scholar] [CrossRef]
- Minocha, A. Probiotics for Preventive Health. Nutr. Clin. Pract. 2009, 24, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, J.A.M.; Chenoll, E.; Casinos, B.; Bataller, E.; Ramón, D.; Genovés, S.; Montava, R.; Ribes, J.M.; Buesa, J.; Fàbrega, J.; et al. Novel Probiotic Bifidobacterium longum subsp. infantis CECT 7210 Strain Active against Rotavirus Infections. Appl. Environ. Microbiol. 2011, 77, 8775–8783. [Google Scholar] [CrossRef]
- Chenoll, E.; Rivero, M.; Codoñer, F.M.; Martinez-Blanch, J.F.; Ramón, D.; Genovés, S.; Muñoz, J.A.M. Complete Genome Sequence of Bifidobacterium longum subsp. infantis Strain CECT 7210, a Probiotic Strain Active against Rotavirus Infections. Genome Announc. 2015, 3, e00105-15. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, L.; Flórez, A.B.; Sánchez, B.; Moreno-Muñoz, J.A.; Rodriguez-Palmero, M.; Jiménez, J.; Gavilán, C.G.d.l.R.; Gueimonde, M.; Ruas-Madiedo, P.; Margolles, A. Bifidobacterium longum subsp. infantis CECT7210 (B. infantis IM-1®) Displays In Vitro Activity against Some Intestinal Pathogens. Nutrients 2020, 12, 3259. [Google Scholar] [CrossRef]
- Chenoll, E.; Casinos, B.; Bataller, E.; Buesa, J.; Ramón, D.; Genovés, S.; Fábrega, J.; Urgell, M.R.; Muñoz, J.A.M. Identification of a Peptide Produced by Bifidobacterium longum CECT 7210 with Antirotaviral Activity. Front. Microbiol. 2016, 7, 655. [Google Scholar] [CrossRef] [PubMed]
- Barba-Vidal, E.; Castillejos, L.; López-Colom, P.; Urgell, M.R.; Muñoz, J.A.M.; Martín-Orúe, S.M. Evaluation of the Probiotic Strain Bifidobacterium longum subsp. Infantis CECT 7210 Capacities to Improve Health Status and Fight Digestive Pathogens in a Piglet Model. Front. Microbiol. 2017, 8, 533. [Google Scholar] [CrossRef]
- Barba-Vidal, E.; Castillejos, L.; Roll, V.F.B.; Cifuentes-Orjuela, G.; Muñoz, J.A.M.; Martín-Orúe, S.M. The Probiotic Combination of Bifidobacterium longum subsp. infantis CECT 7210 and Bifidobacterium animalis subsp. lactis BPL6 Reduces Pathogen Loads and Improves Gut Health of Weaned Piglets Orally Challenged with Salmonella Typhimurium. Front. Microbiol. 2017, 8, 1570. [Google Scholar] [CrossRef]
- Rodríguez-Sorrento, A.; Castillejos, L.; López-Colom, P.; Cifuentes-Orjuela, G.; Rodríguez-Palmero, M.; Moreno-Muñoz, J.A.; Martín-Orúe, S.M. Effects of Bifidobacterium longum Subsp. infantis CECT 7210 and Lactobacillus rhamnosus HN001, Combined or Not With Oligofructose-Enriched Inulin, on Weaned Pigs Orally Challenged With Salmonella Typhimurium. Front. Microbiol. 2020, 11, 2012. [Google Scholar] [CrossRef]
- Servin, A.L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol. Rev. 2004, 28, 405–440. [Google Scholar] [CrossRef]
- Rodríguez-Sorrento, A.; Castillejos, L.; López-Colom, P.; Cifuentes-Orjuela, G.; Rodríguez-Palmero, M.; Moreno-Muñoz, J.A.; Luise, D.; Trevisi, P.; Martín-Orúe, S.M. Effects of the Administration of Bifidobacterium longum subsp. infantis CECT 7210 and Lactobacillus rhamnosus HN001 and Their Synbiotic Combination with Galacto-Oligosaccharides Against Enterotoxigenic Escherichia coli F4 in an Early Weaned Piglet Model. Front. Microbiol. 2021, 12, 642549. [Google Scholar] [CrossRef]
- Escribano, J.; Ferré, N.; Gispert-Llaurado, M.; Luque, V.; Rubio-Torrents, C.; Zaragoza-Jordana, M.; Polanco, I.; Codoñer, F.M.; Chenoll, E.; Morera, M.; et al. Bifidobacterium longum subsp infantis CECT 7210-supplemented formula reduces diarrhea in healthy infants: A randomized controlled trial. Pediatr. Res. 2018, 83, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Coconnier, M.H.; Liévin, V.; Bernet-Camard, M.F.; Hudault, S.; Servin, A.L. Antibacterial effect of the adhering human Lactobacillus acidophilus strain LB. Antimicrob. Agents Chemother. 1997, 41, 1046–1052. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Varela, L.; Hernández-Barranco, A.M.; Ruas-Madiedo, P.; Gueimonde, M. Effect of Bifidobacterium upon Clostridium difficile growth and toxicity when co-cultured in different prebiotic substrates. Front. Microbiol. 2016, 7, 738. [Google Scholar] [CrossRef] [PubMed]
- Tytgat, H.; Douillard, F.; Reunanen, J.; Rasinkangas, P.; Hendrickx, A.; Laine, P.; Paulin, L.; Satokari, R.; de Vos, W. Lactobacillus rham-nosus GG outcompetes Enterococcus faecium via mucus-binding pili evidence for a novel and heterospecific probiotic mechanism. Appl. Environ. Microbiol. 2016, 82, 5756–5762. [Google Scholar] [CrossRef] [PubMed]
- Motherway, M.O.; Zomer, A.; Leahy, S.C.; Reunanen, J.; Bottacini, F.; Claesson, M.J.; O’Brien, F.; Flynn, K.; Casey, P.G.; Munoz, J.A.M.; et al. Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc. Natl. Acad. Sci. USA 2011, 108, 11217–11222. [Google Scholar] [CrossRef] [PubMed]
- Colombel, J.F.; Cortot, A.; Neut, C.; Romond, C. Yoghurt with Bifidobacterium longum reduces erythromycin-induced gastrointestinal effects. Lancet 1987, 330, 43. [Google Scholar] [CrossRef] [PubMed]
- Plummer, S.; A Weaver, M.; Harris, J.C.; Dee, P.; Hunter, J. Clostridium difficile pilot study: Effects of probiotic supplementation on the incidence of C. difficile diarrhoea. Int. Microbiol. 2004, 7, 59–62. [Google Scholar]
- Monteagudo-Mera, A.; Rastall, R.A.; Gibson, G.R.; Charalampopoulos, D.; Chatzifragkou, A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol. 2019, 103, 6463–6472. [Google Scholar] [CrossRef]
- Celebioglu, H.U.; Olesen, S.V.; Prehn, K.; Lahtinen, S.J.; Brix, S.; Hachem, M.A.; Svensson, B. Mucin- and carbohydrate-stimulated adhesion and subproteome changes of the probiotic bacterium Lactobacillus acidophilus NCFM. J. Proteom. 2017, 163, 102–110. [Google Scholar] [CrossRef]
- Lebeer, S.; Claes, I.; Tytgat, H.L.P.; Verhoeven, T.L.A.; Marien, E.; von Ossowski, I.; Reunanen, J.; Palva, A.; de Vos, W.M.; De Keersmaecker, S.C.J.; et al. Functional Analysis of Lactobacillus rhamnosus GG Pili in Relation to Adhesion and Immunomodulatory Interactions with Intestinal Epithelial Cells. Appl. Environ. Microbiol. 2012, 78, 185–193. [Google Scholar] [CrossRef]
- Turroni, F.; Serafini, F.; Foroni, E.; Duranti, S.; Motherway, M.O.; Taverniti, V.; Mangifesta, M.; Milani, C.; Viappiani, A.; Roversi, T.; et al. Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium–host interactions. Proc. Natl. Acad. Sci. USA 2013, 110, 11151–11156. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Moon, A.; Huang, J.; Sun, Y.; Qiu, H.-J. Antiviral Effects and Underlying Mechanisms of Probiotics as Promising Antivirals. Front. Cell. Infect. Microbiol. 2022, 12, 928050. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, Y.; Moriya, T.; Sakai, F.; Ikeda, N.; Shiozaki, T.; Hosoya, T.; Nakagawa, H.; Miyazaki, T. Oral administration of Lactobacillus gasseri SBT2055 is effective for preventing influenza in mice. Sci. Rep. 2014, 4, 4638. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Duarte, K.P.; Olaya-Galan, N.N.; Salas-Cardenas, S.P.; Lopez-Rozo, J.; Gutierrez-Fernandez, M.F. Bifidobacterium adolescentis (DSM 20083) and Lactobacillus casei (Lafti L26-DSL): Probiotics able to block the in vitro adherence of rotavirus in MA104 cells. Probiotics Antimicrob. Proteins 2018, 10, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, V.K.; Chandra, V.; Kim, N.-H.; Rai, R.; Kumar, P.; Kim, K.; Aeron, A.; Kang, S.C.; Maheshwari, D.K.; Na, M.; et al. Ghost probiotics with a combined regimen: A novel therapeutic approach against the Zika virus, an emerging world threat. Crit. Rev. Biotechnol. 2018, 38, 438–454. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, A.G.; El-Masry, S.S.; El-Dougdoug, N.K. Probiotic Lactobacillus and Bifidobacterium strains possess safety characteristics, antiviral activities and host adherence factors revealed by genome mining. EPMA J. 2019, 10, 337–350. [Google Scholar] [CrossRef] [PubMed]
- Karaffova, V.; Csank, T.; Mudroňová, D.; Király, J.; Revajova, V.; Gancarčíková, S.; Nemcová, R.; Pistl, J.; Vilček, Š.; Levkut, M. Influence of Lactobacillus reuteri L26 Biocenol on immune response against porcine circovirus type 2 infection in germ-free mice. Benef. Microbes 2017, 8, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Kandasamy, S.; Vlasova, A.N.; Fischer, D.; Kumar, A.; Chattha, K.S.; Rauf, A.; Shao, L.; Langel, S.N.; Rajashekara, G.; Saif, L.J. Differential effects of Escherichia coli Nissle and Lactobacillus rhamnosus strain GG on human rotavirus binding, infection, and B cell immunity. J. Immun. 2016, 196, 1780–1789. [Google Scholar] [CrossRef]
- Ishizuka, T.; Kanmani, P.; Kobayashi, H.; Miyazaki, A.; Soma, J.; Suda, Y.; Aso, H.; Nochi, T.; Iwabuchi, N.; Xiao, J.; et al. Immunobiotic Bifidobacteria Strains Modulate Rotavirus Immune Response in Porcine Intestinal Epitheliocytes via Pattern Recognition Receptor Signaling. PLoS ONE 2016, 11, e0152416. [Google Scholar] [CrossRef]
- Lorella, P.; Lorella, T.; Cristina, B.; Laura, P.; Carla, D.; Lucio, P.; Canani, R.B. Protective Action of Bacillus Clausii Probiotic Strains in an In Vitro Model of Rotavirus Infection. Sci. Rep. 2020, 10, 12636. [Google Scholar] [CrossRef]
- Kanmani, P.; Albarracin, L.; Kobayashi, H.; Iida, H.; Komatsu, R.; Humayun Kober, A.K.M.; Ikeda-Ohtsubo, W.; Suda, Y.; Aso, H.; Makino, S.; et al. Exopolysaccharides from Lactobacillus delbrueckii OLL1073R-1 modulate innate antiviral immune response in porcine intestinal epithelial cells. Mol. Immunol. 2018, 93, 253–265. [Google Scholar] [CrossRef]
- Sobouti, B.; Noorbakhsh, S.; Ashraf, H.; Ashraf-Talesh, S. Use of Probiotic for the Treatment of Acute Rotavirus Diarrhea in Children: A Randomized Single-Blind Controlled Trial. Int. J. Child. Adolesc. 2016, 2, 5–9. [Google Scholar]
- Szajewska, H.; Canani, R.B.; Domellöf, M.; Guarino, A.; Hojsak, I.; Indrio, F.; Vecchio, A.L.; Mihatsch, W.A.; Mosca, A.; Orel, R.; et al. Probiotics for the Management of Pediatric Gastrointestinal Disorders: Position Paper of the ESPGHAN Special Interest Group on Gut Microbiota and Modifications. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 232–247. [Google Scholar] [CrossRef]
- Szajewska, H.; Guarino, A.; Hojsak, I.; Indrio, F.; Kolacek, S.; Orel, R.; Salvatore, S.; Shamir, R.; van Goudoever, J.B.; Vandenplas, Y.; et al. Use of Probiotics for the Management of Acute Gastroenteritis in Children. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Săsăran, M.O.; Mărginean, C.O.; Adumitrăchioaiei, H.; Meliț, L.E. Pathogen-Specific Benefits of Probiotic and Synbiotic Use in Childhood Acute Gastroenteritis: An Updated Review of the Literature. Nutrients 2023, 15, 643. [Google Scholar] [CrossRef]
- Urbańska, M.; Szajewska, H. The efficacy of Lactobacillus reuteri DSM 17938 in infants and children: A review of the current evidence. Eur. J. Pediatr. 2014, 173, 1327–1337. [Google Scholar] [CrossRef]
- Karimi, S.; Jonsson, H.; Lundh, T.; Roos, S. Lactobacillus reuteri Strains Protect Epithelial Barrier Integrity Of Ipec-J2 Monolayers From The Detrimental Effect Of Enterotoxigenic Escherichia coli. Physiol. Rep. 2018, 6, e13514. [Google Scholar] [CrossRef] [PubMed]
- Michail, S.; Abernathy, F. Lactobacillus plantarum Reduces the In Vitro Secretory Response of Intestinal Epithelial Cells to Enteropathogenic Escherichia coli Infection. J. Pediatr. Gastroenterol. Nutr. 2002, 35, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Depoorter, L.; Vandenplas, Y. Probiotics in Pediatrics. A Review and Practical Guide. Nutrients 2021, 13, 2176. [Google Scholar] [CrossRef]
- Collinson, S.; Deans, A.; Padua-Zamora, A.; Gregorio, G.V.; Li, C.; Dans, L.F.; Allen, S.J. Probiotics for treating acute infectious diarrhoea. Cochrane Database Syst. Rev. 2020, 12, CD003048. [Google Scholar] [CrossRef]
- Vandenplas, Y. Probiotics and prebiotics in infectious gastroenteritis. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 49–53. [Google Scholar] [CrossRef]
% Focus Reduction (Mean ± SD) in Cell Line | ||||
---|---|---|---|---|
Strain | HT-29 | MA-104 | ||
Strategy A | Strategy B | Strategy A | Strategy B | |
B. infantis OR1 | 29.45 ± 1.20 | 45.20 ± 2.20 | 13.50 ± 2.16 | 24.80 ± 3.15 |
B. infantis OR2 | 26.15 ± 14.44 | 38.80 ± 1.75 | 15.00 ± 1.73 | 23.80 ± 2.11 |
B. infantis OR3 | 40.27 ± 2.45 | 40.00 ± 2.34 | 14.70 ± 3.54 | 24.40 ± 1.46 |
B. infantis IM1® | 36.05 ± 4.23 | 48.50 ± 1.64 | 18.20 ± 4.41 | 31.80 ± 3.30 |
B. infantis OR5 | 49.83 ± 10.43 | 45.00 ± 3.89 | 9.00 ± 1.35 | 24.60 ± 4.25 |
B. infantis OR6 | 22.56 ± 15.20 | 39.40 ± 4.74 | 16.40 ± 1.66 | 30.20 ± 2.84 |
Results | Reference | |
---|---|---|
In Vitro Studies | ||
Antirotaviral Study | In MA-104 and HT-29 cells, B. infantis IM1® demonstrates the ability to impede the replication of Wa rotavirus, resulting in a noteworthy 36.05% decrease in infectious foci. Additionally, it provides a safeguard for epithelial cells against virus infection, manifesting a substantial 48.50% reduction in infectious foci. | [13] |
Antibacterial Studies | ||
Antimicrobial activity in co-culture experiments | When combined with GOS, B. infantis IM1® successfully hindered the growth of C. difficile. Alone, without GOS assistance, B. infantis IM1® achieved a reduction in the growth of C. sakazakii by 1–2 log counts during coculture. | [15] |
Pathogen displacement experiments | The B. infantis IM1® strain displaces pathogenic bacteria, including Cronobacter sakazakii, Escherichia coli, Salmonella enterica, Shigella sonnei, and Yersinia enterocolitica, which previously adhered to HT-29 cells. The displacement of C. sakazakii and S. enterica exhibited a similar result to that observed with the B. animalis subsp. lactis Bb12 strain utilized as a control. | [15] |
Prevention of pathogen adhesion experiments | The binding of B. infantis IM1® to HT-29 cells decreased the attachment of all pathogens (Cronobacter sakazakii, Escherichia coli, Salmonella enterica, Shigella sonnei, and Yersinia enterocolitica) to the cells, with a more noticeable impact observed for S. sonnei and C. sakazakii | [15] |
Animal Studies | ||
Antirotaviral Study in BALB/c Mice | A notable initial delay in the shedding of rotavirus was noted within the initial 48 h after infection (106 FFU/mL, compared to 4 × 107 FFU/mL in the untreated control group [p < 0.01]). Delay could be ascribed to an initial decline in viral replication levels in mice that were administered B. infantis IM1®. By day 7 after infection, the antigen concentration was statistically lower in mice subjected to the probiotic treatment (p < 0.05). | [13] |
Antibacterial Pathogen Studies in Piglet Model | ||
E. coli challenge | Diminishment ileal colonization (p = 0.077) Enhancement in the fermentation profile through elevated levels of butyric acid in nonchallenged piglets Augmentation of the villus:crypt ratio (p = 0.006) | [17,18] |
Salmonella challenge | Diminishment pathogen excretion (p = 0.043) Augmentation intraepithelial lymphocytes (p = 0.002) Enhancement in the fermentation profile through elevated levels of butyric in piglets not subjected to challenges Augmentation ileal acetic acid (p = 0.008]) Augmentation villous:crypt ratio (p = 0.011) Reduced diarrhea scores in the probiotic group (p = 0.014) Reduced colonic ammonia concentrations [p = 0.078] | [19,21] |
Clinical Studies | Fewer instances of diarrhea in the group of infants consuming the probiotic (p = 0.047). After 4 weeks in the control group (babies not consuming probiotic), there was an elevated occurrence of constipation and a decrease in stool frequency (p = 0.038). | [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno-Muñoz, J.A.; Ojeda, J.D.; López, J.J. A Probiotic Bacterium with Activity against the Most Frequent Bacteria and Viruses Causing Pediatric Diarrhea: Bifidobacterium longum subsp. infantis CECT 7210 (B. infantis IM1®). Microorganisms 2024, 12, 1183. https://doi.org/10.3390/microorganisms12061183
Moreno-Muñoz JA, Ojeda JD, López JJ. A Probiotic Bacterium with Activity against the Most Frequent Bacteria and Viruses Causing Pediatric Diarrhea: Bifidobacterium longum subsp. infantis CECT 7210 (B. infantis IM1®). Microorganisms. 2024; 12(6):1183. https://doi.org/10.3390/microorganisms12061183
Chicago/Turabian StyleMoreno-Muñoz, José Antonio, Jesús Delgado Ojeda, and Jesús Jiménez López. 2024. "A Probiotic Bacterium with Activity against the Most Frequent Bacteria and Viruses Causing Pediatric Diarrhea: Bifidobacterium longum subsp. infantis CECT 7210 (B. infantis IM1®)" Microorganisms 12, no. 6: 1183. https://doi.org/10.3390/microorganisms12061183
APA StyleMoreno-Muñoz, J. A., Ojeda, J. D., & López, J. J. (2024). A Probiotic Bacterium with Activity against the Most Frequent Bacteria and Viruses Causing Pediatric Diarrhea: Bifidobacterium longum subsp. infantis CECT 7210 (B. infantis IM1®). Microorganisms, 12(6), 1183. https://doi.org/10.3390/microorganisms12061183