Gut Dysbiosis in the First-Passed Meconium Microbiomes of Korean Preterm Infants Compared to Full-Term Neonates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Sample Collection
2.2. Fecal Microbiome Analysis Method
2.3. Definitions
2.4. Statistical Analyses
3. Results
3.1. Clinical Characteristics of the Cohort Population
3.2. Comparison of Microbiomes According to Gestational Age
3.3. Gestational Age and Microbiota Acquisition
3.4. Microbial Diversity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Phylum | Relative Abundance (%) | p | p* | ||||
---|---|---|---|---|---|---|---|
VP [N = 59] | MLP [N = 154] | FT [N = 97] | VP vs. MLP | VP vs. FT | MLP vs. FT | ||
Firmicutes | 30.2 | 30.5 | 37.3 | 0.003 | >0.999 | 0.026 | 0.004 |
Bacteroidetes | 23.6 | 24.7 | 33.4 | <0.001 | >0.999 | 0.004 | 0.001 |
Proteobacteria | 37.7 | 37.5 | 24.0 | 0.001 | >0.999 | 0.017 | 0.002 |
Actinobacteria | 3.5 | 5.1 | 4.3 | 0.190 | 0.234 | >0.999 | 0.929 |
Verrucomicrobia | 1.0 | 0.7 | 0.6 | 0.389 | 0.750 | 0.554 | >0.999 |
Others | 4.0 | 1.5 | 0.5 |
Genus | Relative Abundance (%) | p | p* | ||||
---|---|---|---|---|---|---|---|
VP [N = 59] | MLP [N = 154] | FT [N = 97] | VP vs. MLP | VP vs. FT | MLP vs. FT | ||
Bacteroides | 9.6 | 11.0 | 13.1 | 0.006 | 0.532 | 0.007 | 0.065 |
Prevotella | 8.8 | 8.5 | 12.7 | <0.001 | >0.999 | 0.015 | <0.001 |
Ralstonia | 12.2 | 10.8 | 5.0 | 0.009 | >0.999 | 0.027 | 0.023 |
Streptococcus | 7.0 | 9.5 | 8.9 | 0.285 | 0.341 | 0.806 | >0.999 |
Acidovorax | 6.2 | 5.3 | 3.0 | 0.070 | >0.999 | 0.110 | 0.187 |
Bifidobacterium | 2.9 | 3.8 | 3.6 | 0.275 | 0.329 | 0.708 | >0.999 |
Sutterella | 2.6 | 2.8 | 3.8 | <0.001 | >0.999 | 0.002 | <0.001 |
Staphylococcus | 4.2 | 2.5 | 2.3 | 0.374 | 0.617 | 0.584 | >0.999 |
Sphingomonas | 2.8 | 3.5 | 0.9 | 0.153 | >0.999 | 0.810 | 0.162 |
Megamonas | 1.9 | 1.8 | 3.1 | <0.001 | >0.999 | 0.023 | 0.001 |
Pelomonas | 2.2 | 2.7 | 1.0 | 0.061 | >0.999 | 0.540 | 0.056 |
Veillonella | 1.6 | 2.1 | 2.1 | 0.258 | 0.358 | 0.453 | >0.999 |
Faecalibacterium | 1.5 | 1.8 | 2.3 | 0.001 | 0.375 | 0.001 | 0.013 |
Alloprevotella | 1.4 | 1.3 | 2.2 | 0.001 | >0.999 | 0.032 | 0.001 |
Enterococcus | 2.6 | 0.9 | 2.0 | 0.260 | 0.410 | >0.999 | 0.764 |
Dialister | 1.3 | 1.3 | 2.1 | <0.001 | >0.999 | 0.013 | <0.001 |
Roseburia | 1.3 | 1.3 | 2.1 | <0.001 | >0.999 | 0.004 | <0.001 |
Escherichia/Shigella | 0.8 | 1.6 | 1.4 | 0.690 | >0.999 | >0.999 | >0.999 |
Barnesiella | 1.2 | 1.1 | 2.0 | <0.001 | >0.999 | 0.022 | <0.001 |
Alistipes | 1.2 | 1.2 | 1.7 | 0.001 | >0.999 | 0.015 | 0.002 |
Others | 26.7 | 25.4 | 24.7 | ||||
Lactobacillus | 0.402 | 0.513 | 0.461 | 0.340 | 0.461 | >0.999 | >0.999 |
References
- Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.V.; Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 2016, 375, 2369–2379. [Google Scholar] [CrossRef] [PubMed]
- Fulde, M.; Hornef, M.W. Maturation of the enteric mucosal innate immune system during the postnatal period. Immunol. Rev. 2014, 260, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Perez-Muñoz, M.E.; Arrieta, M.-C.; Ramer-Tait, A.E.; Walter, J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: Implications for research on the pioneer infant microbiome. Microbiome 2017, 5, 48. [Google Scholar] [CrossRef] [PubMed]
- Stinson, L.F.; Boyce, M.C.; Payne, M.S.; Keelan, J.A. The not-so-sterile womb: Evidence that the human fetus is exposed to bacteria prior to birth. Front. Microbiol. 2019, 10, 454989. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Kwok, L.-Y.; Xi, X.; Zhong, Z.; Ma, T.; Xu, H.; Meng, H.; Zhao, F.; Zhang, H. The meconium microbiota shares more features with the amniotic fluid microbiota than the maternal fecal and vaginal microbiota. Gut Microbes 2020, 12, 1794266. [Google Scholar] [CrossRef] [PubMed]
- Petersen, C.; Dai, D.L.; Boutin, R.C.; Sbihi, H.; Sears, M.R.; Moraes, T.J.; Becker, A.B.; Azad, M.B.; Mandhane, P.J.; Subbarao, P. A rich meconium metabolome in human infants is associated with early-life gut microbiota composition and reduced allergic sensitization. Cell Rep. Med. 2021, 2, 100260. [Google Scholar] [CrossRef] [PubMed]
- Robertson, R.C.; Manges, A.R.; Finlay, B.B.; Prendergast, A.J. The human microbiome and child growth–first 1000 days and beyond. Trends Microbiol. 2019, 27, 131–147. [Google Scholar] [CrossRef]
- Shao, Y.; Forster, S.C.; Tsaliki, E.; Vervier, K.; Strang, A.; Simpson, N.; Kumar, N.; Stares, M.D.; Rodger, A.; Brocklehurst, P. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 2019, 574, 117–121. [Google Scholar] [CrossRef]
- Dalby, M.J.; Hall, L.J. Recent advances in understanding the neonatal microbiome. F1000Research 2020, 9, 422. [Google Scholar] [CrossRef]
- Klopp, J.; Ferretti, P.; Meyer, C.U.; Hilbert, K.; Haiß, A.; Marißen, J.; Henneke, P.; Hudalla, H.; Pirr, S.; Viemann, D. Meconium microbiome of very preterm infants across Germany. mSphere 2022, 7, e00808-21. [Google Scholar] [CrossRef] [PubMed]
- Korpela, K.; Blakstad, E.W.; Moltu, S.J.; Strømmen, K.; Nakstad, B.; Rønnestad, A.E.; Brække, K.; Iversen, P.O.; Drevon, C.A.; de Vos, W. Intestinal microbiota development and gestational age in preterm neonates. Sci. Rep. 2018, 8, 2453. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.M.; Kim, S.; Hwang-Bo, S.; Yoo, I.H.; Seo, Y.-M.; Oh, M.Y.; Im, S.-A.; Youn, Y.-A. Compositional Differences of Meconium Microbiomes of Preterm and Term Infants, and Infants That Developed Necrotizing Enterocolitis or Feeding Intolerance. Pathogens 2022, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.J.; Lynch, D.B.; Murphy, K.; Ulaszewska, M.; Jeffery, I.B.; O’Shea, C.A.; Watkins, C.; Dempsey, E.; Mattivi, F.; Tuohy, K. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome 2017, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.-C.; Guo, H.; Chen, J.; Sun, G.; Ren, R.-R.; Guo, M.-Z.; Peng, L.-H.; Yang, Y.-S. Initial meconium microbiome in Chinese neonates delivered naturally or by cesarean section. Sci. Rep. 2018, 8, 3255. [Google Scholar] [CrossRef] [PubMed]
- Groer, M.W.; Gregory, K.E.; Louis-Jacques, A.; Thibeau, S.; Walker, W.A. The very low birth weight infant microbiome and childhood health. Birth Defects Res. Part C Embryo Today: Rev. 2015, 105, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.J.; Nelson, A.; Scribbins, D.; Marrs, E.C.L.; Lanyon, C.; Perry, J.D.; Embleton, N.D.; Cummings, S.P.; Berrington, J.E. Bacterial and fungal viability in the preterm gut: NEC and sepsis. Arch. Dis. Child.-Fetal Neonatal Ed. 2013, 98, F298–F303. [Google Scholar] [CrossRef]
- Olm, M.R.; Bhattacharya, N.; Crits-Christoph, A.; Firek, B.A.; Baker, R.; Song, Y.S.; Morowitz, M.J.; Banfield, J.F. Necrotizing enterocolitis is preceded by increased gut bacterial replication, Klebsiella, and fimbriae-encoding bacteria. Sci. Adv. 2019, 5, eaax5727. [Google Scholar] [CrossRef]
- Beghetti, I.; Barone, M.; Turroni, S.; Biagi, E.; Sansavini, A.; Brigidi, P.; Corvaglia, L.; Aceti, A. Early-life gut microbiota and neurodevelopment in preterm infants: Any role for Bifidobacterium? Eur. J. Pediatr. 2022, 181, 1773–1777. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Davis, N.M.; Proctor, D.M.; Holmes, S.P.; Relman, D.A.; Callahan, B.J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 2018, 6, 226. [Google Scholar] [CrossRef] [PubMed]
- Lawn, J. Born too Soon: The Global Action Report on Preterm Birth; WHO: Geneva, Switzerland, 2012.
- Yoon, B.H.; Romero, R.; Kim, C.J.; Jun, J.K.; Gomez, R.; Choi, J.-H.; Syu, H.C. Amniotic fluid interleukin-6: A sensitive test for antenatal diagnosis of acute inflammatory lesions of preterm placenta and prediction of perinatal morbidity. Am. J. Obstet. Gynecol. 1995, 172, 960–970. [Google Scholar] [CrossRef] [PubMed]
- Jobe, A.H.; Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef]
- Bell, M.J.; Ternberg, J.L.; Feigin, R.D.; Keating, J.P.; Marshall, R.; Barton, L.; Brotherton, T. Neonatal necrotizing enterocolitis. Therapeutic decisions based upon clinical staging. Ann. Surg. 1978, 187, 1. [Google Scholar] [CrossRef]
- Carlos, M.A.; Babyn, P.S.; Marcon, M.A.; Moore, A.M. Changes in gastric emptying in early postnatal life. J. Pediatr. 1997, 130, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Garner, A. An international classification of retinopathy of prematurity. Arch. Ophthalmol. 1984, 102, 1130–1134. [Google Scholar]
- International Committee for the Classification of Retinopathy of Prematurity. The international classification of retinopathy of prematurity revisited. Arch. Ophthalmol. 2005, 123, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Ringel-Kulka, T.; Heikamp-de Jong, I.; Ringel, Y.; Carroll, I.; De Vos, W.M.; Salojärvi, J.; Satokari, R. Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children. ISME J. 2016, 10, 1002–1014. [Google Scholar] [CrossRef]
- Claesson, M.J.; Jeffery, I.B.; Conde, S.; Power, S.E.; O’connor, E.M.; Cusack, S.; Harris, H.; Coakley, M.; Lakshminarayanan, B.; O’sullivan, O. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012, 488, 178–184. [Google Scholar] [CrossRef]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.-R.; Whon, T.W.; Bae, J.-W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Jumpertz, R.; Le, D.S.; Turnbaugh, P.J.; Trinidad, C.; Bogardus, C.; Gordon, J.I.; Krakoff, J. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 2011, 94, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Most, J.; Dervis, S.; Haman, F.; Adamo, K.B.; Redman, L.M. Energy intake requirements in pregnancy. Nutrients 2019, 11, 1812. [Google Scholar] [CrossRef]
- Aguilar-Lopez, M.; Dinsmoor, A.M.; Ho, T.T.; Donovan, S.M. A systematic review of the factors influencing microbial colonization of the preterm infant gut. Gut Microbes 2021, 13, 1884514. [Google Scholar] [CrossRef]
- Henderickx, J.G.; Zwittink, R.D.; Van Lingen, R.A.; Knol, J.; Belzer, C. The preterm gut microbiota: An inconspicuous challenge in nutritional neonatal care. Front. Cell. Infect. Microbiol. 2019, 9, 85. [Google Scholar] [CrossRef]
- O’Hanlon, D.E.; Moench, T.R.; Cone, R.A. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PLoS ONE 2013, 8, e80074. [Google Scholar] [CrossRef]
- Ardissone, A.N.; de la Cruz, D.M.; Davis-Richardson, A.G.; Rechcigl, K.T.; Li, N.; Drew, J.C.; Murgas-Torrazza, R.; Sharma, R.; Hudak, M.L.; Triplett, E.W. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS ONE 2014, 9, e90784. [Google Scholar] [CrossRef]
- Neu, J. The microbiome and its impact on disease in the preterm patient. Curr. Pediatr. Rep. 2013, 1, 215–221. [Google Scholar] [CrossRef]
- Morais, J.; Marques, C.; Teixeira, D.; Durão, C.; Faria, A.; Brito, S.; Cardoso, M.; Macedo, I.; Pereira, E.; Tomé, T. Extremely preterm neonates have more Lactobacillus in meconium than very preterm neonates–the in utero microbial colonization hypothesis. Gut Microbes 2020, 12, 1785804. [Google Scholar] [CrossRef]
VP (<32 wks) [N = 59] | MLP (≥32 wks and < 37 wks) [N = 154] | FT (≥37 wks) [N = 97] | p | p* | |||
---|---|---|---|---|---|---|---|
VP vs. MLP | VP vs. FT | MLP vs. FT | |||||
Assisted pregnancy | 10 (16.9%) | 40 (26.0%) | 6 (6.19%) | 0.022 | 0.207 | 0.054 | 0.000 |
Antenatal corticosteroid use | 54 (91.5%) | 112 (72.7%) | 0 (0.0%) | <0.001 | 0.003 | <0.001 | <0.001 |
PROM > 18 h | 14 (23.7%) | 19 (12.3%) | 5 (5.2%) | 0.001 | 0.056 | 0.001 | 0.077 |
HCAM | 9 (15.3%) | 1 (0.6%) | 0 (0.0%) | <0.001 | <0.001 | <0.001 | >0.999 |
Maternal antibiotics > 3 d | 22 (37.3%) | 23 (14.9%) | 1 (1.0%) | <0.001 | 0.001 | <0.001 | <0.001 |
Maternal DM | 10 (16.9%) | 20 (13.0%) | 9 (9.3%) | 0.157 | 0.510 | 0.207 | 0.423 |
Oligohydramnios | 14 (23.7%) | 7 (4.5%) | 1 (1.03%) | <0.001 | <0.001 | <0.001 | 0.045 |
Placenta abruption | 7 (11.9%) | 3 (1.9%) | 1 (1.03%) | 0.001 | 0.005 | 0.005 | >0.999 |
Maternal preeclampsia | 17 (28.8%) | 35 (22.7%) | 0 (0.0%) | <0.001 | 0.376 | <0.001 | <0.001 |
Cesarean section | 56 (94.9%) | 146 (94.8%) | 74 (76.3%) | <0.001 | >0.999 | 0.002 | <0.001 |
Gestational age a, week | 27.9 ± 2.5 | 34.1 ± 1.3 | 37.9 ± 1.0 | <0.001 | <0.001 | <0.001 | <0.001 |
Birth weight a, g | 1096.0 ± 402.5 | 2241.4 ± 436.7 | 3128.1 ± 392.4 | <0.001 | <0.001 | <0.001 | <0.001 |
Male | 34 (57.6%) | 87 (56.5%) | 56 (57.7%) | 0.977 | >0.999 | >0.999 | 0.896 |
Requiring intubation at birth | 32 (54.2%) | 7(4.5%) | 3 (3.1%) | <0.001 | <0.001 | <0.001 | 0.745 |
RDS | 49 (83.1%) | 41 (26.6%) | 13 (13.4%) | <0.001 | <0.001 | <0.001 | 0.017 |
NEC or FI | 23 (39.0%) | 18 (11.7%) | 5 (5.2%) | <0.001 | <0.001 | <0.001 | 0.115 |
BPD | 23 (39.0%) | 0 (0.0%) | 0 (0.0%) | <0.001 | <0.001 | <0.001 | - |
Sepsis | 16 (27.1%) | 2 (1.3%) | 0 (0.0%) | <0.001 | <0.001 | <0.001 | 0.524 |
ROP requiring surgery | 9 (15.3%) | 0 (0.0%) | 0 (0.0%) | <0.001 | <0.001 | <0.001 | - |
Weight at discharge a, g | 3435.5 ± 910.2 | 2587.1 ± 412.5 | 3244.0 ± 501.5 | <0.001 | <0.001 | 0.124 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.Y.; Youn, Y.-A. Gut Dysbiosis in the First-Passed Meconium Microbiomes of Korean Preterm Infants Compared to Full-Term Neonates. Microorganisms 2024, 12, 1271. https://doi.org/10.3390/microorganisms12071271
Kim SY, Youn Y-A. Gut Dysbiosis in the First-Passed Meconium Microbiomes of Korean Preterm Infants Compared to Full-Term Neonates. Microorganisms. 2024; 12(7):1271. https://doi.org/10.3390/microorganisms12071271
Chicago/Turabian StyleKim, Sae Yun, and Young-Ah Youn. 2024. "Gut Dysbiosis in the First-Passed Meconium Microbiomes of Korean Preterm Infants Compared to Full-Term Neonates" Microorganisms 12, no. 7: 1271. https://doi.org/10.3390/microorganisms12071271