Arbuscular Mycorrhizal Fungi as Biostimulant and Biocontrol Agents: A Review
Abstract
:1. Introduction
2. Arbuscular Mycorrhizal Fungi (AMF)
2.1. History and Taxonomy
2.2. Developmental Cycle
3. AMF as Biostimulant Agents
3.1. Plant Growth and Yield Improvements
3.2. Plant Tolerance to Abiotic Stress
4. AMF as Biocontrol Agents
4.1. AMF-Induced Plant Protection against Pathogens
4.2. Mycorrhiza-Induced Resistance
4.3. Limits to the AMF-Inoculum Application as Biocontrol Agents
5. AMF Inoculum Production
6. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Jaeger, C.; Cherin, P.; Fraoucene, N.; Voronska, E. Place, Intérêt et Danger Des Produits Phytosanitaires. Med. Longevite 2012, 4, 59–67. [Google Scholar] [CrossRef]
- United Nations Population Division World Population Prospects. Available online: https://population.un.org/wpp/ (accessed on 8 May 2024).
- Boedeker, W.; Watts, M.; Clausing, P.; Marquez, E. The Global Distribution of Acute Unintentional Pesticide Poisoning: Estimations Based on a Systematic Review. BMC Public Health 2020, 20, 1875. [Google Scholar] [CrossRef] [PubMed]
- Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J.; Vanbergen, A.J.; et al. Résumé à l’Intention des Décideurs du Rapport d’Evaluation de la Plateforme Intergouvernementale Scientifique et Politique sur la Biodiversité et les Services Écosystémiques Concernant les Pollinisateurs, la Pollinisation et la Production Alimentaire; IPBES: Bonn, Germany, 2016. [Google Scholar]
- Karadimitriou, N.; Cheru, F.; Wondimu, A.; Yacobi, H.; Eyob, A.; Belay, F.; Temesgen, T.; Eyana, S.; Yoseph, S. Global Assessment of the Impact of Plant Protection Products on Soil Functions and Soil Ecosystems; FAO: Rome, Italy, 2017. [Google Scholar]
- Kaur, H.; Garg, H. Pesticides: Environmental Impacts and Management Strategies. Pestic. Toxic Asp. 2014, 187, 10–5772. [Google Scholar] [CrossRef]
- Assouline, G. L’évolution Technologique de l’industrie Des Phytosanitaires: Quelles Interactions Avec l’agriculture? Économie Rural. 1989, 192, 42–48. [Google Scholar] [CrossRef]
- European Parliament. Proposal for a Regulation of the European Parliament and of the Council on the Sustainable Use of Plant Protection Products and Amending Regulation (EU) 2021/2115; European Parliament: Strasbourg, France, 2022; pp. 1–71. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Integrated Pest Management (IPM)|Pest and Pesticide Management|IPM and Pesticide Risk Reduction. Available online: https://www.fao.org/pest-and-pesticide-management/ipm/integrated-pest-management/en/ (accessed on 8 May 2024).
- European Parliament. Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007; European Parliament: Strasbourg, France, 2018. [Google Scholar]
- du Jardin, P. Plant Biostimulants: Definition, Concept, Main Categories and Regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Chen, M.; Arato, M.; Borghi, L.; Nouri, E.; Reinhardt, D. Beneficial Services of Arbuscular Mycorrhizal Fungi—From Ecology to Application. Front. Plant Sci. 2018, 9, 1270. [Google Scholar] [CrossRef] [PubMed]
- McNear, D.H., Jr. The Rhizosphere—Roots, Soil and Everything In Between. Nat. Sci. Educ. 2013, 4, 1. [Google Scholar]
- Ryder, L.S.; Harris, B.D.; Soanes, D.M.; Kershaw, M.J.; Talbot, N.J.; Thornton, C.R. Saprotrophic Competitiveness and Biocontrol Fitness of a Genetically Modified Strain of the Plant-Growth-Promoting Fungus Trichoderma hamatum GD12. Microbiology 2012, 158, 84–97. [Google Scholar] [CrossRef]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma Species—Opportunistic, Avirulent Plant Symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef]
- Attia, M.S.; Abdelaziz, A.M.; Al-Askar, A.A.; Arishi, A.A.; Abdelhakim, A.M.; Hashem, A.H. Plant Growth-Promoting Fungi as Biocontrol Tool against Fusarium Wilt Disease of Tomato Plant. J. Fungi 2022, 8, 775. [Google Scholar] [CrossRef]
- Abbott, L.K.; Robson, A.D. Growth Stimulation of Subterranean Clover with Vesicular Arbuscular Mycorrhizas. Aust. J. Agric. Res. 1977, 28, 639–649. [Google Scholar] [CrossRef]
- Union Européenne. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2019:170:TOC (accessed on 28 June 2022).
- Israel, A.; Langrand, J.; Fontaine, J.; Lounès-Hadj Sahraoui, A. Significance of Arbuscular Mycorrhizal Fungi in Mitigating Abiotic Environmental Stress in Medicinal and Aromatic Plants: A Review. Foods 2022, 11, 2591. [Google Scholar] [CrossRef] [PubMed]
- Pozo, M.J.; Verhage, A.; García-Andrade, J.; García, J.M.; Azcón-Aguilar, C. Priming Plant Defence Against Pathogens by Arbuscular Mycorrhizal Fungi. In Mycorrhizas—Functional Processes and Ecological Impact; Azcón-Aguilar, C., Barea, J., Gianinazzi, S., Gianinazzi-Pearson, V., Eds.; Springer: Berlin, Heidelberg, 2009; pp. 123–135. ISBN 978-3-540-87978-7. [Google Scholar]
- IBMA Home Page IBMA-GLOBAL International Biocontrol Manufacturers. Available online: https://ibma-global.org/ (accessed on 7 May 2024).
- Ministère de l’Agriculture et de la Souveraineté Alimentaire. Liste des Produits Phytopharmaceutiques de Biocontrôle, au Titre des Articles L.253-5 et L.253-7 du Code Rural et de la Pêche Maritime; Ministère de l’Agriculture et de la Souveraineté Alimentaire: Paris, France, 2024.
- Frank, A.B. Ueber Die Auf Wurzelsymbiose Beruhende Ernährung Gewisser Baüme Durch Unterirdische Pilze. Ber. Dtsch. Bot. Ges. 1885, 3, 128–145. [Google Scholar]
- von Nägeli, C.W. Pilze Im Innern von Zellen. Linnaea; Universidade do Porto: Porto, Portugal, 1842; Volume 16, pp. 278–285. Available online: https://repositorio-aberto.up.pt/bitstream/10216/120796/2/338785.pdf (accessed on 8 May 2024).
- Tisserant, E.; Malbreil, M.; Kuo, A.; Kohler, A.; Symeonidi, A.; Balestrini, R.; Charron, P.; Duensing, N.; Frei Dit Frey, N.; Gianinazzi-Pearson, V.; et al. Genome of an Arbuscular Mycorrhizal Fungus Provides Insight into the Oldest Plant Symbiosis. Proc. Natl. Acad. Sci. USA 2013, 110, 20117–20122. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garrido, J.M.; Antonio Ocampo, J.; Garcia-Romera, I. Enzymes in the Arbuscular Mycorrhizal Symbiosis; Marcel Dekker: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Bonfante, P.; Perotto, S. Tansley Review No. 82. Strategies of Arbuscular Mycorrhizal Fungi When Infecting Host Plants. New Phytol. 1995, 130, 3–21. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D. The Symbionts Forming Arbuscular Mycorrhizas. In Mycorrhizal Symbiosis; Elsevier: Amsterdam, The Netherlands, 2008; pp. 13–41. [Google Scholar] [CrossRef]
- Wang, Y.; He, X.; Yu, F. Non-Host Plants: Are They Mycorrhizal Networks Players? Plant Divers. 2022, 44, 127. [Google Scholar] [CrossRef] [PubMed]
- Redecker, D.; Kodner, R.; Graham, L.E. Glomalean Fungi from the Ordovician. Science 2000, 289, 1920–1921. [Google Scholar] [CrossRef] [PubMed]
- Krüger, M.; Krüger, C.; Walker, C.; Stockinger, H.; Schüßler, A. Phylogenetic Reference Data for Systematics and Phylotaxonomy of Arbuscular Mycorrhizal Fungi from Phylum to Species Level. New Phytol. 2012, 193, 970–984. [Google Scholar] [CrossRef] [PubMed]
- Corradi, N.; Kuhn, G.; Sanders, I.R. Monophyly of β-Tubulin and H+-ATPase Gene Variants in Glomus Intraradices: Consequences for Molecular Evolutionary Studies of AM Fungal Genes. Fungal Genet. Biol. 2004, 41, 262–273. [Google Scholar] [CrossRef]
- Gollotte, A.; Van Tuinen, D.; Atkinson, D. Diversity of Arbuscular Mycorrhizal Fungi Colonising Roots of the Grass Species Agrostis Capillaris and Lolium Perenne in a Field Experiment. Mycorrhiza 2004, 14, 111–117. [Google Scholar] [CrossRef]
- Helgason, T.; Fitter, A.H.; Young, J.P.W. Molecular Diversity of Arbuscular Mycorrhizal Fungi Colonising Hyacinthoides Non-Scripta (Bluebell) in a Seminatural Woodland. Mol. Ecol. 1999, 8, 659–666. [Google Scholar] [CrossRef]
- Wubet, T.; Weiß, M.; Kottke, I.; Teketay, D.; Oberwinkler, F. Molecular Diversity of Arbuscular Mycorrhizal Fungi in Prunus Africana, an Endangered Medicinal Tree Species in Dry Afromontane Forests of Ethiopia. New Phytol. 2004, 161, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Schüßler, A.; Schwarzott, D.; Walker, C. A New Fungal Phylum, the Glomeromycota: Phylogeny and Evolution. Mycol. Res. 2001, 105, 1413–1421. [Google Scholar] [CrossRef]
- Wijayawardene, N.; Hyde, K.; Dai, D.; Sánchez-García, M.; Goto, B.; Saxena, R.; Erdoğdu, M.; Selçuk, F.; Rajeshkumar, K.C.; Aptroot, A.; et al. Outline of Fungi and Fungus-like Taxa—2021. Mycosphere 2022, 13, 53–453. [Google Scholar] [CrossRef]
- Błaszkowski, J.; Sánchez-García, M.; Niezgoda, P.; Zubek, S.; Fernández, F.; Vila, A.; Al-Yahya’ei, M.N.; Symanczik, S.; Milczarski, P.; Malinowski, R.; et al. A New Order, Entrophosporales, and Three New Entrophospora Species in Glomeromycota. Front. Microbiol. 2022, 13, 962856. [Google Scholar] [CrossRef] [PubMed]
- Redecker, D.; Schüßler, A.; Stockinger, H.; Stürmer, S.L.; Morton, J.B.; Walker, C. An Evidence-Based Consensus for the Classification of Arbuscular Mycorrhizal Fungi (Glomeromycota). Mycorrhiza 2013, 23, 515–531. [Google Scholar] [CrossRef] [PubMed]
- Oehl, F.; Sieverding, E.; Palenzuela, J.; Ineichen, K.; da Silva, G.A. Advances in Glomeromycota Taxonomy and Classification. IMA Fungus 2011, 2, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Błaszkowski, J.; Niezgoda, P.; Meller, E.; Milczarski, P.; Zubek, S.; Malicka, M.; Uszok, S.; Casieri, L.; Goto, B.T.; Magurno, F. New Taxa in Glomeromycota: Polonosporaceae Fam. Nov., Polonospora Gen. Nov., and P. Polonica Comb. Nov. Mycol. Prog. 2021, 20, 941–951. [Google Scholar] [CrossRef]
- Goto, B.T.; Silva, G.A.; De Assis, D.M.A.; Silva, D.K.A.; Souza, R.G.; Ferreira, A.C.A.; Jobim, K.; Mello, C.M.A.; Vieira, H.E.E.; Maia, L.C.; et al. Intraornatosporaceae (Gigasporales), a New Family with Two New Genera and Two New Species. Mycotaxon 2012, 119, 117–132. [Google Scholar] [CrossRef]
- Symanczik, S.; Al-Yahya’ei, M.N.; Kozłowska, A.; Ryszka, P.; Błaszkowski, J. A New Genus, Desertispora, and a New Species, Diversispora Sabulosa, in the Family Diversisporaceae (Order Diversisporales, Subphylum Glomeromycotina). Mycol. Prog. 2018, 17, 437–449. [Google Scholar] [CrossRef]
- Błaszkowski, J.; Niezgoda, P.; de Paiva, J.N.; da Silva, K.J.G.; Theodoro, R.C.; Jobim, K.; Orfanoudakis, M.; Goto, B.T. Sieverdingia Gen. Nov., S. Tortuosa Comb. Nov., and Diversispora Peloponnesiaca Sp. Nov. in the Diversisporaceae (Glomeromycota). Mycol. Prog. 2019, 18, 1363–1382. [Google Scholar] [CrossRef]
- Marinho, F.; Da Silva, G.A.; Ferreira, A.C.A.; Da Nóbrega Veras, J.S.; Da Sousa, N.M.F.; Goto, B.T.; Maia, L.C.; Oehl, F. Bulbospora Minima, a New Genus and a New Species in the Glomeromycetes from Semi-Arid Northeast Brazil. Sydowia 2014, 66, 313–323. [Google Scholar] [CrossRef]
- Błaszkowski, J.; Yamato, M.; Niezgoda, P.; Zubek, S.; Milczarski, P.; Malinowski, R.; Meller, E.; Malicka, M.; Goto, B.T.; Uszok, S.; et al. A New Genus, Complexispora, with Two New Species, C. multistratosa and C. mediterranea, and Epigeocarpum japonicum Sp. Nov. Mycol. Prog. 2023, 22, 34. [Google Scholar] [CrossRef]
- Błaszkowski, J.; Chwat, G.; Góralska, A.; Ryszka, P.; Kovács, G.M. Two New Genera, Dominikia and Kamienskia, and D. disticha Sp. Nov. in Glomeromycota. Nova Hedwig. 2015, 100, 225–238. [Google Scholar] [CrossRef]
- Corazon-Guivin, M.A.; Mendoza, A.C.; Guerrero-Abad, J.C.; Vallejos-Tapullima, A.; Carballar-Hernández, S.; Da Silva, G.A.; Oehl, F. Funneliglomus, Gen. Nov., and Funneliglomus sanmartinensis, a New Arbuscular Mycorrhizal Fungus from the Amazonia Region in Peru. Sydowia 2019, 71, 17–24. [Google Scholar] [CrossRef]
- Błaszkowski, J.; Niezgoda, P.; Goto, B.T.; Kozłowska, A. Halonatospora Gen. Nov. with H. Pansihalos Comb. Nov. and Glomus Bareae Sp. Nov. (Glomeromycota; Glomeraceae). Botany 2018, 96, 737–748. [Google Scholar] [CrossRef]
- Błaszkowski, J.; Ryszka, P.; Kozłowska, A. Dominikia Litorea, a New Species in the Glomeromycotina, and Biogeographic Distribution of Dominikia. Phytotaxa 2018, 338, 241–254. [Google Scholar] [CrossRef]
- Corazon-Guivin, M.A.; Cerna-Mendoza, A.; Guerrero-Abad, J.C.; Vallejos-Tapullima, A.; Carballar-Hernández, S.; da Silva, G.A.; Oehl, F. Microkamienskia Gen. Nov. and Microkamienskia Peruviana, a New Arbuscular Mycorrhizal Fungus from Western Amazonia. Nova Hedwig. 2019, 109, 355–368. [Google Scholar] [CrossRef]
- Corazon-Guivin, M.A.; Cerna-Mendoza, A.; Guerrero-Abad, J.C.; Vallejos-Tapullima, A.; Carballar-Hernández, S.; da Silva, G.A.; Oehl, F. Nanoglomus Plukenetiae, a New Fungus from Peru, and a Key to Small-Spored Glomeraceae Species, Including Three New Genera in the “Dominikia Complex/Clades”. Mycol. Prog. 2019, 18, 1395–1409. [Google Scholar] [CrossRef]
- Sieverding, E.; Da Silva, G.A.; Berndt, R.; Oehl, F. Rhizoglomus, a New Genus of the Glomeraceae. Mycotaxon 2014, 129, 373–386. [Google Scholar] [CrossRef]
- Jobim, K.; Błaszkowski, J.; Niezgoda, P.; Kozłowska, A.; Zubek, S.; Mleczko, P.; Chachuła, P.; Kazue Ishikawa, N.; Goto, B.T.; Thines, M. New Sporocarpic Taxa in the Phylum Glomeromycota: Sclerocarpum Amazonicum Gen. et Sp. Nov. in the Family Glomeraceae (Glomerales) and Diversispora Sporocarpia Sp. Nov. in the Diversisporaceae (Diversisporales). Mycol. Prog. 2019, 18, 369–384. [Google Scholar] [CrossRef]
- Błaszkowski, J.; Kozłowska, A.; Crossay, T.; Symanczik, S.; Al-Yahya’ei, M.N. A New Family, Pervetustaceae with a New Genus, Pervetustus, and P. Simplex Sp. Nov. (Paraglomerales), and a New Genus, Innospora with I. Majewskii Comb. Nov. (Paraglomeraceae) in the Glomeromycotina. Nova Hedwig. 2017, 105, 397–410. [Google Scholar] [CrossRef]
- Steinkellner, S.; Lendzemo, V.; Langer, I.; Schweiger, P.; Khaosaad, T.; Toussaint, J.P.; Vierheilig, H. Flavonoids and Strigolactones in Root Exudates as Signals in Symbiotic and Pathogenic Plant-Fungus Interactions. Molecules 2007, 12, 1290–1306. [Google Scholar] [CrossRef] [PubMed]
- Mayzlish-Gati, E.; De-Cuyper, C.; Goormachtig, S.; Beeckman, T.; Vuylsteke, M.; Brewer, P.B.; Beveridge, C.A.; Yermiyahu, U.; Kaplan, Y.; Enzer, Y.; et al. Strigolactones Are Involved in Root Response to Low Phosphate Conditions in Arabidopsis. Plant Physiol. 2012, 160, 1329–1341. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, K.; Matsuzaki, K.I.; Hayashi, H. Plant Sesquiterpenes Induce Hyphal Branching in Arbuscular Mycorrhizal Fungi. Nature 2005, 435, 824–827. [Google Scholar] [CrossRef]
- Besserer, A.; Puech-Pagès, V.; Kiefer, P.; Gomez-Roldan, V.; Jauneau, A.; Roy, S.; Portais, J.C.; Roux, C.; Bécard, G.; Séjalon-Delmas, N. Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria. PLoS Biol. 2006, 4, e226. [Google Scholar] [CrossRef]
- Tamasloukht, B.; Séjalon-Delmas, N.; Kluever, A.; Jauneau, A.; Roux, C.; Bécard, G.; Franken, P. Root Factors Induce Mitochondrial-Related Gene Expression and Fungal Respiration during the Developmental Switch from Asymbiosis to Presymbiosis in the Arbuscular Mycorrhizal Fungus Gigaspora Rosea. Plant Physiol. 2003, 131, 1468–1478. [Google Scholar] [CrossRef]
- Vierheilig, H.; Bago, B.; Albrecht, C.; Poulin, M.J.; Piché, Y. Flavonoids and Arbuscular-Mycorrhizal Fungi. Adv. Exp. Med. Biol. 1998, 439, 9–33. [Google Scholar] [CrossRef]
- Koske, R.E. Multiple Germination by Spores of Gigaspora Gigantea. TBMS 1981, 76, 328–330. [Google Scholar] [CrossRef]
- Mosse, B. The Regular Germination of Resting Spores and Some Observations on the Growth Requirements of an Endogone Sp. Causing Vesicular-Arbuscular Mycorrhiza. TBMS 1959, 42, 273-IN4. [Google Scholar] [CrossRef]
- Paszkowski, U. A Journey through Signaling in Arbuscular Mycorrhizal Symbioses 2006. New Phytol. 2006, 172, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Maillet, F.; Poinsot, V.; André, O.; Puech-Pagés, V.; Haouy, A.; Gueunier, M.; Cromer, L.; Giraudet, D.; Formey, D.; Niebel, A.; et al. Fungal Lipochitooligosaccharide Symbiotic Signals in Arbuscular Mycorrhiza. Nature 2011, 469, 58–64. [Google Scholar] [CrossRef]
- Genre, A.; Chabaud, M.; Timmers, T.; Bonfante, P.; Barker, D.G. Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago Truncatula Root Epidermal Cells before Infection. Plant Cell 2005, 17, 3489–3499. [Google Scholar] [CrossRef]
- Genre, A.; Chabaud, M.; Faccio, A.; Barker, D.G.; Bonfante, P. Prepenetration Apparatus Assembly Precedes and Predicts the Colonization Patterns of Arbuscular Mycorrhizal Fungi within the Root Cortex of Both Medicago Truncatula and Daucus Carota. Plant Cell 2008, 20, 1407–1420. [Google Scholar] [CrossRef] [PubMed]
- Brundrett, M.C. Coevolution of Roots and Mycorrhizas of Land Plants. New Phytol. 2002, 154, 275–304. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, I.; Rosendahl, L. Carbon Flow into Soil and External Hyphae from Roots of Mycorrhizal Cucumber Plants. New Phytol. 1990, 115, 77–83. [Google Scholar] [CrossRef]
- Parniske, M. Arbuscular Mycorrhiza: The Mother of Plant Root Endosymbioses. Nat. Rev. Microbiol. 2008, 6, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Bago, B.; Pfeffer, P.E.; Shachar-Hill, Y. Carbon Metabolism and Transport in Arbuscular Mycorrhizas. Plant Physiol. 2000, 124, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Bravo, A.; Brands, M.; Wewer, V.; Dörmann, P.; Harrison, M.J. Arbuscular Mycorrhiza-Specific Enzymes FatM and RAM2 Fine-Tune Lipid Biosynthesis to Promote Development of Arbuscular Mycorrhiza. New Phytol. 2017, 214, 1631–1645. [Google Scholar] [CrossRef]
- Lehmann, A.; Rillig, M.C. Arbuscular Mycorrhizal Contribution to Copper, Manganese and Iron Nutrient Concentrations in Crops—A Meta-Analysis. Soil Biol. Biochem. 2015, 81, 147–158. [Google Scholar] [CrossRef]
- Garcia, K.; Doidy, J.; Zimmermann, S.D.; Wipf, D.; Courty, P.E. Take a Trip Through the Plant and Fungal Transportome of Mycorrhiza. Trends Plant Sci. 2016, 21, 937–950. [Google Scholar] [CrossRef] [PubMed]
- Wipf, D.; Krajinski, F.; van Tuinen, D.; Recorbet, G.; Courty, P.E. Trading on the Arbuscular Mycorrhiza Market: From Arbuscules to Common Mycorrhizal Networks. New Phytol. 2019, 223, 1127–1142. [Google Scholar] [CrossRef] [PubMed]
- Govindarajulu, M.; Pfeffer, P.E.; Jin, H.; Abubaker, J.; Douds, D.D.; Allen, J.W.; Bücking, H.; Lammers, P.J.; Shachar-Hill, Y. Nitrogen Transfer in the Arbuscular Mycorrhizal Symbiosis. Nature 2005, 435, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Garcia, K.; Zimmermann, S.D. The Role of Mycorrhizal Associations in Plant Potassium Nutrition. Front. Plant Sci. 2014, 5, 337. [Google Scholar] [CrossRef] [PubMed]
- Watts-Williams, S.J.; Gill, A.R.; Jewell, N.; Brien, C.J.; Berger, B.; Tran, B.T.T.; Mace, E.; Cruickshank, A.W.; Jordan, D.R.; Garnett, T.; et al. Enhancement of Sorghum Grain Yield and Nutrition: A Role for Arbuscular Mycorrhizal Fungi Regardless of Soil Phosphorus Availability. Plants People Planet 2022, 4, 143–156. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, H.; Zou, C.; Li, Y.; Chen, Y.; Wang, Z.; Jiang, Y.; Liu, A.; Zhao, P.; Wang, M.; et al. Combined Inoculation with Multiple Arbuscular Mycorrhizal Fungi Improves Growth, Nutrient Uptake and Photosynthesis in Cucumber Seedlings. Front. Microbiol. 2017, 8, 277334. [Google Scholar] [CrossRef] [PubMed]
- Aroca, R.; Porcel, R.; Ruiz-Lozano, J.M. How Does Arbuscular Mycorrhizal Symbiosis Regulate Root Hydraulic Properties and Plasma Membrane Aquaporins in Phaseolus Vulgaris under Drought, Cold or Salinity Stresses? New Phytol. 2007, 173, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Kakouridis, A.; Hagen, J.A.; Kan, M.P.; Mambelli, S.; Feldman, L.J.; Herman, D.J.; Weber, P.K.; Pett-Ridge, J.; Firestone, M.K. Routes to Roots: Direct Evidence of Water Transport by Arbuscular Mycorrhizal Fungi to Host Plants. New Phytol. 2022, 236, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Kobae, Y.; Hata, S. Dynamics of Periarbuscular Membranes Visualized with a Fluorescent Phosphate Transporter in Arbuscular Mycorrhizal Roots of Rice. Plant Cell Physiol. 2010, 51, 341–353. [Google Scholar] [CrossRef]
- Javot, H.; Penmetsa, R.V.; Terzaghi, N.; Cook, D.R.; Harrison, M.J. A Medicago Truncatula Phosphate Transporter Indispensable for the Arbuscular Mycorrhizal Symbiosis. Proc. Natl. Acad. Sci. USA 2007, 104, 1720–1725. [Google Scholar] [CrossRef]
- Bach, E.M.; Narvaez-Rivera, G.; Murray, K.; Bauer, J.T.; Hofmockel, K.S. The Dynamic Life of Arbuscular Mycorrhizal Fungal Symbionts. Ecology 2018, 99, 978–980. [Google Scholar] [CrossRef] [PubMed]
- Bucher, M.; Wegmüller, S.; Drissner, D. Chasing the Structures of Small Molecules in Arbuscular Mycorrhizal Signaling. Curr. Opin. Plant Biol. 2009, 12, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.S.; Xia, R.X.; Zou, Y.N. Improved Soil Structure and Citrus Growth after Inoculation with Three Arbuscular Mycorrhizal Fungi under Drought Stress. Eur. J. Soil Biol. 2008, 44, 122–128. [Google Scholar] [CrossRef]
- Rillig, M.C. Arbuscular Mycorrhizae, Glomalin, and Soil Aggregation. Can. J. Soil Sci. 2004, 84, 355–363. [Google Scholar] [CrossRef]
- Syamsiyah, J.; Herawati, A.; Mujiyo. The Potential of Arbuscular Mycorrhizal Fungi Application on Aggregrate Stability in Alfisol Soil. In Proceedings of the 4th International Conference on Sustainable Agriculture and Environment (4th ICSAE), Surakarta, Indonesia, 10–12 August 2017; IOP Conference Series: Earth and Environmental Science. IOP Publishing: Bristol, UK, 2018; Volume 142. [Google Scholar] [CrossRef]
- Bowles, T.M.; Barrios-Masias, F.H.; Carlisle, E.A.; Cavagnaro, T.R.; Jackson, L.E. Effects of Arbuscular Mycorrhizae on Tomato Yield, Nutrient Uptake, Water Relations, and Soil Carbon Dynamics under Deficit Irrigation in Field Conditions. Sci. Total Environ. 2016, 566–567, 1223–1234. [Google Scholar] [CrossRef] [PubMed]
- Bender, S.F.; Conen, F.; Van der Heijden, M.G.A. Mycorrhizal Effects on Nutrient Cycling, Nutrient Leaching and N2O Production in Experimental Grassland. Soil Biol. Biochem. 2015, 80, 283–292. [Google Scholar] [CrossRef]
- Wu, Q.-S.; Huang, Y.-M.; Li, Y.; He, X.-H. Contribution of Arbuscular Mycorrhizas to Glomalin-Related Soil Protein, Soil Organic Carbon and Aggregate Stability in Citrus Rhizosphere. Int. J. Agric. Biol. 2014, 16, 207–212. [Google Scholar]
- Agnihotri, R.; Sharma, M.P.; Prakash, A.; Ramesh, A.; Bhattacharjya, S.; Patra, A.K.; Manna, M.C.; Kurganova, I.; Kuzyakov, Y. Glycoproteins of Arbuscular Mycorrhiza for Soil Carbon Sequestration: Review of Mechanisms and Controls. Sci. Total Environ. 2022, 806, 150571. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, I. Transport of Phosphorus and Carbon in VA Mycorrhizas. In Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology; Springer: Berlin/Heidelberg, Germany, 1995; pp. 297–324. [Google Scholar] [CrossRef]
- Gavito, M.E.; Jakobsen, I.; Mikkelsen, T.N.; Mora, F. Direct Evidence for Modulation of Photosynthesis by an Arbuscular Mycorrhiza-Induced Carbon Sink Strength. New Phytol. 2019, 223, 896–907. [Google Scholar] [CrossRef]
- Kaschuk, G.; Kuyper, T.W.; Leffelaar, P.A.; Hungria, M.; Giller, K.E. Are the Rates of Photosynthesis Stimulated by the Carbon Sink Strength of Rhizobial and Arbuscular Mycorrhizal Symbioses? Soil Biol. Biochem. 2009, 41, 1233–1244. [Google Scholar] [CrossRef]
- Wright, D.P.; Read, D.J.; Scholes, J.D. Mycorrhizal Sink Strength Influences Whole Plant Carbon Balance of Trifolium repens L. Plant Cell Environ. 1998, 21, 881–891. [Google Scholar] [CrossRef]
- Hijri, M. Analysis of a Large Dataset of Mycorrhiza Inoculation Field Trials on Potato Shows Highly Significant Increases in Yield. Mycorrhiza 2016, 26, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Sabia, E.; Claps, S.; Morone, G.; Bruno, A.; Sepe, L.; Aleandri, R. Field Inoculation of Arbuscular Mycorrhiza on Maize (Zea mays L.) under Low Inputs: Preliminary Study on Quantitative and Qualitative Aspects. Ital. J. Agron. 2015, 10, 30–33. [Google Scholar] [CrossRef]
- Lu, F.C.; Lee, C.Y.; Wang, C.L. The Influence of Arbuscularmycorrhizal Fungi Inoculation on Yam (Dioscorea spp.) Tuber Weights and Secondary Metabolite Content. PeerJ 2015, 2015, e1266. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Guo, H.; Zhang, Q.; Guo, H.; Zhang, L.; Zhang, C.; Gou, Z.; Liu, Y.; Wei, J.; Chen, A.; et al. Arbuscular Mycorrhizal Fungi (AMF) Enhanced the Growth, Yield, Fiber Quality and Phosphorus Regulation in Upland Cotton (Gossypium hirsutum L.). Sci. Rep. 2020, 10, 2084. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Ma, F.; Yang, J.; Su, M. Effects of Arbuscular Mycorrhizal Fungi Inoculation on Carbon and Nitrogen Distribution and Grain Yield and Nutritional Quality in Rice (Oryza sativa L.). J. Sci. Food Agric. 2017, 97, 2919–2925. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Li, J.; Wang, M. Effects of arbuscular mycorrhizal (AM) fungi on citrus quality under nature conditions. Southwest China J. Agric. Sci. 2014, 27, 2101–2105. [Google Scholar]
- Baslam, M.; Garmendia, I.; Goicoechea, N. Arbuscular Mycorrhizal Fungi (AMF) Improved Growth and Nutritional Quality of Greenhouse-Grown Lettuce. J. Agric. Food Chem. 2011, 59, 5504–5515. [Google Scholar] [CrossRef]
- Yuan, M.L.; Zhang, M.H.; Shi, Z.Y.; Yang, S.; Zhang, M.G.; Wang, Z.; Wu, S.W.; Gao, J.K. Arbuscular Mycorrhizal Fungi Enhance Active Ingredients of Medicinal Plants: A Quantitative Analysis. Front. Plant Sci. 2023, 14, 1276918. [Google Scholar] [CrossRef]
- Yilmaz, A.; Karik, Ü. AMF and PGPR Enhance Yield and Secondary Metabolite Profile of Basil (Ocimum basilicum L.). Ind. Crops Prod. 2022, 176, 114327. [Google Scholar] [CrossRef]
- Akachoud, O.; Bouamama, H.; Facon, N.; Laruelle, F.; Zoubi, B.; Benkebboura, A.; Ghoulam, C.; Qaddoury, A.; Lounès-Hadj Sahraoui, A. Mycorrhizal Inoculation Improves the Quality and Productivity of Essential Oil Distilled from Three Aromatic and Medicinal Plants: Thymus Satureioides, Thymus Pallidus, and Lavandula Dentata. Agronomy 2022, 12, 2223. [Google Scholar] [CrossRef]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let’s Benefit from Past Successes. Front. Microbiol. 2015, 6, 1559. [Google Scholar] [CrossRef]
- Thirkell, T.J.; Charters, M.D.; Elliott, A.J.; Sait, S.M.; Field, K.J. Are Mycorrhizal Fungi Our Sustainable Saviours? Considerations for Achieving Food Security. J. Ecol. 2017, 105, 921–929. [Google Scholar] [CrossRef]
- Hernández-Acosta, E.; Trejo-Aguilar, D.; Rivera-Fernández, A.; Ferrera-Cerrato, R.; Hernández-Acosta, E.; Trejo-Aguilar, D.; Rivera-Fernández, A.; Ferrera-Cerrato, R. Arbuscular Mycorrhiza as a Biofertilizer in Production of Coffee. Terra Latinoam. 2020, 38, 613–628. [Google Scholar] [CrossRef]
- Madawala, H.M.S.P. Arbuscular Mycorrhizal Fungi as Biofertilizers: Current Trends, Challenges, and Future Prospects. In Biofertilizers Volume 1: Advances in Bio-Inoculants; Woodhead Publishing: Cambridge, UK, 2021; pp. 83–93. [Google Scholar] [CrossRef]
- Wu, S.; Shi, Z.; Chen, X.; Gao, J.; Wang, X. Arbuscular Mycorrhizal Fungi Increase Crop Yields by Improving Biomass under Rainfed Condition: A Meta-Analysis. PeerJ 2022, 10, e12861. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Gill, S.S.; Fujita, M. Physiological Role of Nitric Oxide in Plants Grown Under Adverse Environmental Conditions. In Plant Acclimation to Environmental Stress; Springer: Berlin/Heidelberg, Germany, 2013; pp. 269–322. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Tittal, M.; Mir, R.A.; Agarwal, R. Alleviation of Water and Osmotic Stress-Induced Changes in Nitrogen Metabolizing Enzymes in Triticum aestivum L. Cultivars by Potassium. Protoplasma 2017, 254, 1953–1963. [Google Scholar] [CrossRef] [PubMed]
- Borde, M.; Dudhane, M.; Jite, P.K. AM Fungi Influences the Photosynthetic Activity, Growth and Antioxidant Enzymes in Allium sativum L. under Salinity Condition. Not. Sci. Biol. 2010, 2, 64–71. [Google Scholar] [CrossRef]
- Cheng, L.; Booker, F.L.; Tu, C.; Burkey, K.O.; Zhou, L.; Shew, H.D.; Rufty, T.W.; Hu, S. Arbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition under Elevated CO2. Science 2012, 337, 1084–1087. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.C.; Song, F.B.; Liu, T.D.; Liu, S.Q. Arbuscular Mycorrhizae Reducing Water Loss in Maize Plants under Low Temperature Stress. Plant Signal Behav. 2010, 5, 591–593. [Google Scholar] [CrossRef]
- Bunn, R.; Lekberg, Y.; Zabinski, C. Arbuscular Mycorrhizal Fungi Ameliorate Temperature Stress in Thermophilic Plants. Ecol. 2009, 90, 1378–1388. [Google Scholar] [CrossRef]
- Chu, X.T.; Fu, J.J.; Sun, Y.F.; Xu, Y.M.; Miao, Y.J.; Xu, Y.F.; Hu, T.M. Effect of Arbuscular Mycorrhizal Fungi Inoculation on Cold Stress-Induced Oxidative Damage in Leaves of Elymus nutans Griseb. S. Afr. J. Bot. 2016, 104, 21–29. [Google Scholar] [CrossRef]
- Kapoor, R.; Sharma, D.; Bhatnagar, A.K. Arbuscular Mycorrhizae in Micropropagation Systems and Their Potential Applications. Sci. Hortic. 2008, 116, 227–239. [Google Scholar] [CrossRef]
- Evelin, H.; Kapoor, R.; Giri, B. Arbuscular Mycorrhizal Fungi in Alleviation of Salt Stress: A Review. Ann. Bot. 2009, 104, 1263–1280. [Google Scholar] [CrossRef] [PubMed]
- Ouziad, F.; Hildebrandt, U.; Schmelzer, E.; Bothe, H. Differential Gene Expressions in Arbuscular Mycorrhizal-Colonized Tomato Grown under Heavy Metal Stress. J. Plant Physiol. 2005, 162, 634–649. [Google Scholar] [CrossRef]
- Diagne, N.; Ndour, M.; Djighaly, P.I.; Ngom, D.; Ngom, M.C.N.; Ndong, G.; Svistoonoff, S.; Cherif-Silini, H. Effect of Plant Growth Promoting Rhizobacteria (PGPR) and Arbuscular Mycorrhizal Fungi (AMF) on Salt Stress Tolerance of Casuarina obesa (Miq.). Front. Sustain. Food Syst. 2020, 4, 601004. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Li, Y.; Wu, A.; Huang, J. Effects of Arbuscular Mycorrhizal Fungi on Growth and Nitrogen Uptake of Chrysanthemum morifolium under Salt Stress. PLoS ONE 2018, 13, e0196408. [Google Scholar] [CrossRef]
- Lin, A.J.; Zhang, X.H.; Wong, M.H.; Ye, Z.H.; Lou, L.Q.; Wang, Y.S.; Zhu, Y.G. Increase of Multi-Metal Tolerance of Three Leguminous Plants by Arbuscular Mycorrhizal Fungi Colonization. Env. Geochem. Health 2007, 29, 473–481. [Google Scholar] [CrossRef]
- Jones, D.L.; Hodge, A.; Kuzyakov, Y. Plant and Mycorrhizal Regulation of Rhizodeposition. New Phytol. 2004, 163, 459–480. [Google Scholar] [CrossRef]
- Giasson, P.; Karam, A.; Jaouich, A. Arbuscular Mycorrhizae and Alleviation of Soil Stresses on Plant Growth. In Mycorrhizae: Sustainable Agriculture and Forestry; Springer: Berlin/Heidelberg, Germany, 2009; pp. 99–134. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, W.; Wang, Y.; Zhang, L.; Huang, S.; Lin, J. Metabolomics Analysis Reveals the Alkali Tolerance Mechanism in Puccinellia Tenuiflora Plants Inoculated with Arbuscular Mycorrhizal Fungi. Microorganisms 2020, 8, 327. [Google Scholar] [CrossRef]
- Sheng, M.; Tang, M.; Zhang, F.; Huang, Y. Influence of Arbuscular Mycorrhiza on Organic Solutes in Maize Leaves under Salt Stress. Mycorrhiza 2011, 21, 423–430. [Google Scholar] [CrossRef]
- Al-Karaki, G.; McMichael, B.; Zak, J. Field Response of Wheat to Arbuscular Mycorrhizal Fungi and Drought Stress. Mycorrhiza 2004, 14, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Marulanda, A.; Azcón, R.; Ruiz-Lozano, J.M. Contribution of Six Arbuscular Mycorrhizal Fungal Isolates to Water Uptake by Lactuca Sativa Plants under Drought Stress. Physiol. Plant 2003, 119, 526–533. [Google Scholar] [CrossRef]
- Neumann, E.; Schmid, B.; Römheld, V.; George, E. Extraradical Development and Contribution to Plant Performance of an Arbuscular Mycorrhizal Symbiosis Exposed to Complete or Partial Rootzone Drying. Mycorrhiza 2009, 20, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Maure, C.; Verdoucq, L.; Luu, D.T.; Santoni, V. Plant Aquaporins: Membrane Channels with Multiple Integrated Functions. Annu. Rev. Plant Biol. 2008, 59, 595–624. [Google Scholar] [CrossRef] [PubMed]
- del Mar Alguacil, M.; Kohler, J.; Caravaca, F.; Roldán, A. Differential Effects of Pseudomonas mendocina and Glomus intraradices on Lettuce Plants Physiological Response and Aquaporin PIP2 Gene Expression under Elevated Atmospheric CO2 and Drought. Microb. Ecol. 2009, 58, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, Z.; Hui, C.; Tang, M.; Zhang, H. Effect of Rhizophagus irregularis on Osmotic Adjustment, Antioxidation and Aquaporin PIP Genes Expression of Populus × Canadensis ‘Neva’ under Drought Stress. Acta Physiol. Plant 2016, 38, 191. [Google Scholar] [CrossRef]
- Jia-Dong, H.; Tao, D.; Hui-Hui, W.; Zou, Y.N.; Wu, Q.S.; Kamil, K. Mycorrhizas Induce Diverse Responses of Root TIP Aquaporin Gene Expression to Drought Stress in Trifoliate Orange. Sci. Hortic. 2019, 243, 64–69. [Google Scholar] [CrossRef]
- Bárzana, G.; Aroca, R.; Bienert, G.P.; Chaumont, F.; Ruiz-Lozano, J.M. New Insights into the Regulation of Aquaporins by the Arbuscular Mycorrhizal Symbiosis in Maize Plants under Drought Stress and Possible Implications for Plant Performance. Mol. Plant Microbe Interact. 2014, 27, 349–363. [Google Scholar] [CrossRef]
- Quiroga, G.; Erice, G.; Aroca, R.; Chaumont, F.; Ruiz-Lozano, J.M. Enhanced Drought Stress Tolerance by the Arbuscular Mycorrhizal Symbiosis in a Drought-Sensitive Maize Cultivar Is Related to a Broader and Differential Regulation of Host Plant Aquaporins than in a Drought-Tolerant Cultivar. Front. Plant Sci. 2017, 8, 268043. [Google Scholar] [CrossRef]
- Wang, D.; Ni, Y.; Xie, K.; Li, Y.; Wu, W.; Shan, H.; Cheng, B.; Li, X. Aquaporin ZmTIP2;3 Promotes Drought Resistance of Maize through Symbiosis with Arbuscular Mycorrhizal Fungi. Int. J. Mol. Sci. 2024, 25, 4205. [Google Scholar] [CrossRef]
- Ouziad, F.; Wilde, P.; Schmelzer, E.; Hildebrandt, U.; Bothe, H. Analysis of Expression of Aquaporins and Na+/H+ Transporters in Tomato Colonized by Arbuscular Mycorrhizal Fungi and Affected by Salt Stress. Environ. Exp. Bot. 2006, 57, 177–186. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, L.; He, X.; Tian, C. Water Strategy of Mycorrhizal Rice at Low Temperature through the Regulation of PIP Aquaporins with the Involvement of Trehalose. Appl. Soil Ecol. 2014, 84, 185–191. [Google Scholar] [CrossRef]
- Lawlor, D.W.; Cornic, G. Photosynthetic Carbon Assimilation and Associated Metabolism in Relation to Water Deficits in Higher Plants. Plant Cell Environ. 2002, 25, 275–294. [Google Scholar] [CrossRef] [PubMed]
- Ait-El-Mokhtar, M.; Laouane, R.B.; Anli, M.; Boutasknit, A.; Wahbi, S.; Meddich, A. Use of Mycorrhizal Fungi in Improving Tolerance of the Date Palm (Phoenix dactylifera L.) Seedlings to Salt Stress. Sci. Hortic. 2019, 253, 429–438. [Google Scholar] [CrossRef]
- Birhane, E.; Sterck, F.J.; Fetene, M.; Bongers, F.; Kuyper, T.W. Arbuscular Mycorrhizal Fungi Enhance Photosynthesis, Water Use Efficiency, and Growth of Frankincense Seedlings under Pulsed Water Availability Conditions. Oecologia 2012, 169, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Schubert, A.; Allara, P.; Morte, A. Cleavage of Sucrose in Roots of Soybean (Glycine Max) Colonized by an Arbuscular Mycorrhizal Fungus. New Phytol. 2004, 161, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Balestrini, R.; Brunetti, C.; Chitarra, W.; Nerva, L. Photosynthetic Traits and Nitrogen Uptake in Crops: Which Is the Role of Arbuscular Mycorrhizal Fungi? Plants 2020, 9, 1105. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, K.S.; Charest, C.; Dwyer, L.M.; Hamilton, R.I. Effects of Arbuscular Mycorrhizae on Leaf Water Potential, Sugar Content, and P Content during Drought and Recovery of Maize. Can. J. Bot. 1997, 75, 1582–1591. [Google Scholar] [CrossRef]
- Andersen, C.P.; Sucoff, E.I.; Dixon, R.K. The Influence of Low Soil Temperature on the Growth of Vesicular–Arbuscular Mycorrhizal Fraxinuspennsylvanica. Can. J. For. Res. 1987, 17, 951–956. [Google Scholar] [CrossRef]
- Kiers, E.T.; Duhamel, M.; Beesetty, Y.; Mensah, J.A.; Franken, O.; Verbruggen, E.; Fellbaum, C.R.; Kowalchuk, G.A.; Hart, M.M.; Bago, A.; et al. Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis. Science 2011, 333, 880–882. [Google Scholar] [CrossRef]
- Hildebrandt, U.; Regvar, M.; Bothe, H. Arbuscular Mycorrhiza and Heavy Metal Tolerance. Phytochem. 2007, 68, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Krieger-Liszkay, A.; Fufezan, C.; Trebst, A. Singlet Oxygen Production in Photosystem II and Related Protection Mechanism. Photosynth. Res. 2008, 98, 551–564. [Google Scholar] [CrossRef] [PubMed]
- Wagner, D.; Przybyla, D.; Op Den Camp, R.; Kim, C.; Landgraf, F.; Keun, P.L.; Würsch, M.; Laloi, C.; Nater, M.; Hideg, E.; et al. The Genetic Basis of Singlet Oxygen-Induced Stress Response of Arabidopsis thaliana. Science 2004, 306, 1183–1185. [Google Scholar] [CrossRef] [PubMed]
- Demidchik, V. Mechanisms of Oxidative Stress in Plants: From Classical Chemistry to Cell Biology. Environ. Exp. Bot. 2015, 109, 212–228. [Google Scholar] [CrossRef]
- Anjum, N.A.; Sofo, A.; Scopa, A.; Roychoudhury, A.; Gill, S.S.; Iqbal, M.; Lukatkin, A.S.; Pereira, E.; Duarte, A.C.; Ahmad, I. Lipids and Proteins—Major Targets of Oxidative Modifications in Abiotic Stressed Plants. Environ. Sci. Pollut. Res. Int. 2015, 22, 4099–4121. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, D.M.; Umbach, A.L.; Subbaiah, C.C.; Siedow, J.N. Mitochondrial Reactive Oxygen Species. Contribution to Oxidative Stress and Interorganellar Signaling. Plant Physiol. 2006, 141, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Roychoudhury, A. Reactive Oxygen Species (ROS) and Response of Antioxidants as ROS-Scavengers during Environmental Stress in Plants. Front. Environ. Sci. 2014, 2, 121942. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef]
- Rani, B. Effect of Arbuscular Mycorrhiza Fungi on Biochemical Parameters in Wheat (Triticum aestivum L.) under Drought Conditions. Ph.D. Thesis, CCSHAU, Hisar, India, 2016. [Google Scholar]
- Abdelhameed, R.E.; Metwally, R.A. Alleviation of Cadmium Stress by Arbuscular Mycorrhizal Symbiosis. Int. J. Phytoremediation 2019, 21, 663–671. [Google Scholar] [CrossRef]
- Li, J.; Meng, B.; Chai, H.; Yang, X.; Song, W.; Li, S.; Lu, A.; Zhang, T.; Sun, W. Arbuscular Mycorrhizal Fungi Alleviate Drought Stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) Grasses via Altering Antioxidant Enzyme Activities and Photosynthesis. Front. Plant Sci. 2019, 10, 450785. [Google Scholar] [CrossRef]
- Talaat, N.B.; Shawky, B.T. Protective Effects of Arbuscular Mycorrhizal Fungi on Wheat (Triticum aestivum L.) Plants Exposed to Salinity. Environ. Exp. Bot. 2014, 98, 20–31. [Google Scholar] [CrossRef]
- Jahromi, F.; Aroca, R.; Porcel, R.; Ruiz-Lozano, J.M. Influence of Salinity on the in Vitro Development of Glomus Intraradices and on the in Vivo Physiological and Molecular Responses of Mycorrhizal Lettuce Plants. Microb. Ecol. 2008, 55, 45–53. [Google Scholar] [CrossRef]
- Kandowangko, N.Y.; Suryatmana, G.I.A.T.; Nurlaeny, N.; Simanungkalit, R.D.M. Proline and Abscisic Acid Content in Droughted Corn Plant Inoculated with Azospirillum Sp. and Arbuscular Mycorrhizae Fungi. Hayati 2009, 16, 15–20. [Google Scholar] [CrossRef]
- Mohanta, T.K.; Bashir, T.; Hashem, A.; Abd Allah, E.F. Systems Biology Approach in Plant Abiotic Stresses. Plant Physiol. Biochem. 2017, 121, 58–73. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Neuman, D.S.; Reiber, J.M.; Green, C.D.; Saxton, A.M.; Augé, R.M. Mycorrhizal Influence on Hydraulic and Hormonal Factors Implicated in the Control of Stomatal Conductance during Drought. J. Exp. Bot. 1996, 47, 1541–1550. [Google Scholar] [CrossRef]
- Hashem, A.; Alqarawi, A.A.; Radhakrishnan, R.; Al-Arjani, A.B.F.; Aldehaish, H.A.; Egamberdieva, D.; Abd Allah, E.F. Arbuscular Mycorrhizal Fungi Regulate the Oxidative System, Hormones and Ionic Equilibrium to Trigger Salt Stress Tolerance in Cucumis sativus L. Saudi J. Biol. Sci. 2018, 25, 1102–1114. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Singh, S. Arbuscular Mycorrhiza Rhizophagus irregularis and Silicon Modulate Growth, Proline Biosynthesis and Yield in Cajanus cajan L. Millsp. (Pigeonpea) Genotypes Under Cadmium and Zinc Stress. J. Plant Growth Regul. 2018, 37, 46–63. [Google Scholar] [CrossRef]
- Zivcak, M.; Brestic, M.; Sytar, O. Osmotic Adjustment and Plant Adaptation to Drought Stress. In Drought Stress Tolerance in Plants: Volume 1: Physiology Biochemistry; Springer: Berlin/Heidelberg, Germany, 2016; pp. 105–143. [Google Scholar] [CrossRef]
- Chun, S.C.; Paramasivan, M.; Chandrasekaran, M. Proline Accumulation Influenced by Osmotic Stress in Arbuscular Mycorrhizal Symbiotic Plants. Front. Microbiol. 2018, 9, 403412. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Sánchez, M.; Aroca, R.; Muñoz, Y.; Polón, R.; Ruiz-Lozano, J.M. The Arbuscular Mycorrhizal Symbiosis Enhances the Photosynthetic Efficiency and the Antioxidative Response of Rice Plants Subjected to Drought Stress. J. Plant Physiol. 2010, 167, 862–869. [Google Scholar] [CrossRef]
- Feng, D.; Wang, R.; Sun, X.; Liu, L.; Liu, P.; Tang, J.; Zhang, C.; Liu, H. Heavy Metal Stress in Plants: Ways to Alleviate with Exogenous Substances. Sci. Total Environ. 2023, 897, 165397. [Google Scholar] [CrossRef]
- Gamalero, E.; Lingua, G.; Berta, G.; Glick, B.R. Beneficial Role of Plant Growth Promoting Bacteria and Arbuscular Mycorrhizal Fungi on Plant Responses to Heavy Metal Stress. Can. J. Microbiol. 2009, 55, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Comby, M.; Mustafa, G.; Magnin-Robert, M.; Randoux, B.; Fontaine, J.; Reignault, P.; Lounès-Hadj Sahraoui, A. Arbuscular Mycorrhizal Fungi as Potential Bioprotectants against Aerial Phytopathogens and Pests. In Arbuscular Mycorrhizas and Stress Tolerance of Plants; Springer: Berlin/Heidelberg, Germany, 2017; pp. 195–223. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.A.; Streitwolf-Engel, R.; Riedl, R.; Siegrist, S.; Neudecker, A.; Ineichen, K.; Boller, T.; Wiemken, A.; Sanders, I.R. The Mycorrhizal Contribution to Plant Productivity, Plant Nutrition and Soil Structure in Experimental Grassland. New Phytol. 2006, 172, 739–752. [Google Scholar] [CrossRef] [PubMed]
- Schouteden, N.; Waele, D.; De Panis, B.; Vos, C.M. Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved. Front. Microbiol. 2015, 6, 1280. [Google Scholar] [CrossRef]
- Pérez-De-Luque, A.; Tille, S.; Johnson, I.; Pascual-Pardo, D.; Ton, J.; Cameron, D.D. The Interactive Effects of Arbuscular Mycorrhiza and Plant Growth-Promoting Rhizobacteria Synergistically Enhance Host Plant Defences against Pathogens. Sci. Rep. 2017, 7, 16409. [Google Scholar] [CrossRef] [PubMed]
- Lioussanne, L. The Role of the Arbuscular Mycorrhiza-Associated Rhizobacteria in the Biocontrol of Soilborne Phytopathogens: A Review. SJAR 2010, 8, 51–61. [Google Scholar] [CrossRef]
- Nacoon, S.; Jogloy, S.; Riddech, N.; Mongkolthanaruk, W.; Kuyper, T.W.; Boonlue, S. Interaction between Phosphate Solubilizing Bacteria and Arbuscular Mycorrhizal Fungi on Growth Promotion and Tuber Inulin Content of Helianthus tuberosus L. Sci. Rep. 2020, 10, 4916. [Google Scholar] [CrossRef] [PubMed]
- Bücking, H.; Mensah, J.A.; Fellbaum, C.R. Common Mycorrhizal Networks and Their Effect on the Bargaining Power of the Fungal Partner in the Arbuscular Mycorrhizal Symbiosis. Commun. Integr. Biol. 2016, 9, e1107684. [Google Scholar] [CrossRef]
- Babikova, Z.; Gilbert, L.; Bruce, T.J.A.; Birkett, M.; Caulfield, J.C.; Woodcock, C.; Pickett, J.A.; Johnson, D. Underground Signals Carried through Common Mycelial Networks Warn Neighbouring Plants of Aphid Attack. Ecol. Lett. 2013, 16, 835–843. [Google Scholar] [CrossRef]
- Johnson, D.; Gilbert, L. Interplant Signalling through Hyphal Networks. New Phytol. 2015, 205, 1448–1453. [Google Scholar] [CrossRef]
- Song, Y.Y.; Zeng, R.S.; Xu, J.F.; Li, J.; Shen, X.; Yihdego, W.G. Interplant Communication of Tomato Plants through Underground Common Mycorrhizal Networks. PLoS ONE 2010, 5, e13324. [Google Scholar] [CrossRef]
- Song, Y.; Chen, D.; Lu, K.; Sun, Z.; Zeng, R. Enhanced Tomato Disease Resistance Primed by Arbuscular Mycorrhizal Fungus. Front. Plant Sci. 2015, 6, 786. [Google Scholar] [CrossRef] [PubMed]
- Babikova, Z.; Johnson, D.; Bruce, T.; Pickett, J.; Gilbert, L. Underground Allies: How and Why Do Mycelial Networks Help Plants Defend Themselves? What Are the Fitness, Regulatory, and Practical Implications of Defence-Related Signaling between Plants via Common Mycelial Networks? Bioessays 2014, 36, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Zamioudis, C.; Pieterse, C.M.J. Modulation of Host Immunity by Beneficial Microbes. Mol. Plant Microbe Interact. 2012, 25, 139–150. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, J.M. Plant Immunity Triggered by Microbial Molecular Signatures. Mol. Plant 2010, 3, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Cameron, D.D.; Neal, A.L.; van Wees, S.C.M.; Ton, J. Mycorrhiza-Induced Resistance: More than the Sum of Its Parts? Trends Plant Sci. 2013, 18, 539. [Google Scholar] [CrossRef] [PubMed]
- De Román, M.; Fernández, I.; Wyatt, T.; Sahrawy, M.; Heil, M.; Pozo, M.J. Elicitation of Foliar Resistance Mechanisms Transiently Impairs Root Association with Arbuscular Mycorrhizal Fungi. J. Ecol. 2011, 99, 36–45. [Google Scholar] [CrossRef]
- Ton, J.; Flors, V.; Mauch-Mani, B. The Multifaceted Role of ABA in Disease Resistance. Trends Plant Sci. 2009, 14, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Trouvelot, S.; Bonneau, L.; Redecker, D.; van Tuinen, D.; Adrian, M.; Wipf, D. Arbuscular Mycorrhiza Symbiosis in Viticulture: A Review. Agron. Sustain. Dev. 2015, 35, 1449–1467. [Google Scholar] [CrossRef]
- Jung, S.C.; Martinez-Medina, A.; Lopez-Raez, J.A.; Pozo, M.J. Mycorrhiza-Induced Resistance and Priming of Plant Defenses. J. Chem. Ecol. 2012, 38, 651–664. [Google Scholar] [CrossRef]
- Cordier, C.; Gianinazzi, S.; Gianinazzi-Pearson, V. Colonisation Patterns of Root Tissues by Phytophthora Nicotianae Var. Parasitica Related to Reduced Disease in Mycorrhizal Tomato. Plant Soil 1996, 185, 223–232. [Google Scholar] [CrossRef]
- Cordier, C.; Pozo, M.J.; Barea, J.M.; Gianinazzi, S.; Gianinazzi-Pearson, V. Cell Defense Responses Associated with Localized and Systemic Resistance to Phytophthora Parasitica Induced in Tomato by an Arbuscular Mycorrhizal Fungus. MPMI 1998, 11, 1017–1028. [Google Scholar] [CrossRef]
- Smith, S.E.; Smith, F.A. Roles of Arbuscular Mycorrhizas in Plant Nutrition and Growth: New Paradigms from Cellular to Ecosystem Scales. Annu. Rev. Plant Biol. 2011, 62, 227–250. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Maldonado-Mendoza, I.; Lopez-Meyer, M.; Cheung, F.; Town, C.D.; Harrison, M.J. Arbuscular Mycorrhizal Symbiosis Is Accompanied by Local and Systemic Alterations in Gene Expression and an Increase in Disease Resistance in the Shoots. TPJ 2007, 50, 529–544. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, C.M.J.; Leon-Reyes, A.; Van Der Ent, S.; Van Wees, S.C.M. Networking by Small-Molecule Hormones in Plant Immunity. Nat. Chem. Biol. 2009, 5, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, C.M.J.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.M.; Bakker, P.A.H.M. Induced Systemic Resistance by Beneficial Microbes. Annu. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef]
- Van der Ent, S.; Van Wees, S.C.M.; Pieterse, C.M.J. Jasmonate Signaling in Plant Interactions with Resistance-Inducing Beneficial Microbes. Phytochemistry 2009, 70, 1581–1588. [Google Scholar] [CrossRef] [PubMed]
- Pozo, M.J.; Azcón-Aguilar, C. Unraveling Mycorrhiza-Induced Resistance. Curr. Opin. Plant Biol. 2007, 10, 393–398. [Google Scholar] [CrossRef]
- Heidel, A.J.; Baldwin, I.T. Microarray Analysis of Salicylic Acid- and Jasmonic Acid-Signalling in Responses of Nicotiana Attenuata to Attack by Insects from Multiple Feeding Guilds. Plant Cell Environ. 2004, 27, 1362–1373. [Google Scholar] [CrossRef]
- Gallou, A.; Lucero Mosquera, H.P.; Cranenbrouck, S.; Suárez, J.P.; Declerck, S. Mycorrhiza Induced Resistance in Potato Plantlets Challenged by Phytophthora Infestans. Physiol. Mol. Plant Pathol. 2011, 76, 20–26. [Google Scholar] [CrossRef]
- Wang, H.; Hao, Z.; Zhang, X.; Xie, W.; Chen, B. Arbuscular Mycorrhizal Fungi Induced Plant Resistance against Fusarium Wilt in Jasmonate Biosynthesis Defective Mutant and Wild Type of Tomato. J. Fungus 2022, 8, 422. [Google Scholar] [CrossRef]
- Pozo, M.J.; Azcó n-Aguilar, C.; Dumas-Gaudot, E.; Barea, J.M. B-1,3-Glucanase Activities in Tomato Roots Inoculated with Arbuscular Mycorrhizal Fungi and/or Phytophthora Parasitica and Their Possible Involvement in Bioprotection. Plant Sci. 1999, 141, 149–157. [Google Scholar] [CrossRef]
- Jaiti, F.; Meddich, A.; El Hadrami, I. Effectiveness of Arbuscular Mycorrhizal Fungi in the Protection of Date Palm (Phoenix dactylifera L.) against Bayoud Disease. Physiol. Mol. Plant Pathol. 2007, 71, 166–173. [Google Scholar] [CrossRef]
- Fester, T.; Hause, G. Accumulation of Reactive Oxygen Species in Arbuscular Mycorrhizal Roots. Mycorrhiza 2005, 15, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Lee, Y.J.; Jeun, Y.C. Observations of Infection Structures on the Leaves of Cucumber Plants Pre-Treated with Arbuscular Mycorrhiza Glomus Intraradices after Challenge Inoculation with Colletotrichum Orbiculare. Plant Pathol. J. 2005, 21, 237–243. [Google Scholar] [CrossRef]
- Volpin, H.; Elkind, Y.; Okon, Y.; Kapulnik, Y. A Vesicular Arbuscular Mycorrhizal Fungus (Glomus intraradix) Induces a Defense Response in Alfalfa Roots. Plant Physiol. 1994, 104, 683–689. [Google Scholar] [CrossRef]
- Mustafa, G.; Randoux, B.; Tisserant, B.; Fontaine, J.; Magnin-Robert, M.; Lounès-Hadj Sahraoui, A.; Reignault, P. Phosphorus Supply, Arbuscular Mycorrhizal Fungal Species, and Plant Genotype Impact on the Protective Efficacy of Mycorrhizal Inoculation against Wheat Powdery Mildew. Mycorrhiza 2016, 26, 685–697. [Google Scholar] [CrossRef]
- Mora-Romero, G.A.; Cervantes-Gámez, R.G.; Galindo-Flores, H.; González-Ortíz, M.A.; Félix-Gastélum, R.; Maldonado-Mendoza, I.E.; Salinas Pérez, R.; León-Félix, J.; Martínez-Valenzuela, M.C.; López-Meyer, M. Mycorrhiza-Induced Protection against Pathogens Is Both Genotype-Specific and Graft-Transmissible. Symbiosis 2015, 66, 55–64. [Google Scholar] [CrossRef]
- Campo, S.; Martín-Cardoso, H.; Olivé, M.; Pla, E.; Catala-Forner, M.; Martínez-Eixarch, M.; San Segundo, B. Effect of Root Colonization by Arbuscular Mycorrhizal Fungi on Growth, Productivity and Blast Resistance in Rice. Rice 2020, 13, 42. [Google Scholar] [CrossRef]
- Wehner, J.; Antunes, P.M.; Powell, J.R.; Mazukatow, J.; Rillig, M.C. Plant Pathogen Protection by Arbuscular Mycorrhizas: A Role for Fungal Diversity? Pedobiologia 2010, 53, 197–201. [Google Scholar] [CrossRef]
- Kirk, A.P.; Entz, M.H.; Fox, S.L.; Tenuta, M. Mycorrhizal Colonization, P Uptake and Yield of Older and Modern Wheats under Organic Management. Can. J. Plant Sci. 2011, 91, 663–667. [Google Scholar] [CrossRef]
- Hetrick, B.A.D.; Wilson, G.W.T.; Cox, T.S. Mycorrhizal Dependence of Modern Wheat Varieties, Landraces, and Ancestors. Canad. J. Bot. 2011, 70, 2032–2040. [Google Scholar] [CrossRef]
- Sawers, R.J.H.; Gutjahr, C.; Paszkowski, U. Cereal Mycorrhiza: An Ancient Symbiosis in Modern Agriculture. Trends Plant Sci. 2008, 13, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Parvin, S.; Van Geel, M.; Ali, M.M.; Yeasmin, T.; Lievens, B.; Honnay, O. A Comparison of the Arbuscular Mycorrhizal Fungal Communities among Bangladeshi Modern High Yielding and Traditional Rice Varieties. Plant Soil 2021, 462, 109–124. [Google Scholar] [CrossRef]
- Blackburn, T.M.; Pyšek, P.; Bacher, S.; Carlton, J.T.; Duncan, R.P.; Jarošík, V.; Wilson, J.R.U.; Richardson, D.M. A Proposed Unified Framework for Biological Invasions. Trends Ecol. Evol. 2011, 26, 333–339. [Google Scholar] [CrossRef]
- Thomsen, C.; Loverock, L.; Kokkoris, V.; Holland, T.; Bowen, P.A.; Hart, M. Commercial Arbuscular Mycorrhizal Fungal Inoculant Failed to Establish in a Vineyard despite Priority Advantage. PeerJ 2021, 9, e11119. [Google Scholar] [CrossRef]
- Elliott, A.J.; Daniell, T.J.; Cameron, D.D.; Field, K.J. A Commercial Arbuscular Mycorrhizal Inoculum Increases Root Colonization across Wheat Cultivars but Does Not Increase Assimilation of Mycorrhiza-Acquired Nutrients. Plants People Planet 2021, 3, 588–599. [Google Scholar] [CrossRef]
- Jerbi, M.; Labidi, S.; Lounes-Hadj Sahraoui, A.; Dalpe, Y.; Ben Jeddi, F. Native Arbuscular Mycorrhizal Fungi Enhance Plant Growth and Productivity of Hulless Barley (Hordeum vulgare ssp. Nudum L.). J. New Sci. 2020, 78, 4560–4569. [Google Scholar]
- De Leon, D.G.; Vahter, T.; Zobel, M.; Koppel, M.; Edesi, L.; Davison, J.; Al-Quraishy, S.; Hozzein, W.N.; Moora, M.; Oja, J.; et al. Different Wheat Cultivars Exhibit Variable Responses to Inoculation with Arbuscular Mycorrhizal Fungi from Organic and Conventional Farms. PLoS ONE 2020, 15, e0233878. [Google Scholar] [CrossRef]
- Séry, D.J.M.; Kouadjo, Z.G.C.; Voko, B.R.R.; Zézé, A. Selecting Native Arbuscular Mycorrhizal Fungi to Promote Cassava Growth and Increase Yield under Field Conditions. Front. Microbiol. 2016, 7, 2063. [Google Scholar] [CrossRef]
- Frew, A. Contrasting Effects of Commercial and Native Arbuscular Mycorrhizal Fungal Inoculants on Plant Biomass Allocation, Nutrients, and Phenolics. Plants People Planet 2021, 3, 536–540. [Google Scholar] [CrossRef]
- Ijdo, M.; Schtickzelle, N.; Cranenbrouck, S.; Declerck, S. Do Arbuscular Mycorrhizal Fungi with Contrasting Life-History Strategies Differ in Their Responses to Repeated Defoliation? FEMS Microbiol. Ecol. 2010, 72, 114–122. [Google Scholar] [CrossRef]
- Begon, M.; Harper, J.L.; Townsend, C.R. Ecology: Individuals, Populations, and Communities; Blackwell Scientific Publications Ltd.: Oxford, UK, 1996; p. 1068. [Google Scholar]
- Hart, M.M.; Reader, R.J.; Klironomos, J.N. Life-History Strategies of Arbuscular Mycorrhizal Fungi in Relation to Their Successional Dynamics. Mycologia 2001, 93, 1186–1194. [Google Scholar] [CrossRef]
- Klironomos, J.N.; Hart, M.M. Colonization of Roots by Arbuscular Mycorrhizal Fungi Using Different Sources of Inoculum. Mycorrhiza 2002, 12, 181–184. [Google Scholar] [CrossRef] [PubMed]
- de Souza, F.A.; Dalpé, Y.; Declerck, S.; de la Providencia, I.E.; Séjalon-Delmas, N. Life History Strategies in Gigasporaceae: Insight from Monoxenic Culture. In In Vitro Culture of Mycorrhizas; Springer: Berlin/Heidelberg, Germany, 2005; pp. 73–91. [Google Scholar] [CrossRef]
- Kinnunen, M.; Dechesne, A.; Proctor, C.; Hammes, F.; Johnson, D.; Quintela-Baluja, M.; Graham, D.; Daffonchio, D.; Fodelianakis, S.; Hahn, N.; et al. A Conceptual Framework for Invasion in Microbial Communities. ISME J. 2016, 10, 2773–2779. [Google Scholar] [CrossRef]
- Declerck, S.; D’or, D.; Cranenbrouck, S.; Boulengé, L.E. Modelling the Sporulation Dynamics of Arbuscular Mycorrhizal Fungi in Monoxenic Culture. Mycorrhiza 2001, 11, 225–230. [Google Scholar] [CrossRef]
- Hart, M.M.; Reader, R.J. Taxonomic Basis for Variation in the Colonization Strategy of Arbuscular Mycorrhizal Fungi. New Phytol. 2002, 153, 335–344. [Google Scholar] [CrossRef]
- Maherali, H.; Klironomos, J.N. Influence of Phylogeny on Fungal Community Assembly and Ecosystem Functioning. Science 2007, 316, 1746–1748. [Google Scholar] [CrossRef] [PubMed]
- van der Heyde, M.; Ohsowski, B.; Abbott, L.K.; Hart, M. Arbuscular Mycorrhizal Fungus Responses to Disturbance Are Context-Dependent. Mycorrhiza 2017, 27, 431–440. [Google Scholar] [CrossRef]
- Basiru, S.; Hijri, M. Does Commercial Inoculation Promote Arbuscular Mycorrhizal Fungi Invasion? Microorganisms 2022, 10, 404. [Google Scholar] [CrossRef]
- Middleton, E.L.; Richardson, S.; Koziol, L.; Palmer, C.E.; Yermakov, Z.; Henning, J.A.; Schultz, P.A.; Bever, J.D.; Middleton, E.L.; Richardson, S.; et al. Locally Adapted Arbuscular Mycorrhizal Fungi Improve Vigor and Resistance to Herbivory of Native Prairie Plant Species. Ecosphere 2015, 6, 1–16. [Google Scholar] [CrossRef]
- Lutz, S.; Bodenhausen, N.; Hess, J.; Valzano-Held, A.; Waelchli, J.; Deslandes-Hérold, G.; Schlaeppi, K.; van der Heijden, M.G.A. Soil Microbiome Indicators Can Predict Crop Growth Response to Large-Scale Inoculation with Arbuscular Mycorrhizal Fungi. Nat. Microbiol. 2023, 8, 2277–2289. [Google Scholar] [CrossRef] [PubMed]
- Campagnac, E.; Fontaine, J.; Sahraoui, A.L.H.; Laruelle, F.; Durand, R.; Grandmougin-Ferjani, A. Differential Effects of Fenpropimorph and Fenhexamid, Two Sterol Biosynthesis Inhibitor Fungicides, on Arbuscular Mycorrhizal Development and Sterol Metabolism in Carrot Roots. Phytochemistry 2008, 69, 2912–2919. [Google Scholar] [CrossRef] [PubMed]
- Calonne, M.; Sahraoui, A.L.H.; Campagnac, E.; Debiane, D.; Laruelle, F.; Grandmougin-Ferjani, A.; Fontaine, J. Propiconazole Inhibits the Sterol 14α-Demethylase in Glomus Irregulare like in Phytopathogenic Fungi. Chemosphere 2012, 87, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Olsson, P.A.; Bååth, E.; Jakobsen, I. Phosphorus Effects on the Mycelium and Storage Structures of an Arbuscular Mycorrhizal Fungus as Studied in the Soil and Roots by Analysis of Fatty Acid Signatures. Appl. Environ. Microbiol. 1997, 63, 3531. [Google Scholar] [CrossRef] [PubMed]
- Le Tacon, F.; Le Tacon, T.; Mauron, V.; Rousseau, Y.; Backer, M.; Bouchard, D. Fertilisation Raisonnée et Mycorhize. In Proceedings of the 4ème Rencontre de la Fertilisation Raisonnée, Blois, France, 15–16 November 1999; pp. 211–222. [Google Scholar]
- Lin, X.; Feng, Y.; Zhang, H.; Chen, R.; Wang, J.; Zhang, J.; Chu, H. Long-Term Balanced Fertilization Decreases Arbuscular Mycorrhizal Fungal Diversity in an Arable Soil in North China Revealed by 454 Pyrosequencing. Environ. Sci. Technol. 2012, 46, 5764–5771. [Google Scholar] [CrossRef] [PubMed]
- Verbruggen, E.; van der Heijden, M.G.A.; Rillig, M.C.; Kiers, E.T. Mycorrhizal Fungal Establishment in Agricultural Soils: Factors Determining Inoculation Success. New Phytol. 2013, 197, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- Fritz, M.; Jakobsen, I.; Lyngkjær, M.F.; Thordal-Christensen, H.; Pons-Kühnemann, J. Arbuscular Mycorrhiza Reduces Susceptibility of Tomato to Alternaria Solani. Mycorrhiza 2006, 16, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Douds, D.D.; Galvez, L.; Janke, R.R.; Wagoner, P. Effect of Tillage and Farming System upon Populations and Distribution of Vesicular-Arbuscular Mycorrhizal Fungi. Agric. Ecosyst. Environ. 1995, 52, 111–118. [Google Scholar] [CrossRef]
- Jansa, J.; Mozafar, A.; Anken, T.; Ruh, R.; Sanders, I.R.; Frossard, E. Diversity and Structure of AMF Communities as Affected by Tillage in a Temperate Soil. Mycorrhiza 2002, 12, 225–234. [Google Scholar] [CrossRef]
- Jansa, J.; Mozafar, A.; Kuhn, G.; Anken, T.; Ruh, R.; Sanders, I.R.; Frossard, E. Soil Tillage Affects the Community of Mycorrhizal Fungi in Maize Roots. Ecol. Appl. 2003, 13, 1164–1176. [Google Scholar] [CrossRef]
- Oehl, F.; Sieverding, E.; Ineichen, K.; Mäder, P.; Boller, T.; Wiemken, A. Impact of Land Use Intensity on the Species Diversity of Arbuscular Mycorrhizal Fungi in Agroecosystems of Central Europe. Appl. Environ. Microbiol. 2003, 69, 2816–2824. [Google Scholar] [CrossRef]
- Torres-Arias, Y.; Fors, R.O.; Nobre, C.; Gómez, E.F.; Berbara, R.L.L. Production of Native Arbuscular Mycorrhizal Fungi Inoculum under Different Environmental Conditions. Braz. J. Microbiol. 2017, 48, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Mycorrhiza-based Biofertilizer Market Growth Trends and Forecast (2020–2025) ReportLinker Organic Fertilizer Industry 2024. Available online: https://www.reportlinker.com/market-report/Fertilizer/87464/Organic-Fertilizer (accessed on 22 May 2024).
- Basiru, S.; Mwanza, H.P.; Hijri, M. Analysis of Arbuscular Mycorrhizal Fungal Inoculant Benchmarks. Microorganisms 2020, 9, 81. [Google Scholar] [CrossRef]
- INRAE. Fiche Technique (2): Multiplier Des Champignons Mycorhiziens Sur Son Exploitation; INRAE: Petit-Bourg, France, 2017. [Google Scholar]
- Tawaraya, K.; Hirose, R.; Wagatsuma, T. Inoculation of Arbuscular Mycorrhizal Fungi Can Substantially Reduce Phosphate Fertilizer Application to Allium Fistulosum L. and Achieve Marketable Yield under Field Condition. Biol. Fertil. Soils 2012, 48, 839–843. [Google Scholar] [CrossRef]
- Maiti, D.; Singh, R.K.; Variar, M. Rice-Based Crop Rotation for Enhancing Native Arbuscular Mycorrhizal (AM) Activity to Improve Phosphorus Nutrition of Upland Rice (Oryza sativa L.). Biol. Fertil. Soils 2012, 48, 67–73. [Google Scholar] [CrossRef]
- Jones, F.R. A Mycorrhizal Fungus in the Roots of Legumes and Some Other Plants. J. Agric. Res. 1924, 29, 459–470. [Google Scholar]
- Rayner, M.C. Mycorrhiza. New Phytol. 1926, 25, 338–373. [Google Scholar] [CrossRef]
- Harley, J.L. The History of Research on Mycorrhiza and the Part Played by Professor Beniamino Peyronel. In Estratto da Funghi, Piante e Suolo, Quarat’anni di Ricerche del centro di Studio sulla Micologia del Terreno nel Centenario della Nascita del suo Fondatore Beniamino Peyronel; Centro di Studio sulla Micologia del Terreno, CNR: Torino, Italy, 1991; pp. 31–73. [Google Scholar]
- Mosse, B.; Hepper, C. Vesicular-Arbuscular Mycorrhizal Infections in Root Organ Cultures. Physiol. Plant Pathol. 1975, 5, 215–223. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, S.; Aggarwal, A.; Sharma, V.; Singh, M.; Kaushik, S. Mass Multiplication of Arbuscular Mycorrhizal Fungi. In Mycorrhizal Fungi; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Kučová, L.; Záhora, J.; Pokluda, R. Effect of Mycorrhizal Inoculation of Leek Allium Porrum L. on Mineral Nitrogen Leaching. Hortic. Sci. 2016, 43, 195–202. [Google Scholar] [CrossRef]
- Selvakumar, G.; Kim, K.; Walitang, D.; Chanratana, M.; Kang, Y.; Chung, B.; Sa, T. Trap Culture Technique for Propagation of Arbuscular Mycorrhizal Fungi Using Different Host Plants. KJSSF 2016, 49, 608–613. [Google Scholar] [CrossRef]
- Sayeed Akhtar, M.; Nor, S.; Abdullah, A. Mass Production Techniques of Arbuscular Mycorrhizal Fungi: Major Advantages and Disadvantages: A Review. Biosci. Biotechnol. Res. Asia 2014, 11, 1199–1204. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, R.; Adholeya, A. Biotechnological Advancements in Industrial Production of Arbuscular Mycorrhizal Fungi: Achievements, Challenges, and Future Prospects. In Developments in Fungal Biology and Applied Mycology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 413–431. [Google Scholar] [CrossRef]
- Morrison, S.; Walker, B.K. Production of Mycorrhizal Inoculum by Static Culture Hydroponics. EP0482130A1, 16 July 1990. [Google Scholar]
- Lee, Y.J.; George, E. Development of a Nutrient Film Technique Culture System for Arbuscular Mycorrhizal Plants. HortScience 2005, 40, 378–380. [Google Scholar] [CrossRef]
- Mosse, B.; Thompson, J.P. Production of Mycorrhizal Fungi. J. Gen. Microbiol. 1980, 27, 235. [Google Scholar]
- Sylvia, D.M.; Hubbell, D.H. Growth and Sporulation of Vesicular-Arbuscular Mycorrhizal Fungi in Aeroponic and Membrane Systems. Symbiosis 1986, 1, 259. [Google Scholar]
- Jarstfer, A.G.; Sylvia, D.M. Aeroponic Culture of VAM Fungi. In Mycorrhiza; Springer: Berlin/Heidelberg, Germany, 1999; pp. 427–441. [Google Scholar] [CrossRef]
- Bécard, G.; Fortin, J.A. Early Events of Vesicular-Arbuscular Mycorrhiza Formation on Ri T-DNA Transformed Roots. New Phytol. 1988, 108, 211–218. [Google Scholar] [CrossRef]
- Wang, W.-K. Method of Facilitating Mass Production and Sporulation of Arbuscular Mycorrhizal Fungi Aseptic in Vitro. U.S. Patent 6759232B2, 6 July 2004. [Google Scholar]
- Jolicoeur, M.; Williams, R.D.; Chavarie, C.; Fortin, J.A.; Archambault, J. Production of Glomus Intraradices Propagules, an Arbuscular Mycorrhizal Fungus, in an Airlift Bioreactor. Biotechnol. Bioeng. 1999, 63, 224–232. [Google Scholar] [CrossRef]
- Fortin, J.A.; Declerck, S.; Strullu, D.-G. In Vitro Culture of Mycorrhizas. In In Vitro Culture of Mycorrhizas; Springer: Berlin/Heidelberg, Germany, 2005; pp. 3–14. [Google Scholar] [CrossRef]
- Paré, L.; Banchini, C.; Hamel, C.; Bernier, L.; Stefani, F. A Simple and Low-Cost Technique to Initiate Single-Spore Cultures of Arbuscular Mycorrhizal Fungi Using a Superabsorbent Polymer. Symbiosis 2022, 88, 61–73. [Google Scholar] [CrossRef]
- Voets, L.; De Boulois, H.D.; Renard, L.; Strullu, D.G.; Declerck, S. Development of an Autotrophic Culture System for the in Vitro Mycorrhization of Potato Plantlets. FEMS Microbiol. Lett. 2005, 248, 111–118. [Google Scholar] [CrossRef]
- Gargouri, M.; Bates, P.D.; Declerck, S. Combinatorial Reprogramming of Lipid Metabolism in Plants: A Way towards Mass-production of Bio-fortified Arbuscular Mycorrhizal Fungi Inoculants. Microb. Biotechnol. 2021, 14, 31. [Google Scholar] [CrossRef]
- Hooker, J.E.; Jaizme-Vega, M.; Atkinson, D. Biocontrol of Plant Pathogens Using Arbuscular Mycorrhizal Fungi. In Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems; Birkhäuser Verlag: Basel, Switzerland, 1994; pp. 191–200. [Google Scholar] [CrossRef]
- Oviatt, P.; Rillig, M.C. Mycorrhizal Technologies for an Agriculture of the Middle. Plants People Planet 2021, 3, 454–461. [Google Scholar] [CrossRef]
- Bender, S.F.; Wagg, C.; van der Heijden, M.G.A. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends Ecol. Evol. 2016, 31, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Lekberg, Y.; Helgason, T. In Situ Mycorrhizal Function—Knowledge Gaps and Future Directions. New Phytol. 2018, 220, 957–962. [Google Scholar] [CrossRef] [PubMed]
Class | Order | Family | Genera | Reference |
---|---|---|---|---|
Archaeosporomycetes | Archaeosporales | Ambisporaceae Archaeosporaceae Geosiphonaceae Polonosporaceae | Ambispora Archaeospora Geosiphon Polonospora | Confirmed taxa (2013) [39] Formerly in Intraspora (2013) [39] Confirmed taxa (2013) [39] Recent taxa (2021) [41] |
Glomeromycetes | Diversisporales | Acaulosporaceae | Acaulospora | Merged with Kuklospora (2013) [39] |
Diversisporaceae | Corymbiglomus Desertispora Diversispora Otospora Redeckera Sieverdingia Tricispora | Reclassified taxa (2012) [42] Recent taxa (2018) [43] Confirmed taxa (2013) [39] Uncertain taxa (2013) [39] Confirmed taxa (2013) [39] Reclassified taxa (2019) [44] Uncertain taxa (2013) [39] | ||
Gigasporaceae | Bulbospora Cetraspora Dentiscutata Fuscutata Gigaspora Intraornatospora Paradentiscutata Racocetra Scutellospora | Recent taxa (2014) [45] Uncertain taxonomy (2013) [39], formerly in Racocetraceae (2011) [40] Formerly in Quatunica (2013) [39] Formerly in Dentiscutata (2013) [39] Confirmed taxa (2013) [39] Uncertain taxonomy (2013) [39], formerly in Intraometosporaceae (2011) [40] Uncertain taxonomy (2013) [39], formerly in Intraometosporaceae (2011) [40] Confirmed taxa (2013) [39] Formerly in Orbispora (2013) [39] | ||
Pacisporaceae | Pacispora | Confirmed taxa (2013) [39] | ||
Sacculosporaceae | Sacculospora | Uncertain taxonomy (2013) [39] | ||
Entrophosporales 1 | Entrophosporaceae 2 | Entrophospora 3 | 1 Recent taxa [38], 2 uncertain taxonomy (2013) [39], 3 formerly in Claroideoglomus | |
Glomerales | Glomeraceae | Complexispora Dominikia Epigeocarpum Funneliformis Funneliglomus Glomus Halonatospora Kamienskia Microdominikia Microkamienskia Nanoglomus Oehlia Orientoglomus Rhizoglomus Rhizophagus Sclerocarpum Sclerocystis Septoglomus Silvaspora | Recent taxa (2023) [46] Recent taxa (2015) [47] Recent taxa (2021) [41] Confirmed taxa in 2013 [39] Recent taxa (2019) [48] Formerly in Simiglomus (2013) [39] Recent taxa (2018) [49] Recent taxa (2015) [47] Recent taxa (2018) [50] Recent taxa (2019) [51] Recent taxa (2019) [52] Recent taxa (2019) [51] Recent taxa (2019) [52] Recent taxa (2014) [53] Reclassified taxa (2012) [42] Recent taxa (2019) [54] Reclassified taxa (2012) [42] Formerly in Viscospora (2013) [39] Recent taxa (2021) [41] | |
Paraglomeromycetes | Paraglomerales | Paraglomerales | Innospora | Recent taxa (2017) [55] |
Paraglomus | Confirmed taxa (2013) [39] | |||
Pervetustaceae | Pervetustus | Recent taxa (2017) [55] |
Countries | Examples of AMF-Inoculum Producers |
---|---|
Austria | Biofa (Graz); GEFA Produkte® Fabritz GmbH (mother company in Krefeld, Germany) |
Belgium | Glomeromycota IN vitro COllection (GINCO) (Louvain-la-Neuve); Plantura (Bocholt) |
Canada | Premier Tech Ltd. (Rivière-du-Loup, QC); Canadian Collection of Arbuscular Mycorrhizal Fungi (CCAMF) (Ottawa, ON); Glomeromycota IN vitro COllection (GINCO) (Ottawa, ON); Lallemand Inc. (Montreal, QC); Mikro-Tek Inc. (Timmins, ON) |
Chile | Biosim (Chiu Chiu); Idemitsu Kosan Co. (mother company in Tokyo, Japan); Ecological Resources; Inc./Oikos (mother company in Elizabeth, PA, United States of America) |
China | Guangdong Microbial Culture Collection Center (GDMCC) (Guangzhou); Weifang Yuedong International Trade Co., Ltd. (Weifang); Weifang Yuexiang Chemical Co., Ltd. (Weifang); Zhejiang Shijia Technology Co., Ltd. (Zhejiang Sheng) |
Czech Republic | Symbiom SRO (Lanškroun) |
Estonia | Mikskaar (Tallinn) |
France | Agronutrition (Carbonne); IF tech (Les Ponts-de-Cé); InoculumPlus (Bretenière); International Bank for the Glomeromycota (IBG) (Dijon); MycAgro (Bretenière); Terra fertilis (Caen); Mycoterroir (Montpellier); Semences de France (La Chapelle-d’Armentières) |
Germany | Agromyc-Merck GmbH (Hamburg); Biofa GmbH (Münsingen); BioMyc™ (Brandenburg an der Havel); Inoq GmbH (Schnega); Mykolife (Gersthofen); Symplanta GmbH & Co. KG (Darmstadt) |
India | AgriLife (Hyderabad); Ambika Biotech (Mandsaur); Anand Agro Care (Maharashtra); Biotrack Technology Pvt. Ltd. (Chennai); Centre for Mycorrhizal Culture Collection (CMCC) (New Delhi); Cosme Biotech (Panaji); Dr. Rajan Laboratories (Tambaram); GreenMax AgroTech (Adikaratti); Kiran Chemicals (Lucknow); Katyayani (Katyayani); Majestic Agronomics Pvt. Ltd. (Janakpuri); Neesa Agritech Private Limited (Changodar); Neologie Bio Innovations|Private Limited (Rampur); PHMS Technicare Private Limited (Gujarat); Privi Life Sciences (Mumbai); Sikko Industries (Vejalpur); Sundaram Overseas Operation (Mumbai); T. Stanes & Company Limited (Coimbatore); TARI Biotech (Thanjavur); TERI (New Delhi); ManiDharma Biotech Pvt. Ltd. (Chennai) |
Israel | Groundwork AG (Mazor) |
Italy | Agritech Store sas (Mori); Agribios (Villafranca Padovana); Hello nature (Biandrate); Sacom (Turin); CCS Aosta S.r.l (Villair-Amérique) |
Japan | Central Glass Co., Chemicals Section (Tokyo); Idemitsu Kosan Co. Ltd. (Tokyo); Kyowa Hakko Bio Co. Ltd. (Nakano-ku Tokyo) |
Kenya | Dudutech (Naivasha) |
Malaysia | Agri Hi-Tech Sdn (Nilai); N-Viron Sdn Bhd (Klang) |
Mexico | Instituto Nacional de Investigación Forestales Agrícolas y Pecuario (INIFAP) (Ciudad de Mexico); Biofabrica Siglo XXI (Mor); Biokrone (Celaya); Biomic (Ciudad de Mexico); OBA (Autlán de Navarro); Agrovergel (El vergel) |
Netherlands | BioTabs Organic Fertilizers (Den Haag); Global Horticare (Nijmegen); Koppert (Berkel en Rodenrijs) |
Spain | Agrotechnologias Naturales (Atens) (Tarragona); Biohorti SLU (Teia); Mycosym Trition S (Riogordo); Mycovitro (Granada); Odd Distributions (Pedreguer) |
Poland | Mykoflor Wáodzimierz SzaáaĔski (Końskowola) |
Portugal | Asfertglobal (Várzea) |
United Kingdom | Biological Crop Protection Ltd. (Chichester); Crop Intellect Ltd. (Lincoln); PlantWorks Ltd. (Sittingbourne); Zander Corporation (London) |
United States of America | AgBio, Inc. (Del Rio, CA); AgroScience Solutions LLC (Bakersfield, CA); Albright Seed Co./S & S Seeds (Carpinteria, CA); Becker Underwood (BASF) (Ames, IA); Bio-Organics (New Hope, PA); BioScientific, Inc. (Avondale, AZ); EcoLife Corporation (Everett, WA); First Fruits, LLC (Prescott, WA); Fungi Perfecti (Olympia, WA); Gro-Power (Chino, CA); Helana Agri-Entreprises LLC (Collierville, TN); Woodridge International (New Haven, CT); Horticultural Alliance, Inc (Sarasota, FL); International Collection of Vesicular Arbuscular Mycorrhizal Fungi (INVAM) (Lawrence, KS); JH Biotech (Ventura, CA); MYCSA Ag, Inc. EUA (Brownsville, TX); Mycorrhizal Applications (Grants Pass, OR); Pathway BioLogic LLC (Plant City, FL); Poulenger USA, Inc. (Lakeland, FL); Purely Organic Products LLC (Portsmouth, NH); Reforestation Technologies International (Gilroy, CA); ROOTS, Inc. (Vancouver, WA); Shemin Garden LLC (Clovis, CA); Sustane Natural Fertilizer (Cannon Falls, MN); Tainio Biologicals Inc. (Spokane, WA); The Tree Doctor (San Diego, CA); Tree Pro (Phoenix, AZ); Valent BioSciences (Libertyville, IL); Ecological Resources, Inc./Oikos (Elizabeth, PA) |
Switzerland | Swiss culture collection of Arbuscular Mycorrhizal Fungi (Bern); Vegalab S.A. (Zug) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delaeter, M.; Magnin-Robert, M.; Randoux, B.; Lounès-Hadj Sahraoui, A. Arbuscular Mycorrhizal Fungi as Biostimulant and Biocontrol Agents: A Review. Microorganisms 2024, 12, 1281. https://doi.org/10.3390/microorganisms12071281
Delaeter M, Magnin-Robert M, Randoux B, Lounès-Hadj Sahraoui A. Arbuscular Mycorrhizal Fungi as Biostimulant and Biocontrol Agents: A Review. Microorganisms. 2024; 12(7):1281. https://doi.org/10.3390/microorganisms12071281
Chicago/Turabian StyleDelaeter, Mathieu, Maryline Magnin-Robert, Béatrice Randoux, and Anissa Lounès-Hadj Sahraoui. 2024. "Arbuscular Mycorrhizal Fungi as Biostimulant and Biocontrol Agents: A Review" Microorganisms 12, no. 7: 1281. https://doi.org/10.3390/microorganisms12071281
APA StyleDelaeter, M., Magnin-Robert, M., Randoux, B., & Lounès-Hadj Sahraoui, A. (2024). Arbuscular Mycorrhizal Fungi as Biostimulant and Biocontrol Agents: A Review. Microorganisms, 12(7), 1281. https://doi.org/10.3390/microorganisms12071281