First Report on the Occurrence and Antibiotic Resistance Profile of Colistin-Resistant Escherichia coli in Raw Beef and Cow Feces in Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of COE
2.2. Antibiotic Susceptibility Test
2.3. Detection of mcr Genes and ESBL Encoding Genes
3. Results
3.1. Prevalence of COE in Raw Beef and Cow Feces
3.2. Antimicrobial Susceptibility Profile of COE Isolates
3.3. Detection of mcr Genes and ESBL Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, R.Q.; Ying, G.G.; Su, H.C.; Zhou, L.J.; Liu, Y.S. Antibiotic Resistance and Genetic Diversity of Escherichia Coli Isolates from Traditional and Integrated Aquaculture in South China. J. Environ. Sci. Health B 2013, 48, 999–1013. [Google Scholar] [CrossRef] [PubMed]
- Skočková, A.; Koláčková, I.; Bogdanovičová, K.; Karpíšková, R. Characteristic and Antimicrobial Resistance in Escherichia Coli from Retail Meats Purchased in the Czech Republic. Food Control 2015, 47, 401–406. [Google Scholar] [CrossRef]
- Khan, F.M.; Gupta, R. Escherichia Coli (E. Coli) as an Indicator of Fecal Contamination in Groundwater: A Review. In Sustainable Development of Water and Environment: Proceedings of the ICSDWE2020, Incheon, Republic of Korea, 13–14 January 2020; Jeon, H.-Y., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 225–235. [Google Scholar]
- Burow, E.; Rostalski, A.; Harlizius, J.; Gangl, A.; Simoneit, C.; Grobbel, M.; Kollas, C.; Tenhagen, B.A.; Käsbohrer, A. Antibiotic Resistance in Escherichia Coli from Pigs from Birth to Slaughter and Its Association with Antibiotic Treatment. Prev. Vet. Med. 2019, 165, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Puangseree, J.; Prathan, R.; Srisanga, S.; Angkittitrakul, S.; Chuanchuen, R. Plasmid Profile Analysis of Escherichia Coli and Salmonella Enterica Isolated from Pigs, Pork and Humans. Epidemiol. Infect. 2022, 150, e110. [Google Scholar] [CrossRef]
- Ma, F.; Xu, S.; Tang, Z.; Li, Z.; Zhang, L. Use of Antimicrobials in Food Animals and Impact of Transmission of Antimicrobial Resistance on Humans. Biosaf. Health 2021, 3, 32–38. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the Public Health Risks of Bacterial Strains Producing Extended-Spectrum β-Lactamases and/or AmpC β-Lactamases in Food and Food-Producing Animals. EFSA J. 2011, 9. [Google Scholar] [CrossRef]
- EFSA. The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2020/2021. EFSA J. 2023, 21, e07867. [Google Scholar] [CrossRef]
- EFSA. The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2018/2019. EFSA J. 2021, 19, e06490. [Google Scholar] [CrossRef]
- WHO. Antimicrobial Resistance; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Lencina, F.A.; Bertona, M.; Stegmayer, M.A.; Olivero, C.R.; Frizzo, L.S.; Zimmermann, J.A.; Signorini, M.L.; Soto, L.P.; Zbrun, M.V. Prevalence of Colistin-Resistant Escherichia Coli in Foods and Food-Producing Animals through the Food Chain: A Worldwide Systematic Review and Meta-Analysis. Heliyon 2024, 10, e26579. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; Review on Antimicrobial Resistance, Chaired by Jim O’Neill, December 2014. Rev. Antimicrob. Resist. 2016. Available online: https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis (accessed on 25 January 2024).
- Van Cuong, N.; Nhung, N.T.; Nghia, N.H.; Mai Hoa, N.T.; Trung, N.V.; Thwaites, G.; Carrique-Mas, J. Antimicrobial Consumption in Medicated Feeds in Vietnamese Pig and Poultry Production. Ecohealth 2016, 13, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Of, R.; Cid, A.-I.A. Colistin: The Revival of Polymyxins for the Management of Multidrug-Resistant Gram-Negative Bacterial Infections. Clin. Infect. Dis. 2005, 40, 1333–1341. [Google Scholar]
- de Alcântara Rodrigues, I.; Ferrari, R.G.; Panzenhagen, P.H.N.; Mano, S.B.; Conte-Junior, C.A. Antimicrobial Resistance Genes in Bacteria from Animal-Based Foods. In Advances in Applied Microbiology; Academic Press: Cambridge, MA, USA, 2020; Volume 112. [Google Scholar]
- Catry, B.; Cavaleri, M.; Baptiste, K.; Grave, K.; Grein, K.; Holm, A.; Jukes, H.; Liebana, E.; Navas, A.L.; Mackay, D.; et al. Use of Colistin-Containing Products within the European Union and European Economic Area (EU/EEA): Development of Resistance in Animals and Possible Impact on Human and Animal Health. Int. J. Antimicrob. Agents 2015, 46, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Vidovic, N.; Vidovic, S. Antimicrobial Resistance and Food Animals: Influence of Livestock Environment on the Emergence and Dissemination of Antimicrobial Resistance. Antibiotics 2020, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Di, K.N.; Pham, D.T.; Tee, T.S.; Binh, Q.A.; Nguyen, T.C. Antibiotic Usage and Resistance in Animal Production in Vietnam: A Review of Existing Literature. Trop. Anim. Health Prod. 2021, 53, 340. [Google Scholar] [CrossRef] [PubMed]
- Chopjitt, P.; Boueroy, P.; Morita, M.; Iida, T.; Akeda, Y.; Hamada, S.; Kerdsin, A. Genetic Characterization of Multidrug-Resistant Escherichia Coli Harboring Colistin-Resistant Gene Isolated from Food Animals in Food Supply Chain. Front. Cell Infect. Microbiol. 2024, 14, 1289134. [Google Scholar] [CrossRef] [PubMed]
- Johura, F.T.; Tasnim, J.; Barman, I.; Biswas, S.R.; Jubyda, F.T.; Sultana, M.; George, C.M.; Camilli, A.; Seed, K.D.; Ahmed, N.; et al. Colistin-Resistant Escherichia Coli Carrying Mcr-1 in Food, Water, Hand Rinse, and Healthy Human Gut in Bangladesh. Gut Pathog. 2020, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Sabala, R.F.; Usui, M.; Tamura, Y.; Abd-Elghany, S.M.; Sallam, K.I.; Elgazzar, M.M. Prevalence of Colistin-Resistant Escherichia Coli Harbouring Mcr-1 in Raw Beef and Ready-to-Eat Beef Products in Egypt. Food Control 2021, 119, 107436. [Google Scholar] [CrossRef]
- Bastidas-Caldes, C.; de Waard, J.H.; Salgado, M.S.; Villacís, M.J.; Coral-Almeida, M.; Yamamoto, Y.; Calvopiña, M. Worldwide Prevalence of Mcr-Mediated Colistin-Resistance Escherichia Coli in Isolates of Clinical Samples, Healthy Humans, and Livestock—A Systematic Review and Meta-Analysis. Pathogens 2022, 11, 659. [Google Scholar] [CrossRef]
- Nobili, G.; La Bella, G.; Basanisi, M.G.; Damato, A.M.; Coppola, R.; Migliorelli, R.; Rondinone, V.; Leekitcharoenphon, P.; Bortolaia, V.; La Salandra, G. Occurrence and Characterisation of Colistin-Resistant Escherichia Coli in Raw Meat in Southern Italy in 2018–2020. Microorganisms 2022, 10, 1805. [Google Scholar] [CrossRef]
- Gelalcha, B.D.; Kerro Dego, O. Extended-Spectrum Beta-Lactamases Producing Enterobacteriaceae in the USA Dairy Cattle Farms and Implications for Public Health. Antibiotics 2022, 11, 1313. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Dai, S.; Liu, D.; Wang, Y.; Qiao, W.; Yang, M.; Zhang, Y. Occurrence and Transfer Characteristics of BlaCTX-M Genes among Escherichia Coli in Anaerobic Digestion Systems Treating Swine Waste. Sci. Total Environ. 2022, 834, 155321. [Google Scholar] [CrossRef] [PubMed]
- Rawat, D.; Nair, D. Extended-Spectrum ß-Lactamases in Gram Negative Bacteria. J. Glob. Infect. Dis. 2010, 2, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Husna, A.; Rahman, M.M.; Badruzzaman, A.T.M.; Sikder, M.H.; Islam, M.R.; Rahman, M.T.; Alam, J.; Ashour, H.M. Extended-Spectrum β-Lactamases (ESBL): Challenges and Opportunities. Biomedicines 2023, 11, 2937. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Li, Y.; Yang, Y.; Shen, Z.; Cai, C.; Wang, Y.; Walsh, T.R.; Shen, J.; Wu, Y.; Wang, S. High Prevalence and Persistence of Carbapenem and Colistin Resistance in Livestock Farm Environments in China. J. Hazard. Mater. 2021, 406, 124298. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, H.; Zhou, Z.; Miao, Y.; Li, R.; Yang, B.; Cao, C.; Xiao, S.; Wang, X.; Liu, H.; et al. Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia Coli Isolates That Cause Diarrhea in Sheep in Northwest China. Microbiol. Spectr. 2022, 10, e0159522. [Google Scholar] [CrossRef]
- D’Andrea, M.M.; Arena, F.; Pallecchi, L.; Rossolini, G.M. CTX-M-Type β-Lactamases: A Successful Story of Antibiotic Resistance. Int. J. Med. Microbiol. 2013, 303, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Haenni, M.; Poirel, L.; Kieffer, N.; Châtre, P.; Saras, E.; Métayer, V.; Dumoulin, R.; Nordmann, P.; Madec, J.Y. Co-Occurrence of Extended Spectrum β Lactamase and MCR-1 Encoding Genes on Plasmids. Lancet Infect. Dis. 2016, 16, 281–282. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, H.; Xu, Y.; Bai, X.; Wang, J.; Zhang, Z.; Liu, X.; Miao, Y.; Zhang, L.; Li, X.; et al. Multidrug-Resistant Escherichia Albertii: Co-Occurrence of β-Lactamase and MCR-1 Encoding Genes. Front. Microbiol. 2018, 9, 258. [Google Scholar] [CrossRef]
- USDA. Report Name: Beef Market Overview—Tariff Disadvantages Undercut US Opportunities in Growing Market for Imported Beef. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Beef%20Market%20Overview%20-%20Tariff%20Disadvantages%20Undercut%20US%20Opportunities%20in%20Growing%20Market%20for%20Imported%20Beef%20_Ho%20Chi%20Minh%20City_Vietnam_VM2023-0066.pdf (accessed on 18 June 2024).
- M100; Performance Standards for Antimicrobial Susceptibility Testing. CLSI Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2018.
- Rebelo, A.R.; Bortolaia, V.; Kjeldgaard, J.S.; Pedersen, S.K.; Leekitcharoenphon, P.; Hansen, I.M.; Guerra, B.; Malorny, B.; Borowiak, M.; Hammerl, J.A.; et al. Multiplex PCR for Detection of Plasmid-Mediated Colistin Resistance Determinants, Mcr-1, Mcr-2, Mcr-3, Mcr-4 and Mcr-5 for Surveillance Purposes. Eurosurveillance 2018, 23, 17-00672. [Google Scholar] [CrossRef]
- Borowiak, M.; Fischer, J.; Hammerl, J.A.; Hendriksen, R.S.; Szabo, I.; Malorny, B. Identification of a Novel Transposon-Associated Phosphoethanolamine Transferase Gene, Mcr-5, Conferring Colistin Resistance in d-Tartrate Fermenting Salmonella Enterica Subsp. Enterica Serovar Paratyphi B. J. Antimicrob. Chemother. 2017, 72, 3317–3324. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.A.; Kanki, M.; Nguyen, P.D.; Le, H.T.; Ngo, P.T.; Tran, D.N.M.; Le, N.H.; Dang, C.V.; Kawai, T.; Kawahara, R.; et al. Prevalence, Antibiotic Resistance, and Extended-Spectrum and AmpC β-Lactamase Productivity of Salmonella Isolates from Raw Meat and Seafood Samples in Ho Chi Minh City, Vietnam. Int. J. Food Microbiol. 2016, 236, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of Acquired Antimicrobial Resistance Genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef] [PubMed]
- Sismova, P.; Sukkar, I.; Kolidentsev, N.; Palkovicova, J.; Chytilova, I.; Bardon, J.; Dolejska, M.; Nesporova, K. Plasmid-Mediated Colistin Resistance from Fresh Meat and Slaughtered Animals in the Czech Republic: Nation-Wide Surveillance 2020–2021. Microbiol. Spectr. 2023, 11, e0060923. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.; Khong, D.T.; Le, H.V.; Tran, H.T.; Phan, Q.N.; Le, H.T.T.; Kawahara, R.; Yamamoto, Y. Quantitative Analysis of Colistin-Resistant Escherichia Coli in Retail Meat from Local Vietnamese Markets. Biomed. Res. Int. 2021, 2021, 6678901. [Google Scholar] [CrossRef] [PubMed]
- Dang, S.T.T.; Truong, D.T.Q.; Olsen, J.E.; Tran, N.T.; Truong, G.T.H.; Vu, H.T.K.; Dalsgaard, A. Research Note: Occurrence of Mcr- Encoded Colistin Resistance in Escherichia Coli from Pigs and Pig Farm Workers in Vietnam. FEMS Microbes 2021, 1, 1–6. [Google Scholar] [CrossRef]
- Ahmed, S.; Das, T.; Islam, M.Z.; Herrero-Fresno, A.; Biswas, P.K.; Olsen, J.E. High Prevalence of Mcr-1-Encoded Colistin Resistance in Commensal Escherichia Coli from Broiler Chicken in Bangladesh. Sci. Rep. 2020, 10, 18637. [Google Scholar] [CrossRef] [PubMed]
- Maron, D.F.; Smith, T.J.S.; Nachman, K.E. Restrictions on Antimicrobial Use in Food Animal Production: An International Regulatory and Economic Survey. Glob. Health 2013, 9, 48. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, N.; Johnston, J.; Sarreal, C.; Jarosh, J.; Hughes, A.C.; Gu, Y.; He, X. Low Prevalence of Mobile Colistin-Resistance in U.S. Meat, Catfish, Poultry and Genomic Characterization of a Mcr-1 Positive Escherichia Coli Strain. Food Control 2020, 118, 107434. [Google Scholar] [CrossRef]
- Kurekci, C.; Aydin, M.; Nalbantoglu, O.U.; Gundogdu, A. First Report of Escherichia Coli Carrying the Mobile Colistin Resistance Gene Mcr-1 in Turkey. J. Glob. Antimicrob. Resist. 2018, 15, 169–170. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Foodborne Antimicrobial Resistance as a Biological Hazard—Scientific Opinion of the Panel on Biological Hazards. EFSA J. 2008, 6, 765–852. [Google Scholar] [CrossRef]
- Shafiq, M.; Huang, J.; Shah, J.M.; Ali, I.; Rahman, S.U.; Wang, L. Characterization and Resistant Determinants Linked to Mobile Elements of ESBL-Producing and Mcr-1-Positive Escherichia Coli Recovered from the Chicken Origin. Microb. Pathog. 2021, 150, 104722. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D.; Laupland, K.B. Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae: An Emerging Public-Health Concern. Lancet Infect. Dis. 2008, 8, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Leangapichart, T.; Stosic, M.S.; Hickman, R.A.; Lunha, K.; Jiwakanon, J.; Angkititrakul, S.; Magnusson, U.; Van Boeckel, T.P.; Järhult, J.D.; Sunde, M. Exploring the Epidemiology of Mcr Genes, Genetic Context and Plasmids in Enterobacteriaceae Originating from Pigs and Humans on Farms in Thailand. J. Antimicrob. Chemother. 2023, 78, 1395–1405. [Google Scholar] [CrossRef] [PubMed]
- Joshi, P.R.; Thummeepak, R.; Paudel, S.; Acharya, M.; Pradhan, S.; Banjara, M.R.; Leungtongkam, U.; Sitthisak, S. Molecular Characterization of Colistin-Resistant Escherichia Coli Isolated from Chickens: First Report from Nepal. Microb. Drug Resist. 2019, 25, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Monte, D.F.; Mem, A.; Fernandes, M.R.; Cerdeira, L.; Esposito, F.; Galvão, J.A.; Franco, B.D.G.M.; Lincopan, N.; Landgraf, M. Chicken Meat as a Reservoir of Colistin-Resistant Escherichia Coli Strains Carrying Mcr-1 Genes in South America. Antimicrob. Agents Chemother. 2017, 61, e02718-16. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yang, R.S.; Zhang, Q.; Feng, Y.; Fang, L.X.; Xia, J.; Li, L.; Lv, X.Y.; Duan, J.H.; Liao, X.P.; et al. Co-Transfer of BlaNDM-5 and Mcr-1 by an IncX3-X4 Hybrid Plasmid in Escherichia Coli. Nat. Microbiol. 2016, 1, 16176. [Google Scholar] [CrossRef]
- Carrique-Mas, J.J.; Trung, N.V.; Hoa, N.T.; Mai, H.H.; Thanh, T.H.; Campbell, J.I.; Wagenaar, J.A.; Hardon, A.; Hieu, T.Q.; Schultsz, C. Antimicrobial Usage in Chicken Production in the Mekong Delta of Vietnam. Zoonoses Public Health 2015, 62, 70–78. [Google Scholar] [CrossRef]
Target Gene | Primer | Primer Sequence | Amplicon Size (bp) | Reference |
---|---|---|---|---|
mcr-1 | mcr1 f | AGTCCGTTTGTTCTTGTGGC | 320 | [35] |
mcr1 r | AGATCCTTGGTCTCGGCTTG | |||
mcr-2 | mcr2 f | CAAGTGTGTTGGTCGCAGTT | 715 | [35] |
mcr2 r | TCTAGCCCGACAAGCATACC | |||
mcr-3 | mcr3 f | AAATAAAAATTGTTCCGCTTATG | 929 | [35] |
mcr3 r | AATGGAGATCCCCGTTTTT | |||
mcr-4 | mcr4 f | TCACTTTCATCACTGCGTTG | 1116 | [35] |
mcr4 r | TTGGTCCATGACTACCAATG | |||
mcr-5 | mcr5 f | ATGCGGTTGTCTGCATTTATC | 1644 | [36] |
mcr5 r | TCATTGTGGTTGTCCTTTTCTG |
Target Gene | Primer | Primer Sequence | Amplicon Size (bp) |
---|---|---|---|
blaTEM | TEM-F | GGTCGCCGCATACACTATTCTC | 372 |
TEM-R | TTTTATCCGCCTCCATCCAGTC | ||
blaSHV | SHV-F | CCAGCAGGATCTGGTGGACTAC | 231 |
SHV-R | CCGGGAAGCGCCCTCCAT | ||
blaCTX-M-1 | CTX-M1-F | GAATTAGAGCGGGAGTCGGG | 588 |
CTX-M1-R | CACAACCCAGGAAGCAGGC | ||
blaCTX-M-2 | CTX-M2-F | GATGGCGACGCTACCCC | 107 |
CTX-M2-R | CAAGCCGACCTCCCGAAC | ||
blaCTX-M-9 | CTX-M9-F | GTGCAACGGATGATGTTCGC | 475 |
CTX-M9-R | GAAACGTCTCATCGCCGATC | ||
blaCTX-M-8/25 | CTX-M8/25-F | GCGACCCGCGCGATAC | 186 |
CTX-M8/25-R | TGCCGGTTTTATCCCCG |
Antibiotic Class | Antibiotics | Cow Feces (n = 32) | Raw Beef (n = 16) | Total (n = 48) | |||
---|---|---|---|---|---|---|---|
No. Isolates | % | No. Isolates | % | No. Isolates | % | ||
Penicillin | ampicillin | 28 | 87.5 | 14 | 87.50 | 42 | 87.5 |
Cephalosporins | cefotaxime | 10 | 31.25 | 6 | 37.50 | 16 | 33.33 |
cefoxitin | 1 | 3.13 | 0 | 0.00 | 1 | 2.08 | |
cefepime | 10 | 31.25 | 6 | 37.5 | 16 | 33.33 | |
ceftazidime | 10 | 31.25 | 6 | 37.5 | 16 | 33.33 | |
Cabarpenems | meropenem | 0 | 0 | 0 | 0.00 | 0 | 0 |
Tetracyclines | tetracycline | 24 | 75 | 15 | 93.75 | 39 | 81.25 |
Phenicols | florfenicol | 20 | 62.5 | 15 | 93.75 | 35 | 72.92 |
Polymyxins | colistin | 32 | 100 | 16 | 100.00 | 48 | 100 |
Sulfonamides | trimethoprim/sulfamethoxazole | 19 | 59.38 | 16 | 100.00 | 35 | 72.92 |
Quinolones | nalidixic acid | 17 | 53.13 | 15 | 93.75 | 32 | 66.67 |
Fluoroquinolones | ciprofloxacin | 15 | 46.88 | 10 | 62.5 | 25 | 52.08 |
Aminoglycosides | gentamicin | 17 | 53.13 | 11 | 68.75 | 28 | 58.33 |
streptomycin | 21 | 65.63 | 12 | 75.00 | 33 | 68.75 | |
Macrolides | azithromycin | 1 | 3.13 | 6 | 37.50 | 7 | 14.58 |
No. of Antibiotics | Resistance Pattern | No. of E. coli Isolates (%) | ||
---|---|---|---|---|
Cow Feces | Raw Beef | Total | ||
1 | CST | 3 (9.38) | 0 (0) | 3 (6.25) |
2 | AMP-CST | 2 (6.25) | 0 (0) | 2 (4.17) |
TET-CST | 1 (3.13) | 0 (0) | 1 (2.08) | |
3 | AMP-CST-NAL | 1 (3.13) | 0 (0) | 1 (2.08) |
4 | AMP-CST-NAL-CIP | 2 (6.25) | 0 (0) | 2 (4.17) |
5 | AMP-TET-FLO-CST-SXT | 0 (0) | 1 (6.25) | 1 (2.08) |
6 | AMP-CTX-CAZ-FEP-TET-CST | 2 (6.25) | 0 (0) | 2 (4.17) |
AMP-STR-TET-FLO-CST-SXT | 2 (6.25) | 0 (0) | 2 (4.17) | |
AMP-TET-FLO-CST-SXT-NAL | 0 (0) | 2 (12.5) | 2 (4.17) | |
AMP-STR-TET-CST-SXT-NAL | 0 (0) | 1 (6.25) | 1 (2.08) | |
7 | AMP-STR-TET-FLO-CST-SXT-CIP | 1 (3.13) | 0 (0) | 1 (2.08) |
AMP-GEN-STR-TET-FLO-CST-SXT | 1 (3.13) | 0 (0) | 1 (2.08) | |
8 | AMP-GEN-STR-TET-FLO-CST-SXT-NAL | 2 (6.25) | 1 (6.25) | 3 (6.25) |
AMP-STR-TET-FLO-CST-SXT-NAL-CIP | 1 (3.13) | 0 (0) | 1 (2.08) | |
GEN-STR-TET-FLO-CST-SXT-NAL-CIP | 0 (0) | 2 (12.5) | 2 (4.17) | |
9 | AMP-GEN-STR-TET-FLO-CST-SXT-NAL-CIP | 6 (18.75) | 2 (12.5) | 8 (16.67) |
AMP-CTX-CAZ-FEP-GEN-STR-TET-FLO-CST | 1 (3.13) | 0 (0) | 1 (2.08) | |
10 | AMP-CTX-CAZ-FEP-GEN-STR-TET-FLO-CST-SXT | 2 (6.25) | 0 (0) | 2 (4.17) |
AMP-CTX-CAZ-FEP-GEN-STR-TET-CST-NAL-CIP | 1 (3.13) | 0 (0) | 1 (2.08) | |
AMP-GEN-STR-AZM-TET-FLO-CST-SXT-NAL-CIP | 0 (0) | 1 (6.25) | 1 (2.08) | |
AMP-CTX-CAZ-FEP-GEN-FLO-CST-SXT-NAL-CIP | 0 (0) | 1 (6.25) | 1 (2.08) | |
12 | AMP-CTX-CAZ-FEP-GEN-STR-TET-FLO-CST-SXT-NAL-CIP | 3 (9.38) | 0 (0) | 3 (6.25) |
AMP-CTX-CAZ-FEP-STR-AZM-TET-FLO-CST-SXT-NAL-CIP | 0 (0) | 1 (6.25) | 1 (2.08) | |
AMP-CTX-CAZ-FEP-GEN-STR-AZM-TET-FLO-CST-SXT-NAL | 0 (0) | 1 (6.25) | 1 (2.08) | |
13 | AMP-CTX-CAZ-FEP-GEN-STR-AZM-TET-FLO-CST-SXT-NAL-CIP | 0 (0) | 3 (18.75) | 3 (6.25) |
14 | AMP-CTX-FOX-CAZ-FEP-GEN-STR-AZM-TET-FLO-CST-SXT-NAL-CIP | 1 (3.13) | 0 (0) | 1 (2.08) |
Source | Strain ID | ESBL Gene | mcr Gene | Resistance Phenotype |
---|---|---|---|---|
Cow feces | EPBC3 | blaCTX-M-55 | mcr-1 | AMP-CTX-CAZ-FEP-GEN-STR-TET-FLO-CST-SXT |
EPBC5 | blaCTX-M-55 | mcr-1 | AMP-CTX-CAZ-FEP-TET-CST | |
EPBC7 | blaCTX-M-55 | mcr-1 | AMP-CTX-CAZ-FEP-GEN-STR-TET-FLO-CST-SXT-NAL-CIP | |
EPBC10 | blaCTX-M-55 | mcr-1 | AMP-CTX-CAZ-FEP-GEN-STR-TET-FLO-CST-SXT-NAL-CIP | |
EPBC19 | blaCTX-M-55 | mcr-1 | AMP-CTX-CAZ-FEP-GEN-STR-TET-FLO-CST-SXT | |
EPBC20 | blaCTX-M-55 | mcr-1 | AMP-CTX-CAZ-FEP-GEN-STR-TET-FLO-CST | |
EPBC22 | blaCTX-M-55 | mcr-1 | AMP-CTX-CAZ-FEP-GEN-STR-TET-FLO-CST-SXT-NAL-CIP | |
EPBC24 | blaCTX-M-55 | mcr-1 | AMP-CTX-CAZ-FEP-TET-CST | |
EPBC26 | blaCTX-M-55 | mcr-1 | AMP-CTX-CAZ-FEP-GEN-STR-TET-CST-NAL-CIP | |
EPBC31 | blaCTX-M-55 | mcr-1 | AMP-CTX-FOX-CAZ-FEP-GEN-STR-AZM-TET-FLO-CST-SXT-NAL-CIP | |
Raw beef | ETBC12 | blaCTX-M-55 | mcr-1 | AMP-CTX-CAZ-FEP-STR-AZM-TET-FLO-CST-SXT-NAL-CIP |
ETBC15 | blaCTX-M-55 | mcr-1 | AMP-CTX-CAZ-FEP-GEN-STR-AZM-TET-FLO-CST-SXT-NAL-CIP | |
ETBC18 | blaCTX-M-55 | mcr-1 | AMP-CTX-CAZ-FEP-GEN-STR-AZM-TET-FLO-CST-SXT-NAL-CIP | |
ETBC19 | blaCTX-M-55 | mcr-1 | AMP-CTX-CAZ-FEP-GEN-STR-AZM-TET-FLO-CST-SXT-NAL-CIP | |
ETBC22 | blaCTX-M-55 | mcr-1 | AMP-CTX-CAZ-FEP-GEN-STR-AZM-TET-FLO-CST-SXT-NAL | |
ETBC23 | blaCTX-M-55 | mcr-1 | AMP-CTX-CAZ-FEP-GEN-FLO-CST-SXT-NAL-CIP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duc, H.M.; Hoa, T.T.K.; Thang, N.V.; Son, H.M. First Report on the Occurrence and Antibiotic Resistance Profile of Colistin-Resistant Escherichia coli in Raw Beef and Cow Feces in Vietnam. Microorganisms 2024, 12, 1305. https://doi.org/10.3390/microorganisms12071305
Duc HM, Hoa TTK, Thang NV, Son HM. First Report on the Occurrence and Antibiotic Resistance Profile of Colistin-Resistant Escherichia coli in Raw Beef and Cow Feces in Vietnam. Microorganisms. 2024; 12(7):1305. https://doi.org/10.3390/microorganisms12071305
Chicago/Turabian StyleDuc, Hoang Minh, Tran Thi Khanh Hoa, Nguyen Van Thang, and Hoang Minh Son. 2024. "First Report on the Occurrence and Antibiotic Resistance Profile of Colistin-Resistant Escherichia coli in Raw Beef and Cow Feces in Vietnam" Microorganisms 12, no. 7: 1305. https://doi.org/10.3390/microorganisms12071305
APA StyleDuc, H. M., Hoa, T. T. K., Thang, N. V., & Son, H. M. (2024). First Report on the Occurrence and Antibiotic Resistance Profile of Colistin-Resistant Escherichia coli in Raw Beef and Cow Feces in Vietnam. Microorganisms, 12(7), 1305. https://doi.org/10.3390/microorganisms12071305