Antimicrobial Resistance and Phylogenetic Relatedness of Salmonella Serovars in Indigenous Poultry and Their Drinking Water Sources in North Central Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Design
2.2. Sampling Size
2.3. Ethical Approval
2.4. Sampling Locations and Sample Collection
2.5. Salmonella spp. Isolation and Identification
2.6. Polymerase Chain Reaction confirmation of Salmonella spp.
2.7. Antimicrobial Susceptibility Testing
2.8. Multiple Antimicrobial Resistance Indexing
2.9. Serotyping of Isolates and Whole-Genome Sequencing
2.10. Multilocus Sequence Typing and Cluster Analysis
2.11. Data Availability
3. Results
3.1. Prevalence of Salmonella spp. in Indigenous Poultry and Poultry Drinking Water Sources in the Markets
3.2. Antimicrobial Susceptibility Profiles of Isolates from the Sampled Markets
3.3. Spectrum of Antimicrobial Resistance of the Salmonella spp. Isolates
3.4. Distribution Patterns of Antimicrobial Resistance from Different Markets against the 13 Antimicrobials
3.5. Salmonella spp. Serovars Detected from Indigenous Poultry and Poultry Drinking Water Sources from Markets
3.6. Detection of Novel Sequence Types, Antimicrobial Resistance Gene Markers and Their Distribution in Salmonella serovars
3.7. Detection of Virulence Genes
3.8. Detection of Rare Salmonella serovars and Their EnteroBase Statuses
3.9. Phylogenetic Relatedness of the Salmonella Isolates
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, A.O.; Raji, M.A.; Mamman, P.H.; Raufu, I.A.; Aremu, A.; Akorede, G.J.; Kwanashie, C.N. Salmonellosis: Serotypes, prevalence and multi-drug resistant profiles of Salmonella enterica in selected poultry farms, Kwara State, North Central Nigeria. Onderstepoort J. Vet. Res. 2019, 86, a1667. [Google Scholar] [CrossRef]
- Kwon, Y.K.; Kim, A.; Kang, M.S.; Her, M.; Jung, B.Y.; Lee, K.M.; Jeong, W.; An, B.K.; Kwon, J.H. Prevalence and characterization of Salmonella Gallinarum in the chicken in Korea during 2000 to 2008. Poult. Sci. 2010, 89, 236–242. [Google Scholar] [CrossRef]
- Barbour, E.K.; Ayyash, D.B.; Alturkistni, W.; Alyahiby, A.; Yaghmoor, S.; Iyer, A.; Yousef, J.; Kumosani, T.; Harakeh, S. Impact of sporadic reporting of poultry Salmonella serovars from selected developing countries. J. Infect. Dev. Ctries. 2015, 9, 1–7, Erratum in J. Infect. Dev. Ctries. 2015, 9, 953. [Google Scholar] [CrossRef]
- Oh, J.Y.; Kang, M.S.; An, B.K.; Song, E.A.; Kwon, J.H.; Kwon, Y.K. Occurrence of purulent arthritis broilers vertically infected with Salmonella enterica serovar Enteritidis in Korea. Poult. Sci. 2010, 89, 2116–2122. [Google Scholar] [CrossRef]
- Sanchez, S.; Hofacre, C.L.; Lee, M.D.; Maurer, J.J.; Doyle, M.P. Animal sources of salmonellosis in humans. J. Am. Vet. Med. Assoc. 2002, 221, 492–497. [Google Scholar] [CrossRef]
- Magwedere, K.; Rauff, D.; De Klerk, G.; Keddy, K.H.; Dziva, F. Incidence of nontyphoidal Salmonella in food-producing animals, animal feed, and the associated environment in South Africa, 2012–2014. Clin. Infect. Dis. 2015, 61 (Suppl. S4), S283–S289. [Google Scholar] [CrossRef] [PubMed]
- Padhi, M.K. Importance of indigenous breeds of chicken for rural economy and their improvements for higher production performance. Scientifica 2016, 2016, 2604685. [Google Scholar] [CrossRef] [PubMed]
- Adeleke, M.A.; Peters, S.O.; Ozoje, M.O.; Ikeobi, C.O.N.; Bamgbose, A.M.; Adebambo, O.A. Growth performance of Nigerian local chickens in crosses involving an exotic broiler breeder. Trop. Anim. Health Prod. 2011, 43, 643–650. [Google Scholar] [CrossRef]
- Mohammed, M.D.; Abdalsalam, Y.I.; Kheir, A.M.; Jin-Yu, W.; Hussein, M.H. Growth performance of indigenous x exotic crosses of chicken and evaluation of general and specific combining ability under Sudan condition. Int. J. Poult. Sci. 2005, 4, 468–471. [Google Scholar] [CrossRef]
- Aning, K.G. The Structure and Importance of the Commercial and Village Based Poultry in Ghana; Final Review Report; Food and Agriculture Organization of United Nations: Rome, Italy, 2006. [Google Scholar]
- Ajayi, F.O.; Aboh, C.L.; Singer, O.; Adesope, O.M. Indigenous Poultry Production among Rural Households in Ogba/Egbema/Ndoni Local Government Area, Rivers State, Nigeria. J. Agric. Soc. Res. 2015, 15, 19–27. [Google Scholar]
- Muchadeyi, F.C.; Eding, H.; Simianer, H.; Wollny, C.B.A.; Groeneveld, E.; Weigend, S. Mitochondrial DNA D-loop sequences suggest a Southeast Asian and Indian origin of Zimbabwean village chickens. Anim. Genet. 2008, 39, 615–622. [Google Scholar] [CrossRef]
- Alders, R.G.; Pym, R.A.E. Village poultry: Still important to millions, eight thousand years after domestication. World’s Poult. Sci. J. 2009, 65, 181–190. [Google Scholar] [CrossRef]
- Mtileni, B.J.; Muchadeyi, F.C.; Maiwashe, A.; Phitsane, P.M.; Halimani, T.E.; Chimonyo, M.; Dzama, K. Characterisation of production systems for indigenous chicken genetic resources of South Africa. Appl. Anim. Husb. Rural Dev. 2009, 2, 18–22. [Google Scholar]
- Mengesha, M. Indigenous chicken production and the innate characteristics. Asian J. Poult. Sci. 2012, 6, 56–64. [Google Scholar] [CrossRef]
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.N.; et al. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N.G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science 2019, 365, eaaw1944. [Google Scholar] [CrossRef]
- Osman, A.Y.; Elmi, S.A.; Simons, D.; Elton, L.; Haider, N.; Khan, M.A.; Othman, I.; Zumla, A.; McCoy, D.; Kock, R. Antimicrobial resistance patterns and risk factors associated with Salmonella spp. isolates from poultry farms in the East Coast of Peninsular Malaysia: A cross-sectional study. Pathogens 2021, 10, 1160. [Google Scholar] [CrossRef]
- Mbuko, I.J.; Raji, M.A.; Ameh, J.; Saidu, L.; Musa, W.I.; Abdul, P.A. Prevalence and seasonality of fowl typhoid disease in Zaria-Kaduna State, Nigeria. J. Bacteriol. Res. 2009, 1, 1–5. [Google Scholar] [CrossRef]
- Agbaje, M.; Davies, R.; Oyekunle, M.A.; Ojo, O.E.; Fasina, F.O.; Akinduti, P.A. Observation on the occurrence and transmission pattern of Salmonella gallinarum in commercial poultry farms in Ogun State, South Western Nigeria. Afr. J. Microbiol. Res. 2010, 4, 796–800. [Google Scholar]
- Muhammad, M.; Muhammad, L.U.; Ambali, A.G.; Mani, A.U.; Azard, S.; Barco, L. Prevalence of Salmonella associated with chick mortality at hatching and their susceptibility to antimicrobial agents. Vet. Microbiol. 2010, 140, 131–135. [Google Scholar] [CrossRef]
- Mamman, P.H.; Kazeem, H.M.; Raji, M.A.; Nok, A.J.; Kwaga, J.K.P. Isolation and characterization of Salmonella Gallinarum from outbreaks of fowl typhoid in Kaduna State, Nigeria. Int. J. Public Health Epidmiol. 2014, 3, 82–88. [Google Scholar]
- Mshelbwala, F.M.; Ibrahim, N.D.G.; Saidu, S.N.; Azeez, A.A.; Akinduti, P.A.; Kwanashie, C.N.; Fakilahyel Kadiri, A.K.; Muhammed, M.; Fagbamila, I.O.; Luka, P.D. Motile Salmonella serotypes causing high mortality in poultry farms in three South-Western States of Nigeria. Vet. Rec. Open 2017, 4, e000247. [Google Scholar] [CrossRef] [PubMed]
- Fagbamila, I.O.; Barco, L.; Mancin, M.; Kwaga, J.; Ngulukun, S.S.; Zavagnin, P.; Lettini, A.A.; Lorenzetto, M.; Abdu, P.A.; Kabir, J.; et al. Salmonella serovars and their distribution in Nigerian commercial chicken layer farms. PLoS ONE 2017, 12, e0173097. [Google Scholar] [CrossRef] [PubMed]
- Jibril, A.H.; Okeke, I.N.; Dalsgaard, A.; Kudirkiene, E.; Akinlabi, O.C.; Bello, M.B.; Olsen, J.E. Prevalence and risk factors of Salmonella in commercial poultry farms in Nigeria. PLoS ONE 2020, 15, e0238190. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sati, N.M.; Luka, P.D.; Mwiine, F.N.; Fagbamila, I.O.; Weka, R.P.; Muhammad, M.; Erume, J. Perceptions and practices of farmers of indigenous poultry towards Salmonella infections in North-Central Nigeria. Open Vet. J. 2022, 12, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Ikhimiukor, O.O.; Oaikhena, A.O.; Afolayan, A.O.; Fadeyi, A.; Kehinde, A.; Ogunleye, V.O.; Aboderin, A.O.; Oduyebo, O.O.; Elikwu, C.J.; Odih, E.E.; et al. Genomic characterization of invasive typhoidal and non-typhoidal Salmonella in southwestern Nigeria. PLOS Neglected Trop. Dis. 2022, 16, e0010716. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation. Africa Sustainable Livestock 2050: Livestock Production Systems Spotlight Nigeria; FAO: Rome, Italy, 2018. [Google Scholar]
- Thrusfield, M. Veterinary Epidemiology, 3rd ed.; Blackwell Science Ltd., A Blackwell Publishing Company: Oxford, UK, 2007. [Google Scholar]
- World Office International des Epizooties (O.I.E). Salmonellosis. 2010. Available online: www.woah.org/fileadmin/Home/fr/Health_standards/tahm/3.09.08_SALMONELLOSIS.pdf (accessed on 12 June 2019).
- Hassanein, R.; Ali, S.F.H.; El-Malek, A.; Mohamed, A.; Mohamed, M.A.; Elsayh, K.I. Detection and identification of Salmonella species in minced beef and chicken meats by using Multiplex PCR in Assiut city. Vet. World 2011, 4, 5–11. [Google Scholar] [CrossRef]
- Rahn, K.; De Grandis, S.A.; Clarke, R.C.; McEwen, S.A.; Galan, J.E.; Ginocchio, C.; Curtiss, R., 3rd; Gyles, C.L. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell. Probes 1992, 6, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.H.; Ou, J.T. Rapid identification of Salmonella serovars in feces by specific detection of virulence genes, invA and spvC, by an enrichment broth culture-multiplex PCR combination assay. J. Clin. Microbiol. 1996, 34, 2619–2622. [Google Scholar] [CrossRef]
- Malorny, B.; Hoorfar, J.; Bunge, C.; Helmuth, R. Multicenter validation of the analytical accuracy of Salmonella PCR: Towards an international standard. Appl. Environ. Microbiol. 2003, 69, 290–296. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, M100-ED34. 2024. Available online: https://clsi.org/all-free-resources/ (accessed on 12 June 2024).
- European Committee on Antimicrobial Susceptibility Testing (2023). v13.1. Available online: https://www.eucast.org/mic_and_zone_distributions_and_ecoffs (accessed on 13 June 2024).
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef]
- Krumperman, P.H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef]
- Osundiya, O.O.; Oladele, R.O.; Oduyebo, O.O. Multiple antibiotic resistance (MAR) indices of Pseudomonas and Klebsiella species isolates in Lagos University Teaching Hospital. Afr. J. Clin. Exp. Microbiol. 2013, 14, 164–168. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 13 June 2024).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef]
- Seemann, T. Mlst: Github. 2022. Available online: https://github.Com/Tseemann/Mlst (accessed on 5 June 2024).
- Jolley, K.A.; Bray, J.E.; Maiden, M.C. Open-access bacterial population genomics: BIGSdb software, the PubMLST. org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Sheppard, S.K.; Jolley, K.A.; Maiden, M.C. A gene-by-gene approach to bacterial population genomics: Whole genome MLST of Campylobacter. Genes 2012, 3, 261–277. [Google Scholar] [CrossRef]
- Rossi, M.; Silva, M.S.D.; Ribeiro-Gonçalves, B.F.; Silva, D.N.; Machado, M.P.; Oleastro, M. INNUENDO Whole Genome and Core Genome MLST Schemas and Datasets for Campylobacter jejuni (Version 1.0) [Data set]. Zenodo. 2018. Available online: https://zenodo.org/records/1323684 (accessed on 13 June 2024).
- Jajere, S.M.; Hassan, L.; Aziz, S.A.; Zakaria, Z.; Abu, J.; Nordin, F.; Faiz, N.M. Salmonella in native “village” chickens (Gallus domesticus): Prevalence and risk factors from farms in South-Central Peninsular Malaysia. Poult. Sci. 2019, 98, 5961–5970. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, A.; Leibler, J.H.; Mukherjee, J.; Thachil, A.; Goodman, L.B.; Riekofski, C.; Nee, A.; Smyth, K.; Forrester, J.; Rosenbaum, M.H. Frequent human-poultry interactions and low prevalence of Salmonella in backyard chicken flocks in Massachusetts. Zoonoses Public Health 2019, 66, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Gao, Y.; Ye, C.; Yang, L.; Wang, T.; Chang, W. Prevalence and characteristics of Salmonella isolated from free-range chickens in Shandong Province, China. BioMed Res. Int. 2016, 2016, 8183931. [Google Scholar] [CrossRef] [PubMed]
- Salihu, A.E.; Onwuliri, F.C.; Mawak, J.D.; Kalshingi, H.A.; Hassan, D.I. Seroprevalence of Salmonella Gallinarum infection in free-range chickens reared in Nasarawa state, Nigeria. Egypt. Poult. Sci. J. 2014, 34, 665–680. [Google Scholar]
- Salihu, A.E.; Onwuliri, F.C.; Mawak, J.D. The carrier rate of Salmonella Gallinarum in free range chickens in Nasarawa state, Nigeria. Int. J. Adv. Biol. Biomed. Res. 2014, 1, 114–122. [Google Scholar]
- Ejeh, F.E.; Lawan, F.A.; Abdulsalam, H.; Mamman, P.H.; Kwanashie, C.N. Multiple antimicrobial resistance of Escherichia coli and Salmonella species isolated from broilers and local chickens retailed along the roadside in Zaria, Nigeria. Sokoto J. Vet. Sci. 2017, 15, 45–53. [Google Scholar] [CrossRef]
- Ameh, J.A.; Kwari, H.D.; Abubakar, Y.M. Prevalence and antibiotic susceptibility of Salmonella Enteritidis in chicken meat sold in Maiduguri. Niger. Res. J. Sci. 2001, 7, 33–37. [Google Scholar]
- Fashae, K.; Ogunsola, F.; Aarestrup, F.M.; Hendriksen, R.S. Antimicrobial susceptibility and serovars of Salmonella from chickens and humans in Ibadan, Nigeria. J. Infect. Dev. Ctries. 2010, 4, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Namata, H.; Welby, S.; Aerts, M.; Faes, C.; Abrahantes, J.C.; Imberechts, H.; Vermeersch, K.; Hooyberghs, J.; Méroc, E.; Mintiens, K. Identification of risk factors for the prevalence and persistence of Salmonella in Belgian broiler chicken flocks. Prev. Vet. Med. 2009, 90, 211–222. [Google Scholar] [CrossRef]
- Alhaji, N.B.; Haruna, A.E.; Muhammad, B.; Lawan, M.K.; Isola, T.O. Antimicrobials usage assessments in commercial poultry and local birds in North-central Nigeria: Associated pathways and factors for resistance emergence and spread. Prev. Vet. Med. 2018, 154, 139–147. [Google Scholar] [CrossRef]
- Adebowale, O.O.; Adeyemo, O.K.; Awoyomi, O.; Dada, R.; Adebowale, O. Antibiotic use and practices in commercial poultry laying hens in Ogun State Nigeria. Rev. D’élevage Médecine Vétérinaire Pays Trop. 2016, 69, 41–45. [Google Scholar] [CrossRef]
- Ndahi, M.D.; Hendriksen, R.; Helwigh, B.; Card, R.M.; Fagbamila, I.O.; Abiodun-Adewusi, O.O.; Ekeng, E.; Adetunji, V.; Adebiyi, I.; Andersen, J.K. Determination of antimicrobial use in commercial poultry farms in Plateau and Oyo States, Nigeria. Antimicrob. Resist. Infect. Control 2023, 12, 30. [Google Scholar] [CrossRef] [PubMed]
- Jibril, A.H.; Okeke, I.N.; Dalsgaard, A.; Olsen, J.E. Association between antimicrobial usage and resistance in Salmonella from poultry farms in Nigeria. BMC Vet. Res. 2021, 17, 234. [Google Scholar] [CrossRef]
- Agbaje, M.; Awosile, B.; Kehinde, O.O.; Omoshaba, E.O.; Dipeolu, M.A.; Bankole, N.O. Diverse non-typhoidal Salmonella serovars with multi-drug resistance potentials isolated from chicken faeces in Ogun State, Nigeria. Sokoto J. Vet. Sci. 2021, 19, 98–105. [Google Scholar] [CrossRef]
- Fasina, F.O.; LeRoux-Pullen, L.; Smith, P.; Debusho, L.K.; Shittu, A.; Jajere, S.M.; Adebowale, O.; Odetokun, I.; Agbaje, M.; Fasina, M.M.; et al. Knowledge, attitudes, and perceptions associated with antimicrobial stewardship among veterinary students: A multi-country survey from Nigeria, South Africa, and Sudan. Front. Public Health 2020, 8, 517964. [Google Scholar] [CrossRef] [PubMed]
- Yee, R.; Dien Bard, J.; Simner, P.J. The genotype-to-phenotype dilemma: How should laboratories approach discordant susceptibility results? J. Clin. Microbiol. 2021, 59, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Deekshit, V.K.; Srikumar, S. ‘To be, or not to be’—The dilemma of ‘silent’ antimicrobial resistance genes in bacteria. J. Appl. Microbiol. 2022, 133, 2902–2914. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Alikhan, N.F.; Mohamed, K.; Fan, Y.; Achtman, M.; Brown, D.; Agama Study Group. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020, 30, 138–152. [Google Scholar] [CrossRef]
- Galanis, E.; Wong, D.M.L.F.; Patrick, M.E.; Binsztein, N.; Cieslik, A.; Chalermchaikit, T.; Aidara-Kane, A.; Ellis, A.; Angulo, F.J.; Wegener, H.C. Web-based surveillance and global Salmonella distribution, 2000–2002. Emerg. Infect. Dis. 2006, 12, 381. [Google Scholar] [CrossRef]
Resistance Profiles | No of Isolates | MAR Index |
---|---|---|
Fully susceptible | ||
Total | 47 | ≤0.2 |
Percentage | 47/78 (60.2%) | |
Single resistance | ||
AZM | 1 | ≤0.2 |
AMP | 5 | ≤0.2 |
CTX | 3 | ≤0.2 |
TE | 2 | ≤0.2 |
SXT | 2 | ≤0.2 |
CN | 1 | ≤0.2 |
Total | 14 | |
Percentage | 14/78 (17.9%) | |
Double resistance | ||
AMP, TE | 1 | ≤0.2 |
AZM, AMP | 2 | ≤0.2 |
C, TE | 1 | ≤0.2 |
AMP, CAZ | 1 | ≤0.2 |
AMP, LEV | 1 | |
Total | 6 | |
Percentage | 6/78 (7.7%) | |
MDR | ||
C, SXT, TE | 3 | ≥0.2 |
CN, AMP, TE | 1 | ≥0.2 |
SXT, AMP, TE | 1 | ≥0.2 |
SXT, TE, CAZ | 1 | ≥0.2 |
F, AZM, TE | 1 | ≥0.2 |
C, SXT, AMP | 1 | ≥0.2 |
CN, C, AMP, LEV | 1 | ≥0.2 |
F, AZM, AMP, TE | 1 | ≥0.2 |
CN, LEV, AZM, SXT, AMP, TE | 1 | ≥0.2 |
Total | 11 | |
Percentage | 11/78 (14.1%) |
State | Market | Antimicrobial Resistance Types | Number of Isolates | Antimicrobial Resistance Type No. (%) |
---|---|---|---|---|
Benue | Otukpo | CN, C, LEV, AZM, SXT, AMP, TE | 6 | 7/13 (53.8) |
Modern Market | CTX, CN, AMP, TE | 4 | 4/13 (30.8) | |
Wurukum | None | 0 | 0/13 (0) | |
Gboko | C, SXT, TE | 2 | 3/13 (23.1) | |
Yandev | SXT | 1 | 1/13 (7.7) | |
Kwara | Sango | AZM, AMP | 2 | 2/13 (15.4) |
Oja-Oba | CTX, AMP | 2 | 2/13 (15.4) | |
Ipata | AMP | 1 | 1/13 (7.7) | |
Share | None | 0 | 0/13 (0) | |
Oke-Oyi | C, AZM, SXT, AMP, TE | 4 | 5/13 (38.5) | |
Plateau | Mangu | AMP | 1 | 1/13 (7.7) |
Bokkos | C, SXT, TE | 2 | 3/13 (23.1) | |
Shendam | TE | 1 | 1/13 (7.7) | |
Yankaji | CTX, SXT, AMP, TE, CAZ | 3 | 5/13 (38.5) | |
Kugiya | F, AZM, AMP, TE | 2 | 4/13 (30.8) |
Market | Laboratory ID No | Serovar | Sample Source | Sequence Type | Phenotypic Antimicrobial Resistance | Antimicrobial Resistance Genes |
---|---|---|---|---|---|---|
Otukpo | 23-43794_S15 | S. Chester | Water | 411 | None | None |
Share | 23-43796_S16 | S. Chester | Chicken | 411 | Azithromycin | None |
Share | 23-43797_S10 | S. Chester | Chicken | 411 | None | None |
Share | 23-43799_S11 | S. Chester | Duck | 411 | None | None |
Share | 23-43801_S12 | S. Chester | Duck | 411 | None | None |
Oke-Oyi | 23-43802_S13 | S. Chester | Water | 411 | None | None |
Yandev | 23-43829_S2 | S. Isangi | Chicken | 216 | Sulphamethoxazole-trimethoprim | dfrA17, aadA5, aph(3′)-Ia, sul1, qnrB19 |
Gboko | 23-43828_S1 | S. Isangi | Chicken | 216 | Chloramphenicol Sulphamethoxazole-trimethoprim Tetracycline | tet(A), floR, aac(3′)-Via, dfrA15, qnrB19,dfrA17, aadA5, aadA1, sul1, aph(3′)-Ia |
Bokkos | IFSO 23 | S. Isangi | Chicken | 216 | Chloramphenicol Sulphamethoxazole-trimethoprim Tetracycline | floR, tet(A), aac(3)-Via, aadA1, dfrA15, qnrB19, sul1, aph(3′)-Ia, aadA5, dfrA17 |
Gboko | IFSO 25 | S. Isangi | Chicken | 216 | Chloramphenicol Sulphamethoxazole-trimethoprim Tetracycline | floR, tet(A), aac(3′)-Via , aadA1, dfrA15 , qnrB19, sul1, aph(3′)-Ia,, qnrB19, aadA5, dfrA17 |
Yankaji | 23-43807_S19 | S. Agama | Chicken | 11,508 * | Ampicillin Ceftazidime | qnrB19 |
Kugiya | 23-43808_S20 | S. Agama | Turkey | 11,508 * | None | qnrB19 |
Shendam | 23-43809_S21 | S. Agama | Chicken | 11,508 * | None | qnrB19 |
Yankaji | 23-43810_S22 | S. Agama | Chicken | 11,508 * | None | qnrB19 |
Modern market | 23-43822_S27 | S. Derby | Chicken | 9580 | None | None |
Modern market | 23-43821_S26 | S. Derby | Chicken | 9580 | Gentamicin Ampicillin Tetracycline | blaTEM-215, qnrS13, tet(A), aph(3″)-Ib, aph (6′)-Id, sul2, aac(3′)-Ile |
Modern market | 23-43819_S25 | S. Derby | Water | 9580 | Gentamicin | blaTEM-215, qnrS13, tet(A), aph (3″)-Ib, aph(6′)-Id, sul2, aac(3′)-Ile |
Mangu | 23-43786_S13 | S. Offa | Chicken | 11,457 * | None | None |
Shendam | 23-43788_S14 | S. Offa | Chicken | 11,457 * | None | None |
Shendam | 23-43790_S7 | S. Offa | Duck | 11,457 * | None | None |
Yankaji | 23-43804_S17 | S. Widemarsh | Chicken | 11,452 * | Cefotaxime | None |
Shendam | 23-43805_S18 | S. Widemarsh | Chicken | 11,452 * | None | None |
Yankaji | 23-43780_S11 | S. Give | Chicken | 516 | Sulphamethoxazole-trimethoprim Tetracycline Ceftazidime | dfrA1, tet(A), sul3, qnrS1, aadA1 |
Ipata | 23-43783_S12 | S. Give | Chicken | 516 | None | None |
Wurukum | 23-437825_S28 | S. Orion | Chicken | 11,455 * | None | None |
Wurukum | 23-43827_S29 | S. Orion | Chicken | 11,455 * | None | None |
Mangu | 23-43813_S23 | S. Saintpaul | Chicken | 11,456 * | None | fosA7 |
Mangu | 23-43815_S24 | S. Saintpaul | Chicken | 11,456 * | None | fosA7 |
Gboko | 23-43833_S3 | S. Laredo | Chicken | 11,458 * | None | None |
Yandev | 23-43834_S4 | S. Laredo | Chicken | 11,458 * | None | None |
Mangu | 23-43791_S8 | MVST | Chicken | 19 | None | None |
Modern Market | 23-43793_S9 | MVST | Chicken | 11,459 * | Ampicillin Tetracycline | fosA7 |
Wurukum | 23-43836_S5 | S. Luedinghausen | Chicken | 11,453 * | None | None |
Sango | 23-43848_S10 | S. Kingston | Chicken | 3670 | None | None |
Bokkos | 23-43856_S4 | S. Vom | Chicken | 11,451 * | None | None |
Ipata | 23-43853_S2 | S. Larochelle | Chicken | 22 | None | None |
Oja-Oba | 23-43851_S1 | S. Telelkebir | Chicken | 3326 | None | None |
Oke-Oyi | 23-43854_S3 | S. Durham | Chicken | 2010 | Azithromycin | None |
Yandev | 23-43844_S8 | S. Bareilly | Chicken | 11,450 * | None | None |
Share | 23-43847_S9 | S. Typhimurium | Chicken | 513 | None | fosA7 |
Otukpo | 23-43839_S6 | S. Linguere | Chicken | 11,454 * | Tetracycline | None |
Gboko | 23-43842_S7 | S. Lansing | Chicken | 8706 | None | fosA7 |
Modern Market | 23-43857_S5 | S. 6,7:c− | Chicken | 11,513 * | None | None |
Wurukum | 23-43858_S6 | S.6,7:a− | Chicken | 11,453 * | None | None |
Serovar | WGS Status |
---|---|
S. Luedinghausen | First in Africa, second ever |
S. Laredo | First in Africa, second ever |
S. Widemarsh | First in Africa |
S. Lansing | First in Africa |
S. Linguere | Second in Africa, third ever |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sati, N.M.; Card, R.M.; Barco, L.; Muhammad, M.; Luka, P.D.; Chisnall, T.; Fagbamila, I.O.; Cento, G.; Nnadi, N.E.; Kankya, C.; et al. Antimicrobial Resistance and Phylogenetic Relatedness of Salmonella Serovars in Indigenous Poultry and Their Drinking Water Sources in North Central Nigeria. Microorganisms 2024, 12, 1529. https://doi.org/10.3390/microorganisms12081529
Sati NM, Card RM, Barco L, Muhammad M, Luka PD, Chisnall T, Fagbamila IO, Cento G, Nnadi NE, Kankya C, et al. Antimicrobial Resistance and Phylogenetic Relatedness of Salmonella Serovars in Indigenous Poultry and Their Drinking Water Sources in North Central Nigeria. Microorganisms. 2024; 12(8):1529. https://doi.org/10.3390/microorganisms12081529
Chicago/Turabian StyleSati, Nancy M., Roderick M. Card, Lisa Barco, Maryam Muhammad, Pam D. Luka, Thomas Chisnall, Idowu O. Fagbamila, Giulia Cento, Nnaemeka E. Nnadi, Clovice Kankya, and et al. 2024. "Antimicrobial Resistance and Phylogenetic Relatedness of Salmonella Serovars in Indigenous Poultry and Their Drinking Water Sources in North Central Nigeria" Microorganisms 12, no. 8: 1529. https://doi.org/10.3390/microorganisms12081529