Impact of Malocclusions on Periodontopathogenic Bacterial Load and Progression of Periodontal Disease: A Quantitative Analysis
Abstract
:1. Introduction
- Purple complex bacteria: Aggregatibacter actinomycetemcomitans.
- Red complex bacteria: Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia.
- Orange complex bacteria: Eikenella corrodens, Campylobacter rectus, Prevotella intermedia, Fusobacterium nucleatum, and Prevotella nigrescens.
- Green complex bacteria: Capnocytophaga ochracea, Capnocytophaga sputigena, and Capnocytophaga gingivalis.
2. Materials and Methods
2.1. Study Design and Participants
2.1.1. Study Group 1: Patients with PD and MAL
- Patients with PD and MAL represented by crowding and open bite, who presented to the Clinical Department of Periodontology at the Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania, for consultation and specialized treatment during the selected period.
- Cooperative Caucasian patients of both sexes who agreed to be included in the study.
- Patients aged between 30 and 40 years.
- Patients in generally good health.
- Patients with at least 24 teeth present.
- Patients who have not been treated for PD in the last year (such as descaling or brushing).
- Patients who have not undergone orthodontic treatment.
- Patients without dental extractions, except for three molars.
- Patients without dental implants or different dental prosthetic works.
- Patients who have not received antibiotic treatment in the last six months.
- Patients not meeting the inclusion criteria.
- Pregnant women.
- Patients with chronic debilitating diseases (including diabetes mellitus, neoplasms, systemic diseases, autoimmune diseases, cirrhosis, acute infectious diseases).
- Patients under chronic treatment with anti-inflammatory drugs and corticotherapy.
2.1.2. Study Group 2: Patients with PD without MAL
- Patients with PD but without MAL, who presented to the Clinical Department of Periodontology at the Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania, for consultation and specialized treatment during the selected period.
- Cooperative Caucasian patients of both sexes who agreed to be included in the study.
- Patients aged between 30 and 40 years.
- Patients in generally good health.
- Patients with at least 24 teeth present.
- Patients who have not been treated for PD in the last year (such as descaling or brushing).
- Patients who have not undergone orthodontic treatment.
- Patients without dental extractions, except for three molars.
- Patients without dental implants or different dental prosthetic works.
- Patients who have not received antibiotic treatment in the last six months.
- Patients not meeting the inclusion criteria.
- Pregnant women.
- Patients with chronic debilitating diseases (including diabetes mellitus, neoplasms, systemic diseases, autoimmune diseases, cirrhosis, acute infectious diseases).
- Patients under chronic treatment with anti-inflammatory drugs and corticotherapy.
2.1.3. Patient Selection Process
2.2. Methods
2.2.1. Medical Records
2.2.2. Collection of the Gingival Crevicular Fluid
2.2.3. Bacterial DNA Extraction
2.2.4. Quantification by Real-Time PCR (qRT-PCR)
2.2.5. Principle of the Detection Method
2.2.6. Statistical Analysis
3. Results
- For high pathogenic bacteria: higher concentrations of Treponema denticola (p = 0.023, median = 4.32, IQR = 2.76–5.53 vs. median = 1.93, IQR = 0–3.19), Tannerella forsythia (p = 0.020, mean = 6.04 ± 0.72 vs. mean = 4.4 ± 1.89), and Porphyromonas gingivalis (p = 0.002, median = 5.64, IQR = 4.94–5.98 vs. median = 2.48, IQR = 0–4.05) in patients with MAL vs. without MAL;
- For moderate pathogenic bacteria: higher concentrations of Eikenella corrodens (p = 0.040, mean = 4.55 ± 1.02 vs. mean = 3.23 ± 1.56), Campylobacter rectus (p < 0.001, mean = 4.2 ± 0.56 vs. mean = 1.8 ± 1.51), and Prevotella intermedia (p = 0.043, median = 5.04, IQR = 0–5.49 vs. median = 0, IQR = 0–3.39) in patients with MAL vs. without MAL;
- For low pathogenic bacteria, higher concentrations of Capnocytophaga sputigena (p = 0.011, median = 5.91, IQR = 5.47–6.17 vs. median = 4.63, IQR = 3.83–5.64) and Capnocytophaga gingivalis (p = 0.007, median = 5.87, IQR = 5.34–6.03 vs. median = 4.4, IQR = 3.5–5.71) in patients with MAL vs. without MAL.
Species (log10 CFU/mL)/Group | No Malocclusions | With Malocclusions | ||
---|---|---|---|---|
High pathogenic | Aa | Mean ± SD | 1.33 ± 2.14 | 1.07 ± 2.3 |
Median (IQR) | 0 (0–2.35) | 0 (0–1.09) | ||
p * | 0.631 | |||
Td | Mean ± SD | 1.77 ± 1.73 | 3.84 ± 2.17 | |
Median (IQR) | 1.93 (0–3.19) | 4.32 (2.76–5.53) | ||
p * | 0.023 | |||
Tf | Mean ± SD | 4.4 ± 1.89 | 6.04 ± 0.72 | |
Median (IQR) | 4.71 (3.62–5.65) | 5.9 (5.44–6.63) | ||
p ** | 0.020 | |||
Pg | Mean ± SD | 2.2 ± 2.1 | 5.06 ± 1.84 | |
Median (IQR) | 2.48 (0–4.05) | 5.64 (4.94–5.98) | ||
p * | 0.002 | |||
Moderate pathogenic | Ec | Mean ± SD | 3.23 ± 1.56 | 4.55 ± 1.02 |
Median (IQR) | 3.85 (2.14–4.47) | 4.8 (4.27–5.08) | ||
p ** | 0.040 | |||
Cr | Mean ± SD | 1.8 ± 1.51 | 4.2 ± 0.56 | |
Median (IQR) | 1.64 (0.46–3.12) | 4.01 (3.88–4.6) | ||
p *** | 0.001 | |||
Pi | Mean ± SD | 1.52 ± 2.03 | 3.74 ± 2.61 | |
Median (IQR) | 0 (0–3.39) | 5.04 (0–5.49) | ||
p * | 0.043 | |||
Fnp | Mean ± SD | 3.19 ± 2.44 | 4.05 ± 2.95 | |
Median (IQR) | 2.86 (0.8–5.7) | 3.43 (1.4–7.33) | ||
p ** | 0.488 | |||
Pn | Mean ± SD | 3.38 ± 1.53 | 3.54 ± 1.97 | |
Median (IQR) | 3.39 (2.62–4.79) | 4.15 (2.49–4.87) | ||
p * | 0.481 | |||
Low pathogenic | Co | Mean ± SD | 3.6 ± 1.2 | 4.49 ± 0.89 |
Median (IQR) | 3.26 (2.67–4.82) | 4.56 (4–4.93) | ||
p ** | 0.078 | |||
Cs | Mean ± SD | 4.29 ± 1.71 | 5.66 ± 0.89 | |
Median (IQR) | 4.63 (3.83–5.64) | 5.91 (5.47–6.17) | ||
p * | 0.011 | |||
Cg | Mean ± SD | 4.33 ± 1.35 | 5.64 ± 0.71 | |
Median (IQR) | 4.4 (3.5–5.71) | 5.87 (5.34–6.03) | ||
p * | 0.007 |
4. Discussion
5. Suggestions for Future Research
6. Limitations of the Study
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- da Silveira Moreira, R.; de Moura, M.R.; Mangueira, E.V. Prevalence of Malocclusion in Brazil and Associated Factors among Adolescents 15–19 Years Old. In Issues in Contemporary Orthodontics; InTech: London, UK, 2015. [Google Scholar] [CrossRef]
- Nazir, M.; Al-Ansari, A.; Al-Khalifa, K.; Alhareky, M.; Gaffar, B.; Almas, K. Global Prevalence of Periodontal Disease and Lack of Its Surveillance. Sci. World J. 2020, 2020, 2146160. [Google Scholar] [CrossRef] [PubMed]
- Antunes, A.; Botelho, J.; Mendes, J.J.; Delgado, A.S.; Machado, V.; Proença, L. Geographical Distribution of Periodontitis Risk and Prevalence in Portugal Using Multivariable Data Mining and Modeling. Int. J. Environ. Res. Public Health 2022, 19, 13634. [Google Scholar] [CrossRef] [PubMed]
- Ursu, R.G.; Iancu, L.S.; Porumb-Andrese, E.; Damian, C.; Cobzaru, R.G.; Nichitean, G.; Ripa, C.; Sandu, D.; Luchian, I. Host mRNA Analysis of Periodontal Disease Patients Positive for Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and Tannerella forsythia. Int. J. Mol. Sci. 2022, 23, 9915. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Oral Health Status Report: Towards Universal Health Coverage for Oral Health by 2030 (No Date). Available online: https://www.who.int/publications/i/item/9789240061484 (accessed on 18 September 2023).
- Brodzikowska, A.; Górski, B.; Bogusławska-Kapała, A. Association between IL-1 Gene Polymorphisms and Stage III Grade B Periodontitis in Polish Population. Int. J. Environ. Res. Public Health 2022, 19, 14687. [Google Scholar] [CrossRef] [PubMed]
- Radaic, A.; Kapila, Y.L. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput. Struct. Biotechnol. J. 2021, 19, 1335–1360. [Google Scholar] [CrossRef] [PubMed]
- Deo, P.N.; Deshmukh, R. Oral microbiome: Unveiling the fundamentals. J. Oral Maxillofac. Pathol. 2019, 23, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Defta, C.L.; Albu, C.-C.; Albu, Ş.-D.; Bogdan-Andreescu, C.F. Oral Mycobiota: A Narrative Review. Dent. J. 2024, 12, 115. [Google Scholar] [CrossRef] [PubMed]
- Samaranayake, L. Essential Microbiology for Dentistry, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2018; p. 400. ISBN 9780702074356. eBook ISBN 9780702075216. [Google Scholar]
- Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.C.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A new classification scheme for periodontal and peri-implant diseases and conditions—Introduction and key changes from the 1999 classification. J. Periodontol. 2018, 89, S1–S8. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Fang, C.; Leng, W.D.; Wu, L.; Li, B.H.; Wang, X.H.; Hu, H.; Zeng, X.T. Oral microbiota in the oral-genitourinary axis: Identifying periodontitis as a potential risk of genitourinary cancers. Mil. Med. Res. 2021, 8, 54. [Google Scholar] [CrossRef]
- Albu, C.C.; Albu, D.F.; Albu, Ş.D.; Patrascu, A.; Musat, A.; Goganau, A.M. Early Prenatal Diagnosis of an Extremely Rare Association of Down Syndrome and Transposition of the Great Vessels. Rev. Chim. Bucur. 2019, 70, 2574–2578. [Google Scholar] [CrossRef]
- Daoud, R.; Bencze, M.A.; Albu, C.C.; Teodorescu, E.; Dragomirescu, A.O.; Vasilache, A.; Suciu, I.; Ionescu, E. Implications of permanent teeth dimensions and arch lengths on dental crowding during the mixed dentition period. Appl. Sci. 2021, 11, 8004. [Google Scholar] [CrossRef]
- Mossey, P.A. The heritability of malocclusion: Part 2. The influence of genetics in malocclusion. Br. J. Orthod. 1999, 26, 195–203. [Google Scholar] [CrossRef]
- Lone, I.M.; Zohud, O.; Midlej, K.; Paddenberg, E.; Krohn, S.; Kirschneck, C.; Proff, P.; Watted, N.; Iraqi, F.A. Anterior Open Bite Malocclusion: From Clinical Treatment Strategies towards the Dissection of the Genetic Bases of the Disease Using Human and Collaborative Cross Mice Cohorts. J. Pers. Med. 2023, 13, 1617. [Google Scholar] [CrossRef]
- Bernhardt, O.; Krey, K.F.; Daboul, A.; Völzke, H.; Kindler, S.; Kocher, T.; Schwahn, C. New insights in the link between malocclusion and periodontal disease. J. Clin. Periodontol. 2019, 46, 144–159. [Google Scholar] [CrossRef]
- Sedghi, L.M.; Bacino, M.; Kapila, Y.L. Periodontal Disease: The Good, The Bad, and The Unknown. Front. Cell. Infect. Microbiol. 2021, 11, 766944. [Google Scholar] [CrossRef]
- Nørskov-Lauritsen, N.; Claesson, R.; Jensen, A.B.; Åberg, C.H.; Haubek, D. Aggregatibacter actinomycetemcomitans: Clinical Significance of a Pathobiont Subjected to Ample Changes in Classification and Nomenclature. Pathogens 2019, 8, 243. [Google Scholar] [CrossRef]
- Holt, S.C.; Ebersole, J.L. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: The “red complex”, a prototype polybacterial pathogenic consortium in periodontitis. Periodontology 2000 2005, 38, 72–122. [Google Scholar] [CrossRef]
- Tadjoedin, F.M.; Masulili, S.L.C.; Rizal, M.I.; Kusdhany, L.S.; Turana, Y.; Ismail, R.I.; Bachtiar, B.M. The Red and Orange Complex Subgingival Microbiome of Cognitive Impairment and Cognitively Normal Elderly with Periodontitis. Geriatrics 2022, 7, 12. [Google Scholar] [CrossRef]
- Hatz, C.R.; Cremona, M.; Liu, C.C.; Schmidlin, P.R.; Conen, A. Antibiotic prophylaxis with amoxicillin to prevent infective endocarditis in periodontitis patients reconsidered: A narrative review. Swiss Med. Wkly. 2021, 151, w30078. [Google Scholar] [CrossRef] [PubMed]
- Mosaddad, S.A.; Hussain, A.; Tebyaniyan, H. Green Alternatives as Antimicrobial Agents in Mitigating Periodontal Diseases: A Narrative Review. Microorganisms 2023, 11, 1269. [Google Scholar] [CrossRef] [PubMed]
- Kirakodu, S.S.; Govindaswami, M.; Novak, M.J.; Ebersole, J.L.; Novak, K.F. Optimizing qPCR for the Quantification of Periodontal Pathogens in a Complex Plaque Biofilm. Open Dent. J. 2008, 2, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Masunaga, H.; Tsutae, W.; Oh, H.; Shinozuka, N.; Kishimoto, N.; Ogata, Y. Use of quantitative PCR to evaluate methods of bacteria sampling in periodontal patients. J. Oral Sci. 2010, 52, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Bastos, J.A.; Diniz, C.G.; Bastos, M.G.; Vilela, E.M.; Silva, V.L.; Chaoubah, A.; Souza-Costa, D.C.; Andrade, L.C. Identification of periodontal pathogens and severity of periodontitis in patients with and without chronic kidney disease. Arch. Oral Biol. 2011, 56, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Cosac, I.C.; Ionica, C.; Ratiu, A.C.; Savu, L. Relative quantification of Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia and Aggregatibacter actinomycetemcomitans high-risk bacterial species in Romanian patients evaluated for periodontal disease. BioRxiv 2017. [Google Scholar] [CrossRef]
- Udoh, S.; Adukwu, E.; Varadi, A.; Saad, S. Effectiveness of the Human Oral Microbe Identification Microarray in Identifying Periodontal Pathogens: A Systematic Review. Appl. Microbiol. 2022, 2, 614–625. [Google Scholar] [CrossRef]
- Kozak, M.; Pawlik, A. The Role of the Oral Microbiome in the Development of Diseases. Int. J. Mol. Sci. 2023, 24, 5231. [Google Scholar] [CrossRef]
- Wilson, T.G.; Kornman, K.S. Fundamentals of Periodontics, 2nd ed.; Quintessence: Surrey, BC, Canada, 2003; p. 676. ISBN 0867154055. [Google Scholar]
- Belibasakis, G.N.; Belstrøm, D.; Eick, S.; Gursoy, U.K.; Johansson, A.; Könönen, E. Periodontal microbiology and microbial etiology of periodontal diseases: Historical concepts and contemporary perspectives. Periodontol. 2000 2023. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Batih, I. Prevalence of maxillofacial anomalies and their relation to periodontal diseases in young people. Med. Sci. 2024, 28, e3ms3256. [Google Scholar] [CrossRef]
- Byrne, S.J.; Dashper, S.G.; Darby, I.B.; Adams, G.G.; Hoffmann, B.; Reynolds, E.C. Progression of chronic periodontitis can be predicted by the levels of Porphyromonas gingivalis and Treponema denticola in subgingival plaque. Oral Microbiol. Immunol. 2009, 24, 469–477. [Google Scholar] [CrossRef]
- Socransky, S.S.; Haffajee, A.D.; Cugini, M.A.; Smith, C.; Kent, R.L., Jr. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 1998, 25, 134–144. [Google Scholar] [CrossRef]
- Mohanty, R.; Asopa, S.J.; Joseph, M.D.; Singh, B.; Rajguru, J.P.; Saidath, K.; Sharma, U. Red complex: Polymicrobial conglomerate in oral flora: A review. J. Fam. Med. Prim. Care 2019, 8, 3480–3486. [Google Scholar] [CrossRef]
- Dragomirescu, A.-O.; Bencze, M.-A.; Vasilache, A.; Teodorescu, E.; Albu, C.-C.; Popoviciu, N.O.; Ionescu, E. Reducing Friction in Orthodontic Brackets: A Matter of Material or Type of Ligation Selection? In-Vitro Comparative Study. Materials 2022, 15, 2640. [Google Scholar] [CrossRef]
- Albu, Ş.D.; Pavlovici, R.C.; Imre, M.; Ion, G.; Ţâncu, A.M.C.; Albu, C.C. Phenotypic heterogeneity of non-syndromic supernumerary teeth: Genetic study. Rom. J. Morphol. Embryol. 2020, 61, 853–861. [Google Scholar] [CrossRef]
- Albu, C.C.; Pavlovici, R.C.; Imre, M.; Ţâncu, A.M.C.; Stanciu, I.A.; Vasilache, A.; Milicescu, S.; Ion, G.; Albu, Ş.D.; Tănase, M. Research algorithm for the detection of genetic patterns and phenotypic variety of non-syndromic dental agenesis. Rom. J. Morphol. Embryol. 2021, 62, 53–62. [Google Scholar] [CrossRef]
- Javali, M.A.; Betsy, J.; Al Thobaiti, R.S.S.; Alshahrani, R.A.; AlQahtani, H.A.H. Relationship between Malocclusion and Periodontal Disease in Patients Seeking Orthodontic Treatment in Southwestern Saudi Arabia. Saudi J. Med. Med. Sci. 2020, 8, 133–139. [Google Scholar] [CrossRef]
- Kolawole, K.A.; Folayan, M.O. Association between malocclusion, caries and oral hygiene in children 6 to 12 years old resident in suburban Nigeria. BMC Oral Health 2019, 19, 262. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, B.I.; Cha, J.Y.; Hwang, C.J. Impact of malocclusion and common oral diseases on oral health-related quality of life in young adults. Am. J. Orthod. Dentofac. Orthop. 2015, 147, 587–595. [Google Scholar] [CrossRef]
- Abdulkareem, A.A.; Al-Taweel, F.B.; Al-Sharqi, A.J.B.; Gul, S.S.; Sha, A.; Chapple, I.L.C. Current concepts in the pathogenesis of periodontitis: From symbiosis to dysbiosis. J. Oral Microbiol. 2023, 15, 2197779. [Google Scholar] [CrossRef]
- Marsh, P.D. Dental plaque as a biofilm and a microbial community—Implications for health and disease. BMC Oral Health 2006, 6, S14. [Google Scholar] [CrossRef] [PubMed]
- Dawes, C. Salivary flow patterns and the health of hard and soft oral tissues. J. Am. Dent. Assoc. 2008, 139, 18S–24S. [Google Scholar] [CrossRef] [PubMed]
- Marsh, P.D.; Do, T.; Beighton, D.; Devine, D.A. Influence of saliva on the oral microbiota. Periodontol. 2000 2016, 70, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Cekici, A.; Kantarci, A.; Hasturk, H.; Van Dyke, T.E. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol. 2000 2014, 64, 57–80. [Google Scholar] [CrossRef]
- Albu, C.-C.; Bencze, M.-A.; Dragomirescu, A.-O.; Suciu, I.; Tănase, M.; Albu, Ş.-D.; Russu, E.-A.; Ionescu, E. Folic Acid and Its Role in Oral Health: A Narrative Review. Processes 2023, 11, 1994. [Google Scholar] [CrossRef]
- Grace Umesh, S.; Ramachandran, L.; Karthikeyan, J.; Shankar, S.M. Trauma and the Periodontal Tissues: A Narrative Review. Dentistry; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Fan, J.; Caton, J.G. Occlusal trauma and excessive occlusal forces: Narrative review, case definitions, and diagnostic considerations. J. Periodontol. 2018, 89, S214–S222. [Google Scholar] [CrossRef] [PubMed]
- Harrel, S.K.; Nunn, M.E. The effect of occlusal discrepancies on gingival width. J. Periodontol. 2004, 75, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Zupančič, J.; Raghupathi, P.K.; Houf, K.; Burmølle, M.; Sørensen, S.J.; Gunde-Cimerman, N. Synergistic Interactions in Microbial Biofilms Facilitate the Establishment of Opportunistic Pathogenic Fungi in Household Dishwashers. Front. Microbiol. 2018, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Visentin, D.; Gobin, I.; Maglica, Ž. Periodontal Pathogens and Their Links to Neuroinflammation and Neurodegeneration. Microorganisms 2023, 11, 1832. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mohler, J.; Mahajan, S.D.; Schwartz, S.A.; Bruggemann, L.; Aalinkeel, R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms 2023, 11, 1614. [Google Scholar] [CrossRef] [PubMed]
- Popova, C.; Dosseva-Panova, V.; Panov, V. Microbiology of Periodontal Diseases. A Review. Biotechnol. Biotechnol. Equip. 2013, 27, 3754–3759. [Google Scholar] [CrossRef]
- Kumar, P.S.; Griffen, A.L.; Barton, J.A.; Paster, B.J.; Moeschberger, M.L.; Leys, E.J. New bacterial species associated with chronic periodontitis. J. Dent. Res. 2003, 82, 338–344. [Google Scholar] [CrossRef]
- Darveau, R.P. The oral microbial consortium’s interaction with the periodontal innate defense system. DNA Cell Biol. 2009, 28, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Griffen, A.L.; Beall, C.J.; Campbell, J.H.; Firestone, N.D.; Kumar, P.S.; Yang, Z.K.; Podar, M.; Leys, E.J. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 2012, 6, 1176–1185. [Google Scholar] [CrossRef] [PubMed]
- Patano, A.; Malcangi, G.; Inchingolo, A.D.; Garofoli, G.; De Leonardis, N.; Azzollini, D.; Latini, G.; Mancini, A.; Carpentiere, V.; Laudadio, C.; et al. Mandibular Crowding: Diagnosis and Management—A Scoping Review. J. Pers. Med. 2023, 13, 774. [Google Scholar] [CrossRef] [PubMed]
- Chapple, I.L.; Mealey, B.L.; Van Dyke, T.E.; Bartold, P.M.; Dommisch, H.; Eickholz, P.; Geisinger, M.L.; Genco, R.J.; Glogauer, M.; Goldstein, M.; et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of Workgroup 1 of the 2017 World Workshop on the classification of periodontal and peri-implant diseases and conditions. J. Clin. Periodontol. 2018, 45, S68–S77. [Google Scholar] [CrossRef] [PubMed]
- Aas, J.A.; Paster, B.J.; Stokes, L.N.; Olsen, I.; Dewhirst, F.E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 2005, 43, 5721–5732. [Google Scholar] [CrossRef] [PubMed]
- Kolenbrander, P.E.; Palmer, R.J., Jr.; Periasamy, S.; Jakubovics, N.S. Oral multispecies biofilm development and the key role of cell–cell distance. Nat. Rev. Microbiol. 2010, 8, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Fives-Taylor, P.M.; Meyer, D.H.; Mintz, K.P.; Brissette, C. Virulence factors of Actinobacillus actinomycetemcomitans. Periodontol. 2000 1999, 20, 136–167. [Google Scholar] [CrossRef] [PubMed]
- Höglund Åberg, C.; Haubek, D.; Kwamin, F.; Johansson, A.; Claesson, R. Leukotoxic activity of Aggregatibacter actinomycetemcomitans and periodontal attachment loss. PLoS ONE 2014, 9, e104095. [Google Scholar] [CrossRef] [PubMed]
- Fine, D.H.; Patil, A.G.; Velusamy, S.K. Aggregatibacter actinomycetemcomitans (Aa) Under the Radar: Myths and Misunderstandings of Aa and Its Role in Aggressive Periodontitis. Front Immunol. 2019, 10, 728. [Google Scholar] [CrossRef]
- Nørskov-Lauritsen, N.; Kilian, M. Reclassification of Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, Haemophilus paraphrophilus and Haemophilus segnis as Aggregatibacter actinomycetemcomitans gen. nov., comb. nov., Aggregatibacter aphrophilus comb. nov. and Aggregatibacter segnis comb. nov., and emended description of Aggregatibacter aphrophilus to include V factor-dependent and V factor-independent isolates. Int. J. Syst. Evol. Microbiol. 2006, 56, 2135–2146. [Google Scholar] [CrossRef]
- Pignatelli, P.; Nuccio, F.; Piattelli, A.; Curia, M.C. The Role of Fusobacterium nucleatum in Oral and Colorectal Carcinogenesis. Microorganisms 2023, 11, 2358. [Google Scholar] [CrossRef]
- Gallimidi, A.; Binder, F.; Fischman, S.; Revach, B.; Bulvik, R.; Maliutina, A.; Rubinstein, A.M.; Nussbaum, G.; Elkin, M. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget 2015, 6, 22613–22623. [Google Scholar] [CrossRef] [PubMed]
- Socransky, S.S.; Haffajee, A.D. Periodontal microbial ecology. Periodontol. 2000 2005, 38, 135–187. [Google Scholar] [CrossRef] [PubMed]
- Karched, M.; Bhardwaj, R.G.; Asikainen, S.E. Coaggregation and biofilm growth of Granulicatella spp. with Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans. BMC Microbiol. 2015, 15, 114. [Google Scholar] [CrossRef]
- Thurnheer, T.; Karygianni, L.; Flury, M.; Belibasakis, G.N. Fusobacterium Species and Subspecies Differentially Affect the Composition and Architecture of Supra- and Subgingival Biofilms Models. Front. Microbiol. 2019, 10, 1716. [Google Scholar] [CrossRef]
- Marsh, P.D. Microbial ecology of dental plaque and its significance in health and disease. Adv. Dent. Res. 1994, 8, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Zambon, J.J. Periodontal Diseases: Microbial Factors. Ann. Periodontol. 1996, 1, 879–925. [Google Scholar] [CrossRef]
- Hajishengallis, G.; Lamont, R.J. Beyond the red complex and into more complexity: The polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol. Oral Microbiol. 2012, 27, 409–419. [Google Scholar] [CrossRef]
- Avila, M.; Ojcius, D.M.; Yilmaz, O. The oral microbiota: Living with a permanent guest. DNA Cell Biol. 2009, 28, 405–411. [Google Scholar] [CrossRef]
Parameter | Total | No Malocclusions | With Malocclusions | p |
---|---|---|---|---|
N | 20 | 10 (50%) | 10 (50%) | |
Age (mean ± SD) | 37.35 ± 3.16 | 36 ± 3.97 | 38.7 ± 1.16 | 0.054 * |
Sex (Nr., %) | 14 (70%) Male | 6 (60%) Male | 8 (80%) Male | 0.628 ** |
Education (Nr., %) | ||||
ISCED 3-4 | 11 (55%) | 7 (70%) | 4 (40%) | 0.370 ** |
Environment (Nr., %) | ||||
Urban | 11 (55%) | 6 (60%) | 5 (50%) | 1.000 ** |
Smoking (Nr., %) | ||||
Ex-smoker | 4 (20%) | 3 (30%) | 1 (10%) | 0.500 ** |
Smoker | 5 (25%) | 3 (30%) | 2 (20%) | |
Non-smoker | 11 (55%) | 4 (40%) | 7 (70%) | |
Periodontitis (Nr., %) | ||||
Family history | 11 (55%) | 4 (40%) | 7 (70%) | 0.370 ** |
Periodontitis–Stage (Nr., %) | ||||
Stage I (1–3 mm) | 2 (10%) | 2 (20%) | 0 (0%) | 0.554 ** |
Stage II (3–4 mm) | 10 (50%) | 4 (40%) | 6 (60%) | |
Stage III (4–6 mm) | 8 (40%) | 4 (40%) | 4 (40%) | |
Stage IV (>6 mm) | 0 (0%) | 0 (0%) | 0 (0%) | |
Periodontitis–Location (Nr., %) | ||||
Generalized | 17 (85%) | 9 (90%) | 8 (80%) | 1.000 ** |
Localized | 3 (15%) | 1 (10%) | 2 (20%) | |
Malocclusions–Types (Nr., %) | ||||
Crowding | 9 (90%) | 0 (0%) | 9 (90%) | 0.318 ** |
Open bite | 1 (10%) | 0 (0%) | 1 (10%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albu, Ş.-D.; Suciu, I.; Albu, C.-C.; Dragomirescu, A.-O.; Ionescu, E. Impact of Malocclusions on Periodontopathogenic Bacterial Load and Progression of Periodontal Disease: A Quantitative Analysis. Microorganisms 2024, 12, 1553. https://doi.org/10.3390/microorganisms12081553
Albu Ş-D, Suciu I, Albu C-C, Dragomirescu A-O, Ionescu E. Impact of Malocclusions on Periodontopathogenic Bacterial Load and Progression of Periodontal Disease: A Quantitative Analysis. Microorganisms. 2024; 12(8):1553. https://doi.org/10.3390/microorganisms12081553
Chicago/Turabian StyleAlbu, Ştefan-Dimitrie, Ioana Suciu, Cristina-Crenguţa Albu, Anca-Oana Dragomirescu, and Ecaterina Ionescu. 2024. "Impact of Malocclusions on Periodontopathogenic Bacterial Load and Progression of Periodontal Disease: A Quantitative Analysis" Microorganisms 12, no. 8: 1553. https://doi.org/10.3390/microorganisms12081553
APA StyleAlbu, Ş. -D., Suciu, I., Albu, C. -C., Dragomirescu, A. -O., & Ionescu, E. (2024). Impact of Malocclusions on Periodontopathogenic Bacterial Load and Progression of Periodontal Disease: A Quantitative Analysis. Microorganisms, 12(8), 1553. https://doi.org/10.3390/microorganisms12081553