Chronic Endometritis and Antimicrobial Resistance: Towards a Multidrug-Resistant Endometritis? An Expert Opinion
Abstract
:1. Introduction
2. Methods
3. Pathogenesis and Risk Factors of Chronic Endometritis and Implication in Antibiotic Resistance
- Endometrial micro-polyposis (1–2 mm protrusions from the endometrial surface) [19].
- Stromal edema, which causes the endometrium to appear thick and pale during the follicular phase rather than the secretory phase [20].
- Focal reddened areas of the endometrium with sharp, irregular borders [21].
- Large regions of hyperemic endometrium with white central points [19].
- Focal hyperemia.
- Recurrent cystitis: Women with a history of recurrent urinary tract infections (UTIs) face an increased risk of ascending infections due to the proximity of the urethra to the vagina and cervix [22].
- Vaginal transmission of intestinal germs: Intestinal bacteria, particularly Escherichia coli, Klebsiella spp., and Enterococcus spp., can colonize the vaginal and perineal areas, leading to uterine infections [23]. Poor hygiene, fecal contamination during intercourse, or improper wiping techniques after bowel movements can facilitate this transmission. Stress is also strongly associated with increased translocation of intestinal bacteria to the urogenital tract, raising the risk of CE [24]. See Figure 1.
4. Antibiotic Resistance and MDR in Chronic Endometritis
- Low risk:
- AMR rate: resistance rates for etiological agents are below 10% for first-line antibiotics.
- Pathogen type: well-known and easily treatable pathogens with low virulence and minimal resistance (e.g., Streptococcus agalactiae).
- Moderate risk:
- AMR rate: resistance rates range from 10% to 30%.
- Pathogen type: pathogens with partial resistance to commonly used antibiotics (e.g., Escherichia coli resistant to fluoroquinolones).
- High (severe) risk:
- AMR rate: resistance rates exceed 30%, particularly for multidrug-resistant bacteria (e.g., E. coli or Klebsiella pneumoniae).
- Pathogen type: multidrug-resistant pathogens that are difficult to treat, such as Klebsiella pneumoniae resistant to carbapenems or ESBL-producing E. coli.
Authors | Country and Year | Patients with CE | Study Design | Etiological Agents | Treatment Procedure | Duration of Treatment | CDC/WHO Antimicrobial Resistance Surveillance in Europe 2023–2021 Data | Risk of Failure |
---|---|---|---|---|---|---|---|---|
Cicinelli et al. [43] | Italy, 2021 | 128 | Retrospective study | Escherichia coli 38/128 Streptococci 31/128 Staphylococci 2/128 Enterococcus faecalis 33/128 Klebsiella pneumoniae 2/128 Ureaplasma 36/128 Yeast 2/128 | Repeated course (up to three times) | 30% of E. coli isolates show AMR phenotype to aminopenicillins, 5.4% show AMR phenotype to Aminopenicillins + Fluoroquinolones | High | |
Ciprofloxacin 500 mg twice a day (if Gram negative) | 10 days | |||||||
Amoxicillin/Clavulanate 1 g twice a day (if Gram-positive) | 8 days | |||||||
Josamycin 1 g twice a day (if mycoplasma and U. urealyticum) PLUS Minocycline 100 mg twice a day (if persistent) | 12 days | |||||||
Kitaya et al. [39] | Japan, 2017 | 142 | Prospective study | Enterococcus 15/142 (10.6) Escherichia coli 14/142 (9.9) Ureaplasma parvum 14/46 (30.4) Mycoplasma hominis 8/46 (17.4) Streptococcus agalactiae 8/142 (5.6) Corynebacterium 10/142 (7.0) Staphylococcus aureus 7/142 (4.9) Lactobacillus 7/142 (4.9) Ureaplasma urealyticum 6/46 (13.0) Staphylococcus saprophyticus 4/142 (2.8) Mycoplasma genitalium 4/46 (8.7) Streptococcus pyogenes 3/142 (2.1) Klebsiella pneumoniae 2/142 (1.4) Staphylococcus epidermidis 1/142 (0.7) Chlamydia trachomatis 2/142 (1.4) | Repeated course (up to two times) | 21.6% of E. coli isolates show AMR phenotype to fluoroquinolones, including Ciprofloxacin 33.6% of K. pneumoniae isolates with AMR phenotype to fluoroquinolones, including ciprofloxacin | Moderate | |
Doxycycline 100 mg twice a day | 14 days | |||||||
Metronidazole 250 mg twice a day PLUS Ciprofloxacin hydrochloride 200 mg twice a day (if resistance to doxycycline) | 14 days | |||||||
Yang et al. [21] | China, 2014 | 88 | Retrospective study | no data | Single course | 14 days | ||
Levofloxacin 500 mg once a day PLUS Metronidazole 1 g once a day | ||||||||
Johnston-MacAnanny et al. [44] | USA, 2009 | 43 | Retrospective study | no data | Doxycycline 100 mg twice a day | 14 days | ||
Ciprofloxacin PLUS metronidazole 500 mg twice a day, respectively | 14 days | |||||||
Xiong et al. [45] | China, 2021 | 26 | Retrospective study | no data | Doxycycline 100 mg twice a day | 14 days | ||
Levofloxacin 200 mg twice a day PLUS Metronidazole 500 mg three times a day | 14 days | |||||||
Demirdag et al. [46] | Turkey, 2021 | 129 | Retrospective study | no data | Single course | |||
Ciprofloxacin 500 mg twice a day PLUS Ornidazole 500 mg twice a day | 14 days | |||||||
Tersoglio et al. [47] | Argentina, 2015 | 14 | Prospective study | no data | Doxycycline 100 mg twice a day | 14 days | ||
Metronidazole 1 g once a day PLUS Ciprofloxacin 1 g once a day (if culture negative) | 14 days | |||||||
Linezolid 600 mg once a day (if persistent) | 10 days | |||||||
Cicinelli et al. [4] | Italy, 2015 | 61 | Retrospective study | Enterococcus faecalis 16/61 (33) Mycoplasma/Ureaplasma 14/61 (30) Escherichia coli 11/61 (23) Streptococcus agalactiae 5–61 (10) Chlamydia 4/61 (8) Streptococcus bovis 2/61 (4) Candida 1/61 (2) Klebsiella pneumoniae 1/61 (2) Staphylococcus epidermidis 1/61 (2) Staphylococcus aureus 1/61 (2) Streptococcus milleri 1/61 (2) | First-line therapy: Ciprofloxacin 500 mg twice a day | 10 days | 21.6% of E. coli isolates show AMR phenotype to fluoroquinolones, including Ciprofloxacin 33.6% of K. pneumoniae isolates with AMR phenotype to fluoroquinolones, including ciprofloxacin 4.7% of S. aureus isolates with AMR phenotype to fluoroquinolones | Moderate |
Amoxicillin/Clavulanate 1 g twice a day (In case of gram-positive bacteria) | 8 days | |||||||
Josamycin 1 g twice a day in case of Mycoplasma spp. and U. urealyticum | 12 days | |||||||
Minocycline 100 mg twice a day (in case of persistence) | 12 days |
5. Nutritional Role in Chronic Endometritis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kitaya, K.; Yasuo, T. Immunohistochemistrical and Clinicopathological Characterization of Chronic Endometritis: Characterization of chronic endometritis. Am. J. Reprod. Immunol. 2011, 66, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Kimura, F.; Takebayashi, A.; Ishida, M.; Nakamura, A.; Kitazawa, J.; Morimune, A.; Hirata, K.; Takahashi, A.; Tsuji, S.; Takashima, A.; et al. Review: Chronic endometritis and its effect on reproduction. J. Obstet. Gynaecol. Res. 2019, 45, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Cicinelli, E.; Trojano, G.; Mastromauro, M.; Vimercati, A.; Marinaccio, M.; Mitola, P.C.; Resta, L.; De Ziegler, D. Higher prevalence of chronic endometritis in women with endometriosis: A possible etiopathogenetic link. Fertil. Steril. 2017, 108, 289–295.e1. [Google Scholar] [CrossRef] [PubMed]
- Cicinelli, E.; Matteo, M.; Tinelli, R.; Lepera, A.; Alfonso, R.; Indraccolo, U.; Marrocchella, S.; Greco, P.; Resta, L. Prevalence of chronic endometritis in repeated unexplained implantation failure and the IVF success rate after antibiotic therapy. Hum. Reprod. 2015, 30, 323–330. [Google Scholar] [CrossRef]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Mestrovic, T.; Robles Aguilar, G.; Swetschinski, L.R.; Ikuta, K.S.; Gray, A.P.; Davis Weaver, N.; Han, C.; Wool, E.E.; Gershberg Hayoon, A.; Hay, S.I.; et al. The burden of bacterial antimicrobial resistance in the WHO European region in 2019: A cross-country systematic analysis. Lancet Public Health 2022, 7, e897–e913. [Google Scholar] [CrossRef]
- Song, D.; He, Y.; Wang, Y.; Liu, Z.; Xia, E.; Huang, X.; Xiao, Y.; Li, T.-C. Impact of antibiotic therapy on the rate of negative test results for chronic endometritis: A prospective randomized control trial. Fertil. Steril. 2021, 115, 1549–1556. [Google Scholar] [CrossRef]
- Frallonardo, L.; Vimercati, A.; Novara, R.; Lepera, C.; Ferrante, I.; Chiarello, G.; Cicinelli, R.; Mongelli, M.; Brindicci, G.; Segala, F.V.; et al. Use of Sotrovimab in a cohort of pregnant women with a high risk of COVID 19 progression: A single-center experience. Pathog. Glob. Health 2023, 117, 513–519. [Google Scholar] [CrossRef]
- Di Gennaro, F.; Guido, G.; Frallonardo, L.; Segala, F.V.; De Nola, R.; Damiani, G.R.; De Vita, E.; Totaro, V.; Barbagallo, M.; Nicastri, E.; et al. Efficacy and safety of therapies for COVID-19 in pregnancy: A systematic review and meta-analysis. BMC Infect. Dis. 2023, 23, 776. [Google Scholar] [CrossRef]
- Cicinelli, E.; Vitagliano, A.; Kumar, A.; Lasmar, R.B.; Bettocchi, S.; Haimovich, S.; Kitaya, K.; De Ziegler, D.; Simon, C.; Moreno, I.; et al. Unified diagnostic criteria for chronic endometritis at fluid hysteroscopy: Proposal and reliability evaluation through an international randomized-controlled observer study. Fertil. Steril. 2019, 112, 162–173.e2. [Google Scholar] [CrossRef]
- Klimaszyk, K.; Svarre Nielsen, H.; Wender-Ozegowska, E.; Kedzia, M. Chronic endometritis-is it time to clarify diagnostic criteria? Ginekol. Pol. 2023, 94, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Pirtea, P.; Cicinelli, E.; De Nola, R.; De Ziegler, D.; Ayoubi, J.M. Endometrial causes of recurrent pregnancy losses: Endometriosis, adenomyosis, and chronic endometritis. Fertil. Steril. 2021, 115, 546–560. [Google Scholar] [CrossRef] [PubMed]
- Barbara, G.; Barbaro, M.R.; Fuschi, D.; Palombo, M.; Falangone, F.; Cremon, C.; Marasco, G.; Stanghellini, V. Corrigendum: Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front. Nutr. 2021, 8, 790387. [Google Scholar] [CrossRef] [PubMed]
- Kaluanga Bwanga, P.; Tremblay-Lemoine, P.-L.; Timmermans, M.; Ravet, S.; Munaut, C.; Nisolle, M.; Henry, L. The Endometrial Microbiota: Challenges and Prospects. Medicina 2023, 59, 1540. [Google Scholar] [CrossRef]
- Cicinelli, E.; De Ziegler, D.; Nicoletti, R.; Colafiglio, G.; Saliani, N.; Resta, L.; Rizzi, D.; De Vito, D. Chronic endometritis: Correlation among hysteroscopic, histologic, and bacteriologic findings in a prospective trial with 2190 consecutive office hysteroscopies. Fertil. Steril. 2008, 89, 677–684. [Google Scholar] [CrossRef]
- Yang, R.; Du, X.; Wang, Y.; Song, X.; Yang, Y.; Qiao, J. The hysteroscopy and histological diagnosis and treatment value of chronic endometritis in recurrent implantation failure patients. Arch. Gynecol. Obstet. 2014, 289, 1363–1369. [Google Scholar] [CrossRef]
- Cicinelli, E.; Haimovich, S.; De Ziegler, D.; Raz, N.; Ben-Tzur, D.; Andrisani, A.; Ambrosini, G.; Picardi, N.; Cataldo, V.; Balzani, M.; et al. MUM-1 immunohistochemistry has high accuracy and reliability in the diagnosis of chronic endometritis: A multi-centre comparative study with CD-138 immunostaining. J. Assist. Reprod. Genet. 2022, 39, 219–226. [Google Scholar] [CrossRef]
- Hosseini, S.; Abbasi, H.; Salehpour, S.; Saharkhiz, N.; Nemati, M. Prevalence of chronic endometritis in infertile women undergoing hysteroscopy and its association with intrauterine abnormalities: A Cross-Sectional study. JBRA Assist. Reprod. 2024, 28, 430–434. [Google Scholar] [CrossRef]
- Cicinelli, E.; Resta, L.; Nicoletti, R.; Zappimbulso, V.; Tartagni, M.; Saliani, N. Endometrial micropolyps at fluid hysteroscopy suggest the existence of chronic endometritis. Hum. Reprod. 2005, 20, 1386–1389. [Google Scholar] [CrossRef]
- Pitsos, M.; Skurnick, J.; Heller, D. Association of pathologic diagnoses with clinical findings in chronic endometritis. J. Reprod. Med. 2009, 54, 373–377. [Google Scholar]
- Kitaya, K.; Yasuo, T.; Yamaguchi, T. Bridging the Diagnostic Gap between Histopathologic and Hysteroscopic Chronic Endometritis with Deep Learning Models. Medicina 2024, 60, 972. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, J.E.; Gupta, K. Recurrent UTI in Women–Risk Factors and Management. Infect. Dis. Clin. N. Am. 2024, 38, 325–341. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Z.; Ma, X.; Du, L.; Jia, Z.; Cui, X.; Yu, L.; Yang, J.; Xiao, L.; Zhang, B.; et al. Translocation of vaginal microbiota is involved in impairment and protection of uterine health. Nat. Commun. 2021, 12, 4191. [Google Scholar] [CrossRef] [PubMed]
- Amabebe, E.; Anumba, D.O.C. Female Gut and Genital Tract Microbiota-Induced Crosstalk and Differential Effects of Short-Chain Fatty Acids on Immune Sequelae. Front. Immunol. 2020, 11, 2184. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Chlamydia. In ECDC. Annual Epidemiological Report for 2022; ECDC: Stockholm, Sweden, 2024; Available online: https://www.ecdc.europa.eu/en/publications-data/chlamydia-annual-epidemiological-report-2022 (accessed on 23 September 2024).
- Tang, W.; Mao, J.; Li, K.T.; Walker, J.S.; Chou, R.; Fu, R.; Chen, W.; Darville, T.; Klausner, J.; Tucker, J.D. Pregnancy and fertility-related adverse outcomes associated with Chlamydia trachomatis infection: A global systematic review and meta-analysis. Sex. Transm. Infect. 2020, 96, 322–329. [Google Scholar] [CrossRef]
- Moreno, I.; Codoñer, F.M.; Vilella, F.; Valbuena, D.; Martinez-Blanch, J.F.; Jimenez-Almazán, J.; Alonso, R.; Alamá, P.; Remohí, J.; Pellicer, A.; et al. Evidence that the endometrial microbiota has an effect on implantation success or failure. Am. J. Obstet. Gynecol. 2016, 215, 684–703. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Surveillance in Europe 2023–2021 Data; European Centre for Disease Prevention and Control and World Health Organization: Stockholm, Sweden, 2023; Available online: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2023-2021-data (accessed on 10 October 2024).
- Walsh, T.R.; Gales, A.C.; Laxminarayan, R.; Dodd, P.C. Antimicrobial Resistance: Addressing a Global Threat to Humanity. PLoS Med. 2023, 20, e1004264. [Google Scholar] [CrossRef]
- Okeke, I.N.; De Kraker, M.E.A.; Van Boeckel, T.P.; Kumar, C.K.; Schmitt, H.; Gales, A.C.; Bertagnolio, S.; Sharland, M.; Laxminarayan, R. The scope of the antimicrobial resistance challenge. Lancet 2024, 403, 2426–2438. [Google Scholar] [CrossRef]
- Belay, W.Y.; Getachew, M.; Tegegne, B.A.; Teffera, Z.H.; Dagne, A.; Zeleke, T.K.; Abebe, R.B.; Gedif, A.A.; Fenta, A.; Yirdaw, G.; et al. Mechanism of antibacterial resistance, strategies and next-generation antimicrobials to contain antimicrobial resistance: A review. Front. Pharmacol. 2024, 15, 1444781. [Google Scholar] [CrossRef]
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Robles Aguilar, G.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- WHO/ECDC Report: Antimicrobial Resistance Threatens Patient Safety in European Region. 14 April 2023. Available online: https://www.ecdc.europa.eu/en/news-events/whoecdc-report-antimicrobial-resistance-threatens-patient-safety-european-region (accessed on 20 October 2024).
- Bezabih, Y.M.; Bezabih, A.; Dion, M.; Batard, E.; Teka, S.; Obole, A.; Dessalegn, N.; Enyew, A.; Roujeinikova, A.; Alamneh, E.; et al. Comparison of the global prevalence and trend of human intestinal carriage of ESBL-producing Escherichia coli between healthcare and community settings: A systematic review and meta-analysis. JAC-Antimicrob. Resist. 2022, 4, dlac048. [Google Scholar] [CrossRef] [PubMed]
- WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 24 July 2024.
- Kato, H.; Yamagishi, Y.; Hagihara, M.; Hirai, J.; Asai, N.; Shibata, Y.; Iwamoto, T.; Mikamo, H. Systematic review and meta-analysis for impacts of oral antibiotic treatment on pregnancy outcomes in chronic endometritis patients. J. Infect. Chemother. 2022, 28, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Kitaya, K.; Matsubayashi, H.; Takaya, Y.; Nishiyama, R.; Yamaguchi, K.; Takeuchi, T.; Ishikawa, T. Live birth rate following oral antibiotic treatment for chronic endometritis in infertile women with repeated implantation failure. Am. J. Reprod. Immunol. 2017, 78, e12719. [Google Scholar] [CrossRef]
- Available online: https://www.cdc.gov/std/treatment-guidelines/pid.htm (accessed on 20 October 2024).
- Kitaya, K.; Tanaka, S.E.; Sakuraba, Y.; Ishikawa, T. Multi-drug-resistant chronic endometritis in infertile women with repeated implantation failure: Trend over the decade and pilot study for third-line oral antibiotic treatment. J. Assist. Reprod. Genet. 2022, 39, 1839–1848. [Google Scholar] [CrossRef]
- Giulini, S.; Grisendi, V.; Sighinolfi, G.; Di Vinci, P.; Tagliasacchi, D.; Botticelli, L.; La Marca, A.; Facchinetti, F. Chronic endometritis in recurrent implantation failure: Use of prednisone and IVF outcome. J. Reprod. Immunol. 2022, 153, 103673. [Google Scholar] [CrossRef]
- Zou, Y.; Ming, L.; Ding, J.; Xiao, Z.; Li, S.; Yang, J.; Bao, A.; Zhang, Y. Low dosage of prednisone acetate combined with doxycycline in the treatment of chronic endometritis in patients with repeated implantation failure. Am. J. Reprod. Immunol. 2023, 89, e13713. [Google Scholar] [CrossRef]
- Kapetanios, V.; Lampraki, M.; Georgoulias, G.; Kasdaglis, S.; Kliafas, S.; Gkavra, N.; Xountasi, M.; Tsilivakos, V.; Leventopoulos, M. Correlation between hysteroscopic features and specific microbial species in women with chronic endometritis. Heliyon 2024, 10, e30259. [Google Scholar] [CrossRef]
- Huang, F.; Cao, Y.; Liang, J.; Tang, R.; Wu, S.; Zhang, P.; Chen, R. The influence of the gut microbiome on ovarian aging. Gut Microbes 2024, 16, 2295394. [Google Scholar] [CrossRef]
- Inversetti, A.; Zambella, E.; Guarano, A.; Dell’Avanzo, M.; Di Simone, N. Endometrial Microbiota and Immune Tolerance in Pregnancy. Int. J. Mol. Sci. 2023, 24, 2995. [Google Scholar] [CrossRef]
- Barrientos-Durán, A.; Fuentes-López, A.; De Salazar, A.; Plaza-Díaz, J.; García, F. Reviewing the Composition of Vaginal Microbiota: Inclusion of Nutrition and Probiotic Factors in the Maintenance of Eubiosis. Nutrients 2020, 12, 419. [Google Scholar] [CrossRef]
- Gul, S.; Durante-Mangoni, E. Unraveling the Puzzle: Health Benefits of Probiotics—A Comprehensive Review. J. Clin. Med. 2024, 13, 1436. [Google Scholar] [CrossRef] [PubMed]
- Mizgier, M.; Jarzabek-Bielecka, G.; Mruczyk, K.; Kedzia, W. The role of diet and probiotics in prevention and treatment of bacterial vaginosis and vulvovaginal candidiasis in adolescent girls and non-pregnant women. Ginekol. Pol. 2020, 91, 412–416. [Google Scholar] [CrossRef]
- Chen, S.; Gu, Z.; Zhang, W.; Jia, S.; Wu, Y.; Zheng, P.; Dai, Y.; Leng, J. Microbiome of the lower genital tract in Chinese women with endometriosis by 16s-rRNA sequencing technique: A pilot study. Ann. Transl. Med. 2020, 8, 1440. [Google Scholar] [CrossRef]
- Molina, N.; Sola-Leyva, A.; Saez-Lara, M.; Plaza-Diaz, J.; Tubić-Pavlović, A.; Romero, B.; Clavero, A.; Mozas-Moreno, J.; Fontes, J.; Altmäe, S. New Opportunities for Endometrial Health by Modifying Uterine Microbial Composition: Present or Future? Biomolecules 2020, 10, 593. [Google Scholar] [CrossRef]
- Neggers, Y.H.; Nansel, T.R.; Andrews, W.W.; Schwebke, J.R.; Yu, K.; Goldenberg, R.L.; Klebanoff, M.A. Dietary Intake of Selected Nutrients Affects Bacterial Vaginosis in Women, 3. J. Nutr. 2007, 137, 2128–2133. [Google Scholar] [CrossRef]
- Al-Nasiry, S.; Ambrosino, E.; Schlaepfer, M.; Morré, S.A.; Wieten, L.; Voncken, J.W.; Spinelli, M.; Mueller, M.; Kramer, B.W. The Interplay Between Reproductive Tract Microbiota and Immunological System in Human Reproduction. Front. Immunol. 2020, 11, 378. [Google Scholar] [CrossRef]
- Di Vincenzo, F.; Del Gaudio, A.; Petito, V.; Lopetuso, L.R.; Scaldaferri, F. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review. Intern. Emerg. Med. 2024, 19, 275–293. [Google Scholar] [CrossRef] [PubMed]
- Ravel, J.; Moreno, I.; Simón, C. Bacterial vaginosis and its association with infertility, endometritis, and pelvic inflammatory disease. Am. J. Obstet. Gynecol. 2021, 224, 251–257. [Google Scholar] [CrossRef]
- Elkafas, H.; Walls, M.; Al-Hendy, A.; Ismail, N. Gut and genital tract microbiomes: Dysbiosis and link to gynecological disorders. Front. Cell. Infect. Microbiol. 2022, 12, 1059825. [Google Scholar] [CrossRef]
- Bastani, P.; Homayouni, A.; Gasemnezhad, V.; Ziyadi, S. Dairy Probiotic Foods and Bacterial Vaginosis: A Review on Mechanism of Action. In Probiotics; Rigobelo, E., Ed.; InTech: London, UK, 2012; ISBN 978-953-51-0776-7. [Google Scholar]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Mamieva, Z.; Poluektova, E.; Svistushkin, V.; Sobolev, V.; Shifrin, O.; Guarner, F.; Ivashkin, V. Antibiotics, gut microbiota, and irritable bowel syndrome: What are the relations? World J. Gastroenterol. 2022, 28, 1204–1219. [Google Scholar] [CrossRef] [PubMed]
Line | Antibiotic | Dosage | Duration of Treatment |
---|---|---|---|
1° | Doxycycline | 100 mg orally twice daily | 14 days |
2° | Metronidazole | 500 mg orally daily | 14 days |
PLUS | |||
Ciprofloxacin | 400 mg orally daily | 14 days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Gennaro, F.; Guido, G.; Frallonardo, L.; Pennazzi, L.; Bevilacqua, M.; Locantore, P.; Vitagliano, A.; Saracino, A.; Cicinelli, E. Chronic Endometritis and Antimicrobial Resistance: Towards a Multidrug-Resistant Endometritis? An Expert Opinion. Microorganisms 2025, 13, 197. https://doi.org/10.3390/microorganisms13010197
Di Gennaro F, Guido G, Frallonardo L, Pennazzi L, Bevilacqua M, Locantore P, Vitagliano A, Saracino A, Cicinelli E. Chronic Endometritis and Antimicrobial Resistance: Towards a Multidrug-Resistant Endometritis? An Expert Opinion. Microorganisms. 2025; 13(1):197. https://doi.org/10.3390/microorganisms13010197
Chicago/Turabian StyleDi Gennaro, Francesco, Giacomo Guido, Luisa Frallonardo, Laura Pennazzi, Miriana Bevilacqua, Pietro Locantore, Amerigo Vitagliano, Annalisa Saracino, and Ettore Cicinelli. 2025. "Chronic Endometritis and Antimicrobial Resistance: Towards a Multidrug-Resistant Endometritis? An Expert Opinion" Microorganisms 13, no. 1: 197. https://doi.org/10.3390/microorganisms13010197
APA StyleDi Gennaro, F., Guido, G., Frallonardo, L., Pennazzi, L., Bevilacqua, M., Locantore, P., Vitagliano, A., Saracino, A., & Cicinelli, E. (2025). Chronic Endometritis and Antimicrobial Resistance: Towards a Multidrug-Resistant Endometritis? An Expert Opinion. Microorganisms, 13(1), 197. https://doi.org/10.3390/microorganisms13010197