The Role of Microbes in Ensiling
Abstract
1. Introduction
2. History
3. Fermentation
4. Lactobacillus Starter Cultures
5. Potential Pathogens
6. Bacteriophages
7. Fungi
8. Plant Fiber Polymers
9. Silage Moisture and Dry Matter
10. Chemical Additives
11. Ruminal Effects
12. Silage Stability
13. Human Health Risk
14. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cecava, M.J. Silage and crops for silage. In Beef Cattle Feeding and Nutrition; Perry, T.W., Cecava, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1995; pp. 117–137. [Google Scholar]
- Cornell CALS. Forage Systems. Available online: https://cals.cornell.edu/pro-dairy/our-expertise/forage-systems (accessed on 14 September 2025).
- Oregon State University. Oregon Forages. Available online: https://forages.oregonstate.edu/oregon/topics/storage/silos (accessed on 14 September 2025).
- Penn State Extension. From Harvest to Feed: Understanding Silage Management. Available online: https://extension.psu.edu/from-harvest-to-feed-understanding-silage-management (accessed on 14 September 2025).
- University of Wisconsin-Madison Extension Team Forage. Corn Silage. Available online: https://fyi.extension.wisc.edu/forage/corn/ (accessed on 14 September 2025).
- Marappan, G.; Rajendran, D.; Tellis, J.M.; Heena, H.S.; Soren, N.M. Rumen microbes: Exploring its potential for productivity and commercial use. Ind. Anim. Sci. 2014, 94, 95–100. [Google Scholar] [CrossRef]
- Gill, M.S.; Kaushal, J.R. History of silage making in the United Kingdom—A review. J. Dairying Food Home Sci. 2000, 19, 151–158. [Google Scholar]
- Goffart, A. Manuel de la Culture et de l’Ensilage des Maïs et Autres Fourrages Verts; G. Masson: Paris, France, 1877. [Google Scholar]
- Goffart, A. The Ensilage of Maize and Other Green Fodder Crops; The National Printing Company: New York, NY, USA, 1879. [Google Scholar]
- Crisp, H.L.; Patterson, H.J. Silos and Silage in Maryland: The Construction of Silos and the Making and Feeding of Silage; Maryland Agricultural Experiment Station: College Park, MD, USA, 1908; 78p. [Google Scholar]
- Watson, S.J. The Science and Practice of Conservation: Grass and Forage Crops; The Clunbury Press: Berkahmsted, UK, 1939; pp. 219–240. [Google Scholar]
- Bolsen, K.K.; Young, M.A.; Siefers, M.K.; Huck, G.L. Improving Silage Quality. Kans. Agric. Exp. Stn. Res. Rep. 2017, 29–31. [Google Scholar] [CrossRef]
- Tian, F. Introduction. In Lactic Acid Bacteria; Chen, W., Ed.; Springer Nature: Singapore, 2022; pp. 1–33. [Google Scholar]
- Wilkinson, J.M.; Bolsen, K.K.; Lin, C.L. History of silage. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; Wiley: New York, NY, USA, 2003; pp. 1–30. [Google Scholar]
- McDonald, P. The Biochemistry of Silage; John Wiley & Sons: New York, NY, USA, 1981. [Google Scholar]
- Wilkinson, J.M. Silage: Trends and portents. J. Royal Agr. Soc. Engl. 1987, 148, 158–167. [Google Scholar]
- Bolsen, K.K.; Ashbell, G.; Wilkinson, J.M. Silage additives. In Biotechnology in Animal Feeds and Animal Feeding; Wallace, J.R., Chesson, A., Eds.; VCH Verlagsgesellschaft GmbH: Weinheim, Germany, 1995; pp. 33–54. [Google Scholar]
- Östling, C.; Lindgren, S. Influences of enterobacteria on the fermentation and aerobic stability of grass silages. Grass Forage Sci. 1995, 50, 41–44. [Google Scholar] [CrossRef]
- Jiang, H.; Okoye, C.O.; Wu, Y.; Gao, L.; Li, X.; Wang, Y.; Jiang, J. Silage pathogens and biological control agents: Effects, action mechanisms, challenges and prospects. BioControl 2024, 69, 1–17. [Google Scholar] [CrossRef]
- Muck, R.E. Factors influencing silage quality and their implications for management. J. Dairy Sci. 1988, 71, 2992–3002. [Google Scholar] [CrossRef]
- Muck, R.E. Silage microbiology and its control through additives. Rev. Bras. Zootec. 2010, 39, 183–191. [Google Scholar] [CrossRef]
- Duniere, L.; Xu, S.; Long, J.; Elekwachi, C.; Wang, Y.; Turkington, K.; Forster, R.; McAllister, T.A. Bacterial and fungal core microbiomes associated with small grain silages during ensiling and aerobic spoilage. BMC Microbiol. 2017, 17, 50. [Google Scholar] [CrossRef]
- Queiroz, O.C.M.; Ogunade, I.M.; Weinberg, Z.; Adesogan, A.T. Silage review: Foodborne pathogens in silage and their mitigation by silage additives. J. Dairy Sci. 2018, 101, 4132–4142. [Google Scholar] [CrossRef]
- Okoye, C.O.; Wang, Y.; Gao, L.; Wu, Y.; Li, X.; Sun, J.; Jiang, J. The performance of lactic acid bacteria in silage production: A review of modern biotechnology for silage improvement. Microbiol. Res. 2023, 266, 127212. [Google Scholar] [CrossRef]
- Ouwehand, A.C. Silage fermentation. In Lactic Acid Bacteria: Microbiological and Functional Aspects, 6th ed.; Vinderola, G., Ouwehand, A.C., Salminen, S., von Wright, A., Eds.; CRC Press: Boca Raton, FL, USA, 2024; pp. 276–283. [Google Scholar]
- Zhao, X.; Sun, Y.; Chang, Z.; Yao, B.; Han, Z.; Wang, T.; Shang, N.; Wang, R. Innovative lactic acid production techniques driving advances in silage fermentation. Fermentation 2024, 10, 533. [Google Scholar] [CrossRef]
- Ávila, C.L.S.; Carvalho, B.F. Silage fermentation—Updates focusing on the performance of micro-organisms. J. Appl. Microbiol. 2019, 128, 966–984. [Google Scholar] [CrossRef]
- Cai, Y. Identification and characterization of Enterococcus species isolated from forage crops and their influence on silage fermentation. J. Dairy Sci. 1999, 81, 2466–2471. [Google Scholar] [CrossRef] [PubMed]
- Fabiszewska, A.U.; Zielińska, K.J.; Wróbel, B. Trends in designing microbial silage quality by biotechnological methods using lactic acid bacteria inoculants: A minireview. World J. Microbiol. Biotechnol. 2019, 35, 76. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, K.D.; Choi, K.C. Role of LAB in silage fermentation: Effect on nutritional quality and organic acid production—An overview. AIMS Agr. Food 2020, 6, 216–234. [Google Scholar] [CrossRef]
- Ojo, A.O.; de Smidt, O. Lactic acid: A comprehensive review of production to purification. Processes 2023, 11, 688. [Google Scholar] [CrossRef]
- Syrjälä, L. Effect of different sucrose, starch and cellulose supplements on the utilization of grass silages by ruminants. Ann. Agr. Fenn. 1972, 11, 199–276. [Google Scholar]
- Guo, X.; Xu, D.; Li, F.; Bai, J.; Su, R. Current approaches on the roles of lactic acid bacteria in crop silage. Microb. Biotechnol. 2023, 16, 67–87. [Google Scholar] [CrossRef]
- Li, J.; Yuan, X.; Dong, Z.; Mugabe, W.; Shao, T. The effects of fibrolytic enzymes, cellulolytic fungi and bacteria on the fermentation characteristics, structural carbohydrates degradation, and enzymatic conversion yields of Pennisetum sinese silage. Bioresour. Technol. 2018, 264, 123–130. [Google Scholar] [CrossRef]
- Li, F.; Ding, Z.; Adesogan, A.T.; Ke, W.; Jiang, Y.; Bai, J.; Mudassar, S.; Zhang, Y.; Huang, W.; Guo, X. Effects of class IIa bacteriocin-producing Lactobacillus species on fermentation quality and aerobic stability of alfalfa silage. Animals 2020, 10, 1575. [Google Scholar] [CrossRef]
- Li, Z.; Usman, S.; Zhang, J.; Zhang, Y.; Su, R.; Chen, H.; Li, Q.; Jia, M.; Amole, T.A.; Guo, X. Effects of bacteriocin-producing Lactiplantibacillus plantarum on bacterial community and fermentation profile of whole-plant corn silage and its in vitro ruminal fermentation, microbiota, and CH4 emissions. J. Anim. Sci. Biotechnol. 2024, 15, 107. [Google Scholar] [CrossRef]
- Guo, L.; Yao, D.; Li, D.; Lin, Y.; Bureenok, S.; Ni, K.; Yang, F. Effects of lactic acid bacteria isolated from rumen fluid and feces of dairy cows on fermentation quality, microbial community, and in vitro digestibility of alfalfa silage. Front. Microbiol. 2020, 10, 2998. [Google Scholar] [CrossRef]
- Ibrahim, F.; Lebeer, S.; Salvetti, E.; Felis, G.E. The genus Lactobacillus—Across the past and future. In Lactic Acid Bacteria: Microbiological and Functional Aspects, 6th ed.; Vinderola, G., Ouwehand, A.C., Salminen, S., von Wright, A., Eds.; CRC Press: Boca Raton, FL, USA, 2024; pp. 28–39. [Google Scholar]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.; Harris, H.M.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. System. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Jung, J.S.; Wong, J.W.C.; Soundharrajan, I.; Lee, K.-W.; Park, H.S.; Kim, D.; Choi, K.C.; Chang, S.W.; Ravindran, B. Changes in microbial dynamics and fermentation characteristics of alfalfa silage: A potent approach to mitigate greenhouse gas emission through high-quality forage silage. Chemosphere 2024, 362, 142920. [Google Scholar] [CrossRef]
- Feng, Q.; Shi, W.; Chen, S.; Degen, A.A.; Qi, Y.; Yang, F.; Zhou, J. Addition of organic acids and Lactobacillus acidophilus to the leguminous forage Chamaecrista rotundifolia improved the quality and decreased harmful bacteria of the silage. Animals 2022, 12, 2260. [Google Scholar] [CrossRef]
- Hisham, M.B.; Hashim, A.M.; Hanafi, N.M.; Rahman, N.A.; Mutalib, N.E.A.; Tan, C.K.; Nazli, M.H.; Yusoff, N.F.M. Bacterial communities associated with silage of different forage crops in Malaysian climate analysed using 16S amplicon metagenomics. Sci. Rep. 2022, 12, 7107. [Google Scholar] [CrossRef]
- Ávila, C.L.S.; Carvalho, B.F.; Pinto, J.C.; Duarte, W.F.; Schwan, R.F. The use of Lactobacillus species as starter cultures for enhancing the quality of sugar cane silage. J. Dairy Sci. 2014, 97, 940–951. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Xue, Y.; Xiao, Y.; Te, R.; Wu, X.; Na, N.; Wu, N.; Qili, M.; Zhao, Y.; Cai, Y.; et al. Community synergy of lactic acid bacteria and cleaner fermentation of oat silage prepared with a multispecies microbial inoculant. Microbiol. Spectrum 2023, 13, 00705. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Wang, H.; Peng, R.; Chen, Z.; Xiang, Y.; Yan, L. Different commercial microbial additives influence fermentation quality and microbial community of king grass silage. Fermentation 2025, 11, 264. [Google Scholar] [CrossRef]
- Lai, X.; Liu, S.; Zhang, Y.; Wang, H.; Yan, L. Decoding forage-driven microbial–metabolite patterns: A multi-omics comparison of eight tropical silage crops. Fermentation 2025, 11, 480. [Google Scholar] [CrossRef]
- Ávila, C.L.S.; Valeriano, A.R.; Pinto, J.C.; Figueiredo, H.C.P.F.; Rezende, A.V.; Schwan, R.F. Chemical and microbiological characteristics of sugar cane silages treated with microbial inoculants. Braz. J. Anim. Sci. 2010, 39, 25–32. [Google Scholar] [CrossRef][Green Version]
- Zhang, Y.-H.; Xu, D.; Zhao, X.-H.; Song, Y.; Liu, Y.-L.; Li, H.-N. Biodegradation of two organophosphorus pesticides in whole corn silage as affected by the cultured Lactobacillus plantarum. 3 Biotech 2016, 6, 73. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Wu, T.-H.; Yang, Y.; Zhu, C.-L.; Ding, C.-L.; Dai, C.-C. Binding and detoxification of chlorpyrifos by lactic acid bacteria on rice straw silage fermentation. J. Environ. Sci. Health Pt. B 2016, 51, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Fu, W.; Bai, M.; Zhang, L.; Guo, B.; Qiao, Q.; Tao, R.; Kou, J. The degradation of residual pesticides and the quality of white clover silage are related to the types and initial concentrations of pesticides. J. Pestic. Sci. 2021, 46, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wu, X.; Song, Y.; Sun, Y.; Tong, K.; Yu, X.; Fan, C.; Chen, H. Screening of 258 pesticide residues in silage using modified QUeChERS with liquid- and gas chromatography-quadrupole/orbitrap mass spectrometry. Agriculture 2022, 12, 1231. [Google Scholar] [CrossRef]
- Driehuis, F.; Wilkinson, J.M.; Jiang, Y.; Ogunade, I.; Adesogan, A.T. Silage review: Animal and human health risks from silage. J. Dairy Sci. 2018, 101, 4093–4110. [Google Scholar] [CrossRef]
- Zheng, M.L.; Niu, D.Z.; Jiang, D.; Zuo, S.S.; Xu, C.C. Dynamics of microbial community during ensiling direct-cut alfalfa with and without LAB inoculant and sugar. J. Appl. Microbiol. 2017, 122, 1456–1470. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Guo, X.S.; Zhou, H.; Undersander, D.J.; Nandety, A. Characteristics of proteolytic activities of endo- and exopeptidases in alfalfa herbage and their implications for proteolysis in silage. J. Dairy Sci. 2012, 95, 4591–4595. [Google Scholar] [CrossRef]
- Mosconi, M.; Fontana, A.; Belloso Daza, M.V.; Bassi, D.; Gallo, A. Clostridium tyrobutyricum occurrence in silages and cattle feed: Use of molecular and simulation data to optimize predictive models. Front. Microbiol. 2023, 14, 1118646. [Google Scholar] [CrossRef]
- Petersson-Wolfe, C.S.; Masiello, S.; Hogan, J.S. The ability of common mastitis-causing pathogens to survive an ensiling period. J. Dairy Sci. 2011, 94, 5027–5032. [Google Scholar] [CrossRef] [PubMed]
- Pal, M. Etiology, transmission, epidemiology, clinical spectrum, diagnosis and management of fungal mastitis in dairy animals: A mini review. Int. J. Food Sci. Agr. 2023, 7, 424–442. [Google Scholar] [CrossRef]
- Elad, D.; Shpigel, N.Y.; Winkler, M.; Klinger, I.; Fuchs, V.; Saran, A.; Faingold, D. Feed contamination with Candida krusei as a probable source of mycotic mastitis in dairy cows. J. Amer. Vet. Med. Assoc. 1995, 207, 620–622. [Google Scholar] [CrossRef]
- Krukowski, H.; Lisowski, A.; Rózański, P.; Skórka, A. Yeasts and algae isolated from cows with mastitis in the south-eastern part of Poland. Pol. J. Vet. Sci. 2006, 9, 181–184. [Google Scholar] [PubMed]
- Johansson, M.; Emmoth, E.; Salomonsson, A.-C.; Albihn, A. Potential risks when spreading anaerobic digestion residues on grass silage crops—Survival of bacteria, moulds and viruses. Grass Forage Sci. 2005, 60, 175–185. [Google Scholar] [CrossRef]
- Scheinemann, H.A.; Dittmar, K.; Stöckel, F.S.; Müller, H.; Krüger, M.E. Hygienisation and nutrient conservation of sewage sludge or cattle manure by lactic acid fermentation. PLoS ONE 2015, 10, e0118230. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Y.; Wang, X.; Lin, Y.; Xu, G.; Yang, F.; Ni, K. Insights into the phage community structure and potential function in silage fermentation. J. Environ. Manage. 2024, 358, 120837. [Google Scholar] [CrossRef]
- Doi, K.; Zhang, Y.; Nishizaki, Y.; Umeda, A.; Ohmomo, S.; Ogata, S. A comparative study and phage typing of silage-making Lactobacillus bacteriophages. J. Biosci. Bioeng. 2003, 95, 518–525. [Google Scholar] [CrossRef]
- Vongkamjan, K.; Switt, A.M.; den Bakker, H.C.; Fortes, E.D.; Wiedmann, M. Silage collected from dairy farms harbors an abundance of listeriaphages with considerable host range and genome size diversity. Appl. Environ. Microbiol. 2012, 78, 8666–8675. [Google Scholar] [CrossRef]
- Sáenz, J.S.; Rios-Galicia, B.; Rehkugler, B.; Seifert, J. Dynamic development of viral and bacterial diversity during grass silage preservation. Viruses 2023, 15, 951. [Google Scholar] [CrossRef]
- Alonso, V.A.; Pereyra, C.M.; Keller, L.A.M.; Dalcero, A.M.; Rosa, C.A.R.; Chiacchiera, S.M. Fungi and mycotoxins in silage: An overview. J. Appl. Microbiol. 2013, 115, 637–643. [Google Scholar] [CrossRef]
- Dell’Orto, V.; Baldi, G.; Cheli, F. Mycotoxins in silage: Checkpoints for effective management and control. World Mycotox. J. 2015, 8, 603–617. [Google Scholar] [CrossRef]
- Gallo, A.; Ghilardelli, F.; Atzori, A.S.; Zara, S.; Novak, B.; Faas, J.; Fancello, F. Co-occurrence of regulated and emerging mycotoxins in corn silage: Relationships with fermentation quality and bacterial communities. Toxins 2021, 13, 232. [Google Scholar] [CrossRef]
- Soundharrajan, I.; Park, H.S.; Rengasamy, S.; Sivanesan, R.; Choi, K.C. Application and future prospective of lactic acid bacteria as natural additives for silage production—A review. Appl. Sci. 2021, 11, 8127. [Google Scholar] [CrossRef]
- Penagos-Tabares, F.; Sulyok, M.; Artavia, J.-I.; Flores-Quiroz, S.-I.; Garzón-Pérez, C.; Castillo-Lopez, E.; Zavala, L.; Orozco, J.-D.; Faas, J.; Krska, R.; et al. Mixtures of mycotoxins, phytoestrogens, and other secondary metabolites in whole-plant corn silages and total mixed rations of dairy farms in Central and Northern Mexico. Toxins 2023, 15, 153. [Google Scholar] [CrossRef] [PubMed]
- ul Haq, I.; Sarwar, M.K.; Mohyuddin, Z. Microbial determinants in silage rotting: A challenge in winter fodders. In Sustainable Winter Fodder Production, Challenges, and Prospects; ul Haq, B., Ijaz, S., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 301–329. [Google Scholar]
- Xu, S.; Yang, J.; Qi, M.; Smiley, B.; Rutherford, W.; Wang, Y.; McAllister, T.A. Impact of Saccharomyces cerevisiae and Lactobacillus buchneri on microbial communities during ensiling and aerobic spoilage of corn silage. J. Anim. Sci. 2019, 97, 1273–1285. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Béguin, P.; Aubert, J.-P. The biological degradation of cellulose. FEMS Microbiol. Rev. 1994, 13, 25–58. [Google Scholar] [CrossRef]
- Datta, R. Enzymatic degradation of cellulose in soil: A review. Heliyon 2024, 10, e24022. [Google Scholar] [CrossRef]
- Li, J.; Tang, X.; Zhao, J.; Chen, S.; Wang, S.; Shao, T. Improvement of fermentation quality and cellulose convertibility of Napier grass silage by inoculation of cellulolytic bacteria from Tibetan yak (Bos grunniens). J. Appl. Microbiol. 2021, 130, 1857–1867. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xie, X.; Zhao, G.; He, J.; Zhang, Y. The effects of applying cellulase and laccase on fermentation quality and microbial community in mixed silage containing corn stover and wet brewer’s grains. Front. Plant Sci. 2024, 15, 1441873. [Google Scholar] [CrossRef]
- Abbott, D.W.; Boraston, A.B. Structural biology of pectin degradation by Enterobacteriaceae. Microbiol. Mol. Biol. Rev. 2008, 72, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Sun, Z.; Yu, Z. Pectin degradation is an important determinant for alfalfa silage fermentation through the rescheduling of the bacterial community. Microorganisms 2020, 8, 488. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Z.; Sun, L.; Zhang, Y.; Zhao, M.; Hao, J.; Liu, M.; Ge, G.; Jia, Y.; Du, S. Effects of moisture content gradient on alfalfa silage quality, odor, and bacterial community revealed by electronic nose and GC–MS. Microorganisms 2025, 13, 381. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2017, 101, 3952–3979. [Google Scholar] [CrossRef]
- Virtanen, A.I. The A.I.V.-method of preserving fresh fodder. Empire J. Exper. Agr. 1933, 1, 143–155. [Google Scholar]
- Virtanen, A.I. The A.I.V.-method for the preservation of fresh fodder. Acta Chem. Fenn. 1933, A6, 13–28. [Google Scholar]
- Virtanen, A.I. Silage by the AIV method. Econ. Proc. Royal Dublin Soc. 1947, 3, 311–342. [Google Scholar]
- McLaughlin, A.M.; Erickson, P.S.; Hussey, J.S.; Reid, E.D.; Tanguay, J.A. Case study: NaCl addition to the top layer of corn ensiled in bunker silos. Prof. Anim. Sci. 2002, 18, 90–92. [Google Scholar] [CrossRef]
- Mishra, D.B.; Tyagi, N. Silage additives. In Feed Additives and Supplements for Ruminants; Mahesh, M.S., Yata, V.K., Eds.; Springer Nature: Singapore, 2024; pp. 449–458. [Google Scholar]
- Sun, J.; Wang, T.; Huang, F.; Liu, Y.; Shi, W.; Ma, C.; Zhong, J. Silage fermentation: A potential microbial approach for the forage utilization of Cyperus esculentus L. by-product. Fermentation 2021, 7, 273. [Google Scholar] [CrossRef]
- Dexter, S.T. The use of antibiotics in the making of silage. Agron. J. 1957, 49, 483–485. [Google Scholar] [CrossRef]
- Nagy, S.A.; Tóth, A.G.; Papp, M.; Kaplan, S.; Solymosi, N. Antimicrobial resistance determinants in silage. Sci. Rep. 2022, 12, 5243. [Google Scholar] [CrossRef]
- Muhammad, I.; Pan, S.; Elken, E.M.; Zhang, H.; Wang, Y.; Xu, Y.; Wang, Y.; Kong, L.; Ma, H. Antibiotic resistance of probiotics isolated from Chinese corn stover silage. J. Appl. Anim. Res. 2023, 51, 102–112. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, X.; Usman, S.; Bai, J.; Sheoran, N.; Guo, X. Reducing transmission of high-risk antibiotic resistance genes in whole-crop corn silage through lactic acid bacteria inoculation and increasing ensiling temperature. Sci. Total Environ. 2024, 926, 172114. [Google Scholar] [CrossRef]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet Health 2017, 1, e316–e327. [Google Scholar] [CrossRef] [PubMed]
- Durso, L.M.; Miller, D.N.; Wienhold, B.J. Distribution and quantification of antibiotic resistant genes and bacteria across agricultural and non-agricultural metagenomes. PLoS ONE 2012, 7, e48325. [Google Scholar] [CrossRef]
- Wu, Z.; Luo, Y.; Bao, J.; Luo, Y.; Yu, Z. Additives affect the distribution of metabolic profile, microbial communities and antibiotic resistance genes in high-moisture sweet corn kernel silage. Bioresour. Technol. 2020, 315, 123821. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, J.; Li, Z.; Guoa, S.; Li, K.; Xu, P.; Ok, Y.S.; Jones, D.L.; Zou, J. Antibiotics and antibiotic resistance genes in agricultural soils: A systematic analysis. Crit. Rev. Environ. Sci. 2023, 53, 847–864. [Google Scholar] [CrossRef]
- van Gastelen, S.; Dijkstra, J.; Bannink, A. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep? J. Dairy Sci. 2019, 102, 6109–6130. [Google Scholar] [CrossRef]
- Kaewpila, C.; Gunun, P.; Kesorn, P.; Subepang, S.; Thip-uten, S.; Cai, Y.; Pholsen, S.; Cherdthong, A.; Khota, W. Improving ensiling characteristics by adding lactic acid bacteria modifies in vitro digestibility and methane production of forage-sorghum mixture silage. Sci. Rep. 2021, 11, 1968. [Google Scholar] [CrossRef]
- Oskoueian, E.; Jahromi, M.F.; Jafari, S.; Shakeri, M.; Le, H.H.; Ebrahimi, M. Manipulation of rice straw silage fermentation with different types of lactic acid bacteria inoculant affects rumen microbial fermentation characteristics and methane production. Vet. Sci. 2021, 8, 100. [Google Scholar] [CrossRef]
- Brask-Pedersen, D.N.; Lamminen, M.; Mogensen, L.; Hellwing, A.L.F.; Johansen, M.; Lund, P.; Larsen, M.; Weisbjerg, M.; Børsting, C. Effect of substituting grass-clover silage with maize silage for dairy cows on nutrient digestibility, rumen metabolism, enteric methane emission and total carbon footprint. Livestock Sci. 2023, 274, 105273. [Google Scholar] [CrossRef]
- Pitta, D.W.; Indugu, N.; Melgar, A.; Hristov, A.; Challa, K.; Vecchiarelli, B.; Hennessy, M.; Narayan, K.; Duval, S.; Kindermann, M.; et al. The effect of 3-nitrooxypropanol, a potent methane inhibitor, on ruminal microbial gene expression profiles in dairy cows. Microbiome 2022, 10, 146. [Google Scholar] [CrossRef]
- Herliatika, A.; Widiawati, Y.; Jayanegara, A.; Harahap, R.P.; Kusumaningrum, D.A.; Shiddieqy, M.I.; Sasongko, W.; Asmairicen, S.; Hadiatry, M.; Putri, A.; et al. Meta-analysis of the relationship between dietary starch intake and enteric methane emissions in cattle from in vivo experiment. J. Advan. Veter. Anim. Res. 2024, 11, 212–230. [Google Scholar] [CrossRef] [PubMed]
- Bonifacio, H.F.; Rotz, C.A.; Hafner, S.D.; Montes, F.; Cohen, M.; Mitloehner, F.M. A process-based emission model of volatile organic compounds from silage sources on farms. Atmos. Environ. 2017, 152, 85–97. [Google Scholar] [CrossRef]
- Weiss, K. 2017. Volatile organic compounds in silages—Effects of management factors on their formation: A review. Slovak J. Anim. Sci. 2017, 50, 55–67. [Google Scholar]
- Jiang, H.; Wang, H.; Bao, B.; Qu, H.; Wang, J.; Sun, L.; Liu, B.; Gao, F. Effect of compound additives on nutritional composition, fermentation quality, and bacterial community of high-moisture alfalfa silage. Fermentation 2023, 9, 453. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, X.; Zheng, M.; Chen, D.; Chen, X. 2021. Altering microbial communities: A possible way of lactic acid bacteria inoculants changing smell of silage. Anim. Feed Sci. Technol. 2021, 279, 114998. [Google Scholar] [CrossRef]
- Soltan, Y.A.; Patra, A.K. Advancements in methane-mitigating feed additives in ruminants. In Feed Additives and Supplements for Ruminants; Mahesh, M.S., Yata, V.K., Eds.; Springer Nature: Singapore, 2024; pp. 119–141. [Google Scholar]
- Lahart, B.; Shalloo, L.; Dwan, C.; Walker, N.; Costigan, H. Evaluating the impact of 3-nitrooxypropanol supplementation on enteric methane emissions in pregnant nonlactating dairy cows offered grass silage. JDS Commun. 2025, 6, 44–48. [Google Scholar] [CrossRef]
- Glewen, M.J.; Young, A.W. Effect of ammoniation on the fermentation of corn silage. J. Animal Sci. 1982, 54, 713–718. [Google Scholar] [CrossRef]
- Moore, K.J.; Lemenager, R.P.; Lechtenberg, V.L.; Hendrix, K.S.; Risk, J.E. Digestion and utilization of ammoniated grass-legume silage. J. Animal Sci. 1986, 62, 235–243. [Google Scholar] [CrossRef]
- Song, M.K.; Kennelly, J.J. 1989. Effect of ammoniated barley silage on ruminal fermentation, nitrogen supply to the small intestine, ruminal and whole tract digestion, and milk production of Holstein cows. J. Dairy Sci. 1989, 72, 2981–2990. [Google Scholar] [CrossRef]
- Guan, H.; Shuai, Y.; Yan, Y.; Ran, Q.; Wang, X.; Li, D.; Cai, Y.; Zhang, X. Microbial community and fermentation dynamics of corn silage prepared with heat-resistant lactic acid bacteria in a hot environment. Microorganisms 2020, 8, 719. [Google Scholar] [CrossRef] [PubMed]
- Boudra, H.; Rouillé, B.; Lyan, B.; Morgavi, D.P. Presence of mycotoxins in sugar beet pulp silage collected in France. Anim. Feed Sci. Technol. 2015, 205, 131–135. [Google Scholar] [CrossRef]
- Ogunade, I.M.; Martinez-Tuppia, C.; Queiroz, O.C.M.; Jiang, Y.; Drouin, P.; Wu, F.; Vyas, D.; Adesogan, A. Silage review: Mycotoxins in silage: Occurrence, effects, prevention, and mitigation. J. Dairy Sci. 2018, 101, 4034–4059. [Google Scholar] [CrossRef]
- Dunière, L.; Gleizal, A.; Chaucheyras-Durand, F.; Chevallier, I.; Thévenot-Sergentet, D. Fate of Escherichia coli O26 in corn silage experimentally contaminated at ensiling, at silo opening, or after aerobic exposure, and protective effect of various bacterial inoculants. Appl. Environ. Microbiol. 2011, 77, 8696–8704. [Google Scholar] [CrossRef]
- Peichl, M.; Thober, S.; Samaniego, L.; Hansjürgens, B.; Marx, A. Climate impacts on long-term silage maize yield in Germany. Sci. Rep. 2019, 9, 7674. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Muck, R.E. Ensiling in 2050: Some challenges and opportunities. Grass Forage Sci. 2019, 72, 178–187. [Google Scholar] [CrossRef]
- Amaza, I.P.; Krei, M.P. Silo-filler’s disease: One health system’s experience and an update of the literature. J. Agromed. 2020, 25, 8–13. [Google Scholar] [CrossRef]
- do Pico, G.A. Lung [agricultural/rural]. Otolaryngol. Head Neck Surg. 1996, 114, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Douglas, W.W.; Hepper, N.G.G.; Colby, T.V. Silo-filler’s disease. Mayo Clinic Proc. 1989, 64, 291–304. [Google Scholar] [CrossRef] [PubMed]
- do Pico, G.A. Hazardous exposure and lung disease among farm workers. Clin. Chest Med. 1992, 13, 311–328. [Google Scholar] [CrossRef] [PubMed]
- Leavey, J.F.; Dubin, R.L.; Singh, N.; Kaminsky, D.A. Silo-filler’s disease, the acute respiratory distress syndrome, and oxides of nitrogen. Ann. Int. Med. 2004, 74, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Filippova, V.A.; Ilina, L.A.; Yildirim, E.A.; Ponomareva, E.S.; Kluchnikova, I.A.; Dubrovin, A.V.; Kalitkina, K.A.; Zaikin, V.A.; Laptev, G.Y. Assessing the risk of spreading Clostridioides difficile and its toxins within the dairy farm. Animals 2024, 14, 3148. [Google Scholar] [CrossRef]
Post-Ensiling Phases | Description |
---|---|
Pre-seal phase, 1 to 2 days | Aerobic respiration by plant cells and microbes depletes the remaining oxygen and carbon dioxide and H2O are formed, and heat evolution is noticeable. The length depends on the packing and compaction of the forage. A prolonged aerobic phase can result in excessive heat, loss of dry matter, invasive yeasts and filamentous fungi, and mycotoxin formation. The initial pH starts to decrease. |
Lag phase, 2–5 days | Plant and microbial enzymes break down complex carbohydrates in plant cells into sugars that enter fermentative pathways. Partial degradation of plant proteins. The pH decreases to 5.7–5.5. |
Active fermentation phase, up to 2 weeks | Oxygen is depleted and fermentation takes place under anaerobic conditions. The pH is decreased to <pH 5.7, which is favorable for lactic acid bacteria. Lactic acid is produced along with lesser amount of acetic acid and minor amounts mannitol and ethanol. Lactic acid accounts for 70% or more of the total acids in silage. Silage temperature is slightly elevated and the initial moisture content decreases with bacterial activity. The active fermentation phase lasts for up to two weeks. |
Stable phase, after about 3 weeks | Stable phase after ensiling. Silage pH is in the range of 3.8 to 4.2, silage is stabilized and preserved, and bacterial activity is declined because of the lack of soluble available substrates. Changes in silage continue throughout the storage, usually due to continued bacterial action and plant enzymes breaking down cellular protein. The temperature is stable at about 20 °C. |
Pathway of Lactic Acid Fermentation | Substrate | Products |
---|---|---|
Homofermentation | Glucose or fructose | 2 × lactic acid |
Pentose | Lactic acid + acetic acid | |
Heterofermentation | Glucose | Lactic acid + ethanol + CO2 |
3 × Fructose | Lactic acid + 2 × mannitol + acetic acid + CO2 | |
Pentose | Lactic acid + acetic acid | |
Mixed acid fermentation | Glucose | Lactic acid, acetic acid, ethanol, formic acid, succinic acid, CO2 |
Mycotoxin Group | Genus | Manifestations in Animals |
---|---|---|
Deoxynivalenols | Fusarium | Food refusal, diarrhea, reproductive failure |
Aflatoxins | Aspergillus | Carcinogenic effects |
Zearalenones | Fusarium | Estrogenic effects |
Fumonisins | Fusarium | Feed refusal, liver disease |
T-2 Toxin (trichothecenes) | Fusarium | Gastroenteritis and intestinal hemorrhage |
Tremorgens | Aspergillus | Anorexia, diarrhea |
Ochratoxins | Penicillium | Diarrhea, kidney damage |
Patulins | Fusarium | Hemorrhagic disease |
Class | Additive or Ingredient | Mode of Action | Examples |
---|---|---|---|
Acidifiers | Mineral acids | Lower the pH and prevent proteolytic decomposition (ammonification) | Hydrochloric–phosphoric acid, hydrochloric–sulfuric acid |
Acidifiers | Organic acids | Lower the pH and eliminate spoilage or competing microorganisms | Formic acid |
Fermentation inhibitors | Sterilants | General inhibition of the microbial population; protein stabilization | Formaldehyde |
Fermentation stimulants | Substrates, enzymes, inoculants | Promote carbohydrate fermentation; release fermentative substrates from non-fermentative sources; promote lactic acid bacteria | Molasses, cellulolytic enzymes, lactobacilli |
Antimicrobials | Antibiotics and other antimicrobial agents | Inhibit spoilage microorganisms (e.g., clostridia) | Bacitracin (controversial), Na-chloride, NaNO2 |
Nutrients | Energy substrate; N-compounds | Improve nutritional value of silage | Cereal, urea |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuovinen, O.H.; Niemelä, S.I.; Rajala-Schultz, P.J. The Role of Microbes in Ensiling. Microorganisms 2025, 13, 2237. https://doi.org/10.3390/microorganisms13102237
Tuovinen OH, Niemelä SI, Rajala-Schultz PJ. The Role of Microbes in Ensiling. Microorganisms. 2025; 13(10):2237. https://doi.org/10.3390/microorganisms13102237
Chicago/Turabian StyleTuovinen, Olli H., Seppo I. Niemelä, and Päivi J. Rajala-Schultz. 2025. "The Role of Microbes in Ensiling" Microorganisms 13, no. 10: 2237. https://doi.org/10.3390/microorganisms13102237
APA StyleTuovinen, O. H., Niemelä, S. I., & Rajala-Schultz, P. J. (2025). The Role of Microbes in Ensiling. Microorganisms, 13(10), 2237. https://doi.org/10.3390/microorganisms13102237