Is Increased Biofilm Formation Associated with Decreased Antimicrobial Susceptibility? A Systematic Literature Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection and Exclusion Criteria
2.3. Statistical Analysis
3. Results
3.1. Results of the Literature Search
3.2. General Overview of Results
3.3. Species- and Strain-Dependent Differences
3.4. Antibiotic-Dependent Differences
3.5. Impact of the Model System, Quantification Approach, and Other Experimental Parameters
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BPC | Biofilm prevention concentration |
CFU | Colony forming unit |
CV | Crystal violet |
MBEC | Minimum biofilm eradication concentration |
MIC | Minimum inhibitory concentration |
Appendix A
Staphylococcus aureus | ||||
---|---|---|---|---|
Reference | Number of Isolates Included | Model System | Biofilm Quantification Method | Antibiotics Tested |
Hon et al. [43] | 5 | Microtiter plate | Crystal violet staining | Mupirocin |
Liang et al. [44] | 2 | Microtiter plate | Crystal violet staining | Penicillin, ampicillin, meropenem, streptomycin, kanamycin, and gentamicin |
Silva et al. [23] | 23 | Microtiter plate | Crystal violet staining and XTT viability staining | Amikacin and tetracycline |
Silva et al. [24] | 18 | Microtiter plate | Crystal violet staining | Ciprofloxacin, erythromycin, and tetracycline |
Kwiatkowski et al. [25] | 8 | Microtiter plate | Crystal violet staining | Mupirocin |
Wu et al. [26] | 6 | Microtiter plate | Crystal violet staining and resazurin viability staining | Linezolid |
de Matos et al. [45] | 6 | Microtiter plate | Crystal violet staining | Gentamicin, linezolid, rifampicin, and vancomycin |
Abdelhady et al. [46] | 10 | Microtiter plate | Safranin staining | Vancomycin |
Wells et al. [47] | 2 | Microtiter plate | Crystal violet staining | Oxacillin, vancomycin, and ampicillin |
Roveta et al. [48] | 3 | Microtiter plate | Crystal violet staining | Moxifloxacin |
Xu et al. [49] | 6 | Microtiter plate | Crystal violet staining | Daptomycin |
Lavoie et al. [27] | 11 | Microtiter plate | Crystal violet staining | Daptomycin |
Coagulase-Negative Staphylococci spp. | ||||
Reference | Number of Isolates Included | Model System | Biofilm Quantification Method | Antibiotics Tested |
Silva et al. [50] | 19 | Microtiter plate | Crystal violet staining | Tetracycline and amikacin |
Pseudomonas aeruginosa | ||||
Reference | Number of Isolates Included | Model System | Biofilm Quantification Method | Antibiotics Tested |
Papa-Ezdra et al. [51] | 2 | Microtiter plate | Crystal violet staining | Rifampicin, meropenem, gentamicin, amikacin, and ciprofloxacin |
Ruhal et al. [52] | 3 | Glass test tubes | Crystal violet staining | Tobramycin, colistin, and ciprofloxacin |
Fortes et al. [53] | 2 | Microtiter plate | Crystal violet staining | Polymyxin B |
Goodyear et al. [54] | 10 | Microtiter plate | Crystal violet staining | Piperacillin, aztreonam, imipenem, colistin, tobramycin, and ciprofloxacin |
Žiemytė et al. [55] | 3 | Microtiter plate | Crystal violet staining | Ceftazidime, ciprofloxacin, colistin, tobramycin, imipenem, meropenem, and piperacillin-tazobactam |
Gupta et al. [56] | 4 | Flow tube reactor | Crystal violet staining | Tobramycin and norfloxacin |
Fabrizio et al. [30] | 11 | Microtiter plate | Crystal violet staining, resazurin viability staining, and determination of number of CFU | Cefiderocol |
Streptococcus spp. | ||||
Reference | Number of Isolates Included | Model System | Biofilm Quantification Method | Antibiotics Tested |
Silva et al. [50] | 2 | Microtiter plate | Crystal violet staining | Tetracycline and amikacin |
Alvim et al. [57] | 4 | Microtiter plate | Crystal violet staining | Penicillin |
Chen et al. [58] | 2 | Microtiter plate | Crystal violet staining | Chlorhexidine |
Hall-Stoodley et al. [59] | 6 | Microtiter plate | Crystal violet staining | Azithromycin |
Roveta et al. [48] | 3 | Microtiter plate | Crystal violet staining | Moxifloxacin |
Escherichia coli | ||||
Reference | Number of Isolates Included | Model System | Biofilm Quantification Method | Antibiotics Tested |
Roveta et al. [48] | 3 | Microtiter plate | Crystal violet staining | Moxifloxacin |
Burkholderia spp. | ||||
Reference | Number of Isolates Included | Model System | Biofilm Quantification Method | Antibiotics Tested |
Anutrakunchai et al. [60] | 10 | Microtiter plate | Crystal violet staining | Ceftazidime |
Tomlin et al. [29] | 6 | Microtiter plate | Crystal violet staining | Ceftazidime, chloramphenicol, ciprofloxacin, and meropenem |
Haemophilus influenzae | ||||
Reference | Number of Isolates Included | Model System | Biofilm Quantification Method | Antibiotics Tested |
Roveta et al. [48] | 3 | Microtiter plate | Crystal violet staining | Moxifloxacin |
Acinetobacter baumannii | ||||
Reference | Number of Isolates Included | Model System | Biofilm Quantification Method | Antibiotics Tested |
Wang et al. [61] | 6 | Microtiter plate | Crystal violet staining | Meropenem, imipenem, sulbactam, colistin, and tigecycline |
Moraxella catarrhalis | ||||
Reference | Number of Isolates Included | Model System | Biofilm Quantification Method | Antibiotics Tested |
Roveta et al. [48] | 3 | Microtiter plate | Crystal violet staining | Moxifloxacin |
Campylobacter jejuni | ||||
Reference | Number of Isolates Included | Model System | Biofilm Quantification Method | Antibiotics Tested |
Rossi et al. [62] | 2 | Microtiter plate | Crystal violet staining | Ciprofloxacin, colistin, tetracycline, erythromycin, and meropenem |
Proteus mirabilis | ||||
Reference | Number of Isolates Included | Model System | Biofilm Quantification Method | Antibiotics Tested |
Li et al. [63] | 2 | Flow cell system | SYTO 62 | Ciprofloxacin |
Helicobacter pylori | ||||
Reference | Number of Isolates Included | Model System | Biofilm Quantification Method | Antibiotics Tested |
Yonezawa et al. [64] | 2 | Microtiter plate | Crystal violet staining | Amoxicillin and metronidazole |
Wu et al. [22] | 9 | Microtiter plate | Microscopy and CFU counts | Amoxicillin, clarithromycin, tetracycline, and levofloxacin |
Mycobacteroides abscessus | ||||
Reference | Number of Isolates Included | Model System | Biofilm Quantification Method | Antibiotics Tested |
Oschmann-Kadenbach et al. [31] | 4 | Porous glass beads | CFU counts | Amikacin and tigecycline |
Bacillus spp. | ||||
Reference | Number of Isolates Included | Model System | Biofilm Quantification Method | Antibiotics Tested |
do Canto Canabarro et al. [65] | 4 | Microtiter plate | Crystal violet staining | Penicillin, tetracycline, and gentamicin |
Candida spp. | ||||
Authors | Number of Isolates Included | Model System | Biofilm Quantification Method | Antibiotics Tested |
Alves et al. [28] | 24 | Microtiter plate | Crystal violet staining | Fluconazole, voriconazole, anidulafungin, and amphotericin B |
Melo et al. [66] | 30 | Microtiter plate | Crystal violet staining | Amphotericin B and fluconazole |
References
- Sauer, K.; Stoodley, P.; Goeres, D.M.; Hall-Stoodley, L.; Burmølle, M.; Stewart, P.S.; Bjarnsholt, T. The biofilm life cycle: Expanding the conceptual model of biofilm formation. Nat. Rev. Microbiol. 2022, 20, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.-C.; van Hullebusch, E.D.; Neu, T.R.; Nielsen, P.H.; Seviour, T.; Stoodley, P.; Wingender, J.; Wuertz, S. The biofilm matrix: Multitasking in a shared space. Nat. Rev. Microbiol. 2023, 21, 70–86. [Google Scholar] [CrossRef] [PubMed]
- Ciofu, O.; Moser, C.; Jensen, P.Ø.; Høiby, N. Tolerance and resistance of microbial biofilms. Nat. Rev. Microbiol. 2022, 20, 621–635. [Google Scholar] [CrossRef] [PubMed]
- Coenye, T. Biofilm antimicrobial susceptibility testing: Where are we and where could we be going? Clin. Microbiol. Rev. 2023, 36, e0002423. [Google Scholar] [CrossRef]
- Van Acker, H.; Van Dijck, P.; Coenye, T. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol. 2014, 22, 326–333. [Google Scholar] [CrossRef]
- Doroshenko, N.; Tseng, B.S.; Howlin, R.P.; Deacon, J.; Wharton, J.A.; Thurner, P.J.; Gilmore, B.F.; Parsek, M.R.; Stoodley, P. Extracellular DNA impedes the transport of vancomycin in Staphylococcus epidermidis biofilms preexposed to subinhibitory concentrations of vancomycin. Antimicrob. Agents Chemother. 2014, 58, 7273–7282. [Google Scholar] [CrossRef]
- Cao, B.; Christophersen, L.; Kolpen, M.; Jensen, P.O.; Sneppen, K.; Hoiby, N.; Moser, C.; Sams, T. Diffusion Retardation by Binding of Tobramycin in an Alginate Biofilm Model. PLoS ONE 2016, 11, e0153616. [Google Scholar] [CrossRef]
- Hengzhuang, W.; Ciofu, O.; Yang, L.; Wu, H.; Song, Z.; Oliver, A.; Hoiby, N. High beta-lactamase levels change the pharmacodynamics of beta-lactam antibiotics in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 2013, 57, 196–204. [Google Scholar] [CrossRef]
- Van Acker, H.; Coenye, T. The Role of Efflux and Physiological Adaptation in Biofilm Tolerance and Resistance. J. Biol. Chem. 2016, 291, 12565–12572. [Google Scholar] [CrossRef]
- Van Acker, H.; Gielis, J.; Acke, M.; Cools, F.; Cos, P.; Coenye, T. The Role of Reactive Oxygen Species in Antibiotic-Induced Cell Death in Burkholderia cepacia Complex Bacteria. PLoS ONE 2016, 11, e0159837. [Google Scholar] [CrossRef]
- Soto, S.M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence 2013, 4, 223–229. [Google Scholar] [CrossRef]
- Coenye, T.; Van Acker, H.; Peeters, E.; Sass, A.; Buroni, S.; Riccardi, G.; Mahenthiralingam, E. Molecular mechanisms of chlorhexidine tolerance in Burkholderia cenocepacia biofilms. Antimicrob. Agents Chemother. 2011, 55, 1912–1919. [Google Scholar] [CrossRef]
- Crabbé, A.; Jensen, P.Ø.; Bjarnsholt, T.; Coenye, T. Antimicrobial Tolerance and Metabolic Adaptations in Microbial Biofilms. Trends Microbiol. 2019, 27, 850–863. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.; Price-Whelan, A.; Dietrich, L.E.P. Gradients and consequences of heterogeneity in biofilms. Nat. Rev. Microbiol. 2022, 20, 593–607. [Google Scholar] [CrossRef] [PubMed]
- Toyofuku, M.; Inaba, T.; Kiyokawa, T.; Obana, N.; Yawata, Y.; Nomura, N. Environmental factors that shape biofilm formation. Biosci. Biotechnol. Biochem. 2016, 80, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Rumbaugh, K.P.; Bjarnsholt, T. Microbial Primer: In vivo biofilm. Microbiol. 2023, 169, 001407. [Google Scholar] [CrossRef]
- Lichtenberg, M.; Coenye, T.; Parsek, M.R.; Bjarnsholt, T.; Jakobsen, T.H. What’s in a name? Characteristics of clinical biofilms. FEMS Microbiol. Rev. 2023, 47, fuad050. [Google Scholar] [CrossRef]
- Lichtenberg, M.; Jakobsen, T.H.; Kühl, M.; Kolpen, M.; Jensen, P.Ø.; Bjarnsholt, T. The structure–function relationship of Pseudomonas aeruginosa in infections and its influence on the microenvironment. FEMS Microbiol. Rev. 2022, 46, fuac018. [Google Scholar] [CrossRef]
- Azeredo, J.; Azevedo, N.F.; Briandet, R.; Cerca, N.; Coenye, T.; Costa, A.R.; Desvaux, M.; Di Bonaventura, G.; Hébraud, M.; Jaglic, Z.; et al. Critical review on biofilm methods. Crit. Rev. Microbiol. 2017, 43, 313–351. [Google Scholar] [CrossRef]
- Peeters, E.; Nelis, H.J.; Coenye, T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods 2008, 72, 157–165. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Wu, X.; Wu, D.; Cui, G.; Lee, K.H.; Yang, T.; Zhang, Z.; Liu, Q.; Zhang, J.; Chua, E.G.; Chen, Z. Association Between Biofilm Formation and Structure and Antibiotic Resistance in H. pylori. Infect. Drug Resist. 2024, 17, 2501–2512. [Google Scholar] [CrossRef]
- Silva, V.; Correia, E.; Pereira, J.E.; González-Machado, C.; Capita, R.; Alonso-Calleja, C.; Igrejas, G.; Poeta, P. Biofilm Formation of Staphylococcus aureus from Pets, Livestock, and Wild Animals: Relationship with Clonal Lineages and Antimicrobial Resistance. Antibiotics 2022, 11, 772. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Almeida, L.; Gaio, V.; Cerca, N.; Manageiro, V.; Caniça, M.; Capelo, J.L.; Igrejas, G.; Poeta, P. Biofilm Formation of Multidrug-Resistant MRSA Strains Isolated from Different Types of Human Infections. Pathogens 2021, 10, 970. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowski, P.; Grygorcewicz, B.; Pruss, A.; Wojciuk, B.; Dołęgowska, B.; Giedrys-Kalemba, S.; Sienkiewicz, M.; Wojciechowska-Koszko, I. The Effect of Subinhibitory Concentrations of trans-Anethole on Antibacterial and Antibiofilm Activity of Mupirocin Against Mupirocin-Resistant Staphylococcus aureus Strains. Microb. Drug Resist. 2019, 25, 1424–1429. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Yang, T.; Luo, Y.; Li, X.; Zhang, X.; Tang, J.; Ma, X.; Wang, Z. Efficacy of the novel oxazolidinone compound FYL-67 for preventing biofilm formation by Staphylococcus aureus. J. Antimicrob. Chemother. 2014, 69, 3011–3019. [Google Scholar] [CrossRef]
- Lavoie, T.; Daffinee, K.E.; Vicent, M.L.; LaPlante, K.L. Staphylococcus biofilm dynamics and antibiotic resistance: Insights into biofilm stages, zeta potential dynamics, and antibiotic susceptibility. Microbiol. Spectr. 2025, 13, e0291524. [Google Scholar] [CrossRef]
- Alves, A.M.C.V.; Lopes, B.O.; Leite, A.C.R.d.M.; Cruz, G.S.; Brito, É.H.S.d.; Lima, L.F.d.; Černáková, L.; Azevedo, N.F.; Rodrigues, C.F. Characterization of Oral Candida spp. Biofilms in Children and Adults Carriers from Eastern Europe and South America. Antibiotics 2023, 12, 797. [Google Scholar] [CrossRef]
- Tomlin, K.L.; Malott, R.J.; Ramage, G.; Storey, D.G.; Sokol, P.A.; Ceri, H. Quorum-sensing mutations affect attachment and stability of Burkholderia cenocepacia biofilms. Appl. Environ. Microbiol. 2005, 71, 5208–5218. [Google Scholar] [CrossRef]
- Fabrizio, G.; Truglio, M.; Cavallo, I.; Sivori, F.; Francalancia, M.; Riveros Cabral, R.J.; Comar, M.; Trancassini, M.; Compagnino, D.E.; Diaco, F.; et al. Cefiderocol activity against planktonic and biofilm forms of beta-lactamase-producing pseudomonas aeruginosa from people with cystic fibrosis. J. Glob. Antimicrob. Resist. 2025, 43, 111–119. [Google Scholar] [CrossRef]
- Oschmann-Kadenbach, A.M.; Schaudinn, C.; Borst, L.; Schwarz, C.; Konrat, K.; Arvand, M.; Lewin, A. Impact of Mycobacteroides abscessus colony morphology on biofilm formation and antimicrobial resistance. Int. J. Med. Microbiol. 2024, 314, 151603. [Google Scholar] [CrossRef]
- Subramanian, S.; Huiszoon, R.C.; Chu, S.; Bentley, W.E.; Ghodssi, R. Microsystems for biofilm characterization and sensing—A review. Biofilm 2020, 2, 100015. [Google Scholar] [CrossRef]
- Coenye, T.; Goeres, D.; Van Bambeke, F.; Bjarnsholt, T. Should standardized susceptibility testing for microbial biofilms be introduced in clinical practice? Clin. Microbiol. Infect. 2018, 24, 570–572. [Google Scholar] [CrossRef]
- Gomes, I.B.; Meireles, A.; Goncalves, A.L.; Goeres, D.M.; Sjollema, J.; Simoes, L.C.; Simoes, M. Standardized reactors for the study of medical biofilms: A review of the principles and latest modifications. Crit. Rev. Biotechnol. 2018, 38, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Malone, M.; Goeres, D.M.; Gosbell, I.; Vickery, K.; Jensen, S.; Stoodley, P. Approaches to biofilm-associated infections: The need for standardized and relevant biofilm methods for clinical applications. Expert. Rev. Anti Infect. Ther. 2017, 15, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Vyas, H.K.N.; Xia, B.; Mai-Prochnow, A. Clinically relevant in vitro biofilm models: A need to mimic and recapitulate the host environment. Biofilm 2022, 4, 100069. [Google Scholar] [CrossRef] [PubMed]
- De Bleeckere, A.; van Charante, F.; Debord, T.; Vandendriessche, S.; De Cock, M.; Verstraete, M.; Lamret, F.; Lories, B.; Boelens, J.; Reffuveille, F.; et al. A novel synthetic synovial fluid model for investigating biofilm formation and antibiotic susceptibility in prosthetic joint infections. Microbiol. Spectr. 2025, 13, e0198024. [Google Scholar] [CrossRef]
- De Bleeckere, A.; Van den Bossche, S.; De Sutter, P.-J.; Beirens, T.; Crabbé, A.; Coenye, T. High throughput determination of the biofilm prevention concentration for Pseudomonas aeruginosa biofilms using a synthetic cystic fibrosis sputum medium. Biofilm 2023, 5, 100106. [Google Scholar] [CrossRef]
- Allkja, J.; van Charante, F.; Aizawa, J.; Reigada, I.; Guarch-Perez, C.; Vazquez-Rodriguez, J.A.; Cos, P.; Coenye, T.; Fallarero, A.; Zaat, S.A.J.; et al. Interlaboratory study for the evaluation of three microtiter plate-based biofilm quantification methods. Sci. Rep. 2021, 11, 13779. [Google Scholar] [CrossRef]
- Macia, M.D.; Rojo-Molinero, E.; Oliver, A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin. Microbiol. Infect. 2014, 20, 981–990. [Google Scholar] [CrossRef]
- Lourenco, A.; Ferreira, A.; Veiga, N.; Machado, I.; Pereira, M.O.; Azevedo, N.F. BiofOmics: A Web platform for the systematic and standardized collection of high-throughput biofilm data. PLoS ONE 2012, 7, e39960. [Google Scholar] [CrossRef]
- Lourenco, A.; Coenye, T.; Goeres, D.M.; Donelli, G.; Azevedo, A.S.; Ceri, H.; Coelho, F.L.; Flemming, H.C.; Juhna, T.; Lopes, S.P.; et al. Minimum information about a biofilm experiment (MIABiE): Standards for reporting experiments and data on sessile microbial communities living at interfaces. Pathog. Dis. 2014, 70, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Hon, K.; Liu, S.; Cooksley, C.; Vreugde, S.; Psaltis, A.J. Low pH nasal rinse solution enhances mupirocin antimicrobial efficacy. Rhinology 2022, 60, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Huang, T.Y.; Mao, Y.; Li, X. Biofilm formation of two genetically diverse Staphylococcus aureus isolates under beta-lactam antibiotics. Front. Microbiol. 2023, 14, 1139753. [Google Scholar] [CrossRef] [PubMed]
- de Matos, P.D.M.; Sedaca, S.; Ferreira, D.C.; Iorio, N.L.; Toledo, V.C.S.; Freitas, A.I.C.; Coelho, F.L.; Sousa, C.; Dos Santos, K.R.N.; Pereira, M.O. Antimicrobial synergism against different lineages of methicillin-resistant Staphylococcus aureus carrying SCCmec IV. J. Appl. Microbiol. 2014, 116, 1418–1426. [Google Scholar] [CrossRef]
- Abdelhady, W.; Bayer, A.S.; Seidl, K.; Nast, C.C.; Kiedrowski, M.R.; Horswill, A.R.; Yeaman, M.R.; Xiong, Y.Q. Reduced vancomycin susceptibility in an in vitro catheter-related biofilm model correlates with poor therapeutic outcomes in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2013, 57, 1447–1454. [Google Scholar] [CrossRef]
- Wells, C.L.; Henry-Stanley, M.J.; Barnes, A.M.T.; Dunny, G.M.; Hess, D.J. Relation between Antibiotic Susceptibility and Ultrastructure of Staphylococcus aureus Biofilms on Surgical Suture. Surg. Infect. 2011, 12, 297–305. [Google Scholar] [CrossRef]
- Roveta, S.; Schito, A.M.; Marchese, A.; Schito, G.C. Activity of moxifloxacin on biofilms produced in vitro by bacterial pathogens involved in acute exacerbations of chronic bronchitis. Int. J. Antimicrob. Agents 2007, 30, 415–421. [Google Scholar] [CrossRef]
- Xu, Y.; Xiao, Y.; Zhao, H.; Wang, B.; Yu, J.; Shang, Y.; Zhou, Y.; Wu, X. Phenotypic and genetic characterization of daptomycin non-susceptible Staphylococcus aureus strains selected by adaptive laboratory evolution. Front. Cell. Infect. Microbiol. 2024, 14, 1453233. [Google Scholar] [CrossRef]
- Silva, V.; Correia, E.; Pereira, J.E.; González-Machado, C.; Capita, R.; Alonso-Calleja, C.; Igrejas, G.; Poeta, P. Exploring the Biofilm Formation Capacity in S. pseudintermedius and Coagulase-Negative Staphylococci Species. Pathogens 2022, 11, 689. [Google Scholar] [CrossRef]
- Papa-Ezdra, R.; Outeda, M.; Cordeiro, N.F.; Araújo, L.; Gadea, P.; Garcia-Fulgueiras, V.; Seija, V.; Bado, I.; Vignoli, R. Outbreak of Pseudomonas aeruginosa High-Risk Clone ST309 Serotype O11 Featuring blaPER-1 and qnrVC6. Antibiotics 2024, 13, 159. [Google Scholar] [CrossRef]
- Ruhal, R.; Ghosh, M.; Kumar, V.; Jain, D. Mutation of putative glycosyl transferases PslC and PslI confers susceptibility to antibiotics and leads to drastic reduction in biofilm formation in Pseudomonas aeruginosa. Microbiology 2023, 169, 001392. [Google Scholar] [CrossRef] [PubMed]
- Fortes, B.N.; Scheunemann, G.; de Azevedo Melo, A.S.; Ishida, K. Caspofungin alone or combined with polymyxin B are effective against mixed biofilm of Aspergillus fumigatus and carbapenem-resistant Pseudomonas aeruginosa. Res. Microbiol. 2023, 174, 103993. [Google Scholar] [CrossRef] [PubMed]
- Goodyear, M.C.; Garnier, N.E.; Levesque, R.C.; Khursigara, C.M. Liverpool Epidemic Strain Isolates of Pseudomonas aeruginosa Display High Levels of Antimicrobial Resistance during Both Planktonic and Biofilm Growth. Microbiol. Spectr. 2022, 10, e0102422. [Google Scholar] [CrossRef] [PubMed]
- Žiemytė, M.; Carda-Diéguez, M.; Rodríguez-Díaz, J.C.; Ventero, M.P.; Mira, A.; Ferrer, M.D. Real-time monitoring of Pseudomonas aeruginosa biofilm growth dynamics and persister cells’ eradication. Emerg. Microbes Infect. 2021, 10, 2062–2075. [Google Scholar] [CrossRef]
- Gupta, K.; Marques, C.N.H.; Petrova, O.E.; Sauer, K. Antimicrobial Tolerance of Pseudomonas aeruginosa Biofilms Is Activated during an Early Developmental Stage and Requires the Two-Component Hybrid SagS. J. Bacteriol. 2013, 195, 4975–4987. [Google Scholar] [CrossRef]
- Alvim, D.; Oliveira, L.M.A.; Simoes, L.C.; Costa, N.S.; Fracalanzza, S.E.L.; Teixeira, L.M.; Ferreira, R.B.R.; Pinto, T.C.A. Influence of Penicillin on Biofilm Formation by Streptococcus agalactiae Serotype Ia/CC23. Microb. Drug Resist. 2022, 28, 517–524. [Google Scholar] [CrossRef]
- Chen, H.; Tang, Y.; Weir, M.D.; Gao, J.; Imazato, S.; Oates, T.W.; Lei, L.; Wang, S.; Hu, T.; Xu, H.H.K. Effects of S. mutans gene-modification and antibacterial monomer dimethylaminohexadecyl methacrylate on biofilm growth and acid production. Dent. Mater. 2020, 36, 296–309. [Google Scholar] [CrossRef]
- Hall-Stoodley, L.; Nistico, L.; Sambanthamoorthy, K.; Dice, B.; Nguyen, D.; Mershon, W.J.; Johnson, C.; Hu, F.Z.; Stoodley, P.; Ehrlich, G.D.; et al. Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates. BMC Microbiol. 2008, 8, 173. [Google Scholar] [CrossRef]
- Anutrakunchai, C.; Sermswan, R.W.; Wongratanacheewin, S.; Puknun, A.; Taweechaisupapong, S. Drug susceptibility and biofilm formation of Burkholderia pseudomallei in nutrient-limited condition. Trop. Biomed. 2015, 32, 300–309. [Google Scholar]
- Wang, Y.C.; Kuo, S.C.; Yang, Y.S.; Lee, Y.T.; Chiu, C.H.; Chuang, M.F.; Lin, J.C.; Chang, F.Y.; Chen, T.L. Individual or Combined Effects of Meropenem, Imipenem, Sulbactam, Colistin, and Tigecycline on Biofilm-Embedded Acinetobacter baumannii and Biofilm Architecture. Antimicrob. Agents Chemother. 2016, 60, 4670–4676. [Google Scholar] [CrossRef] [PubMed]
- Rossi, D.A.; Dumont, C.F.; Santos, A.C.S.; Vaz, M.E.L.; Prado, R.R.; Monteiro, G.P.; Melo, C.; Stamoulis, V.J.; Dos Santos, J.P.; de Melo, R.T. Antibiotic Resistance in the Alternative Lifestyles of Campylobacter jejuni. Front. Cell. Infect. Microbiol. 2021, 11, 535757. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lu, N.; Brady, H.R.; Packman, A.I. Ureolytic Biomineralization Reduces Proteus mirabilis Biofilm Susceptibility to Ciprofloxacin. Antimicrob. Agents Chemother. 2016, 60, 2993–3000. [Google Scholar] [CrossRef] [PubMed]
- Yonezawa, H.; Osaki, T.; Hojo, F.; Kamiya, S. Effect of Helicobacter pylori biofilm formation on susceptibility to amoxicillin, metronidazole and clarithromycin. Microb. Pathog. 2019, 132, 100–108. [Google Scholar] [CrossRef]
- do Canto Canabarro, M.; Meneghetti, K.L.; Geimba, M.P.; Corcao, G. Biofilm formation and antibiotic susceptibility of Staphylococcus and Bacillus species isolated from human allogeneic skin. Braz. J. Microbiol. 2022, 53, 153–160. [Google Scholar] [CrossRef]
- Melo, A.S.; Bizerra, F.C.; Freymuller, E.; Arthington-Skaggs, B.A.; Colombo, A.L. Biofilm production and evaluation of antifungal susceptibility amongst clinical Candida spp. isolates, including strains of the Candida parapsilosis complex. Med. Mycol. 2011, 49, 253–262. [Google Scholar] [CrossRef]
Reference | Organism (No. of Isolates) | Biofilm Quantification | Parameter 1 | Parameter 2 | Antibiotic and/or Concentration | r2 Between Parameters 1 and 2 |
---|---|---|---|---|---|---|
Silva et al. [23] | S. aureus (n = 23) | CV Staining | Relative biofilm formation in the absence of antibiotic (compared to reference strain) | Relative biofilm formation in the presence of antibiotic at 10xMIC (compared to the biomass of a biofilm formed in the absence of antibiotic) | Tetracycline | 0.009 |
Amikacin | 0.150 | |||||
Silva et al. [24] | S. aureus (n = 18) | CV Staining | Relative biofilm formation in the absence of antibiotic (compared to reference strain) | Relative biofilm formation in the presence of antibiotic (compared to the biomass of a biofilm formed in the absence of antibiotic) | Erythromycin | 0.167 |
Ciprofloxacin | 0.011 | |||||
Tetracycline | 0.032 | |||||
Kwiatkowski et al. [25] | S. aureus (n = 9) | CV Staining | Biofilm biomass in the absence of mupirocin | Biofilm biomass in the presence of mupirocin | Mupirocin | 0.253 |
Wu et al. [26] | S. aureus (n = 6) | CV and Resazurin Viability Staining | Biofilm biomass in the absence of linezolid | Biofilm biomass in the presence of linezolid (6 h and 24 h; concentration evaluated: MIC) | Linezolid (6 h): | |
CV | 0.792 * | |||||
Resazurin | 0.773 * | |||||
Linezolid (24 h): | ||||||
CV | 0.229 | |||||
Resazurin | 0.097 | |||||
Lavoie et al. [27] | S. aureus (n = 11) | CV Staining | Biofilm biomass in the absence of treatment | MBEC (µg/mL) | Daptomycin | 0.137 |
Alves et al. [28] | C. albicans (n = 11) | CV Staining | Biofilm biomass in the absence of antifungal compound | Reduction in biofilm biomass following incubation with antifungals (compared to biofilm biomass in the absence) | Fluconazole | 0.083 |
Voriconazole | 0.344 | |||||
Anidulafungin | 0.362 | |||||
Amphotericin B | 0.069 | |||||
Alves et al. [28] | C. glabrata (n = 3) | CV Staining | Biofilm biomass in the absence of antifungal compound | Reduction in biofilm biomass following incubation with antifungals (compared to biofilm biomass in the absence) | Fluconazole Voriconazole Anidulafungin Amphotericin B | 1.101 0.045 0.612 0.039 |
Alves et al. [28] | C. krusei (n = 8) | CV Staining | Biofilm biomass in the absence of antifungal compound | Reduction in biofilm biomass following incubation with antifungals (compared to biofilm biomass in the absence) | Fluconazole Voriconazole Anidulafungin Amphotericin B | 0.757* 0.462 0.348 0.757* |
Alves et al. [28] | All Isolates (n = 24) (C. albicans, n = 11; C. glabrata, n = 3; C. krusei, n = 8; C. valida, n = 2) | CV Staining | Biofilm biomass in the absence of antifungal compound | Reduction in biofilm biomass following incubation with antifungals (compared to biofilm biomass in the absence) | Fluconazole Voriconazole Anidulafungin Amphotericin B | 0.410* 0.193* 0.190* 0.302* |
Wu et al. [22] | H. pylori (n = 9) | Microscopy and Determination of the Number of CFU | Biofilm thickness (µm) | MBEC (µg/mL) | Amoxicillin | 0.642 * |
Tetracycline | 0.485 * | |||||
Clarithromycin | 0.377 | |||||
Levofloxacin | 0.041 | |||||
Tomlin et al. [29] | B. cenocepacia (n = 6) | CV Staining | Biofilm biomass in the absence of ciprofloxacin | MBEC (µg/mL) | Ciprofloxacin | 0.424 |
Fabrizio et al. [30] | P. aeruginosa (n = 11) | CV and Resazurin Viability Staining; Determination of Number of CFU | Biofilm biomass in the absence of treatment | MBEC (µg/mL) | Cefiderocol | |
CV | 0.101 | |||||
Resazurin | 0.079 | |||||
CFU | 0.114 |
Isolate Collection | r2 | p-Value |
---|---|---|
S. aureus [23] (n = 23) (amikacin) | 0.150 | 0.068 |
All S. aureus isolates included in Silva et al. [24] (n = 18) (ciprofloxacin) | 0.011 | 0.675 |
S. aureus strains isolated from cases of osteomyelitis [24] (n = 6) (ciprofloxacin) | 0.002 | 0.935 |
S. aureus strains isolated from cases diabetic foot ulcers [24] (n = 6) (ciprofloxacin) | 0.142 | 0.462 |
S. aureus strains isolated from cases of bacteremia [24] (n = 6) (ciprofloxacin) | 0.450 | 0.145 |
S. aureus [26] (n = 6) (linezolid) | ||
CV, 6 h old biofilm | 0.792 | 0.018 * |
CV, 24 h old biofilm | 0.229 | 0.337 |
Resazurin, 6 h old biofilm | 0.773 | 0.021 * |
Resazurin, 24 h old biofilm | 0.097 | 0.546 |
S. aureus [27] (n = 11) (daptomycin) | 0.137 | 0.262 |
H. pylori [22] (n = 9) | ||
Amoxicillin | 0.642 | 0.009 * |
Clarithromycin | 0.377 | 0.079 |
Tetracycline | 0.485 | 0.037 * |
Levofloxacin | 0.041 | 0.603 |
B. cenocepacia [29] (n = 6) (ciprofloxacin) | 0.424 | 0.161 |
M. abscessus [31] (n = 4) (amikacin) | 0.775 | 0.119 |
P. aeruginosa [30] (n = 11) (cefiderocol) | ||
CV | 0.101 | 0.342 |
Resazurin | 0.079 | 0.403 |
Log CFU | 0.114 | 0.310 |
C. albicans [28] (n = 11) | ||
Fluconazole | 0.083 | 0.391 |
Voriconazole | 0.344 | 0.058 |
Anidulafungin | 0.362 | 0.050 |
Amphotericin B | 0.069 | 0.463 |
C. krusei [28] (n = 8) | ||
Fluconazole | 0.757 | 0.005 * |
Voriconazole | 0.462 | 0.064 |
Anidulafungin | 0.348 | 0.124 |
Amphotericin B | 0.757 | 0.005 * |
Candida spp. [28] (n = 24) | ||
Fluconazole | 0.410 | <0.001 * |
Voriconazole | 0.193 | 0.031 * |
Anidulafungin | 0.190 | 0.033 * |
Amphotericin B | 0.302 | 0.005 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madduri, A.; Vanommeslaeghe, L.; Coenye, T. Is Increased Biofilm Formation Associated with Decreased Antimicrobial Susceptibility? A Systematic Literature Review. Microorganisms 2025, 13, 2292. https://doi.org/10.3390/microorganisms13102292
Madduri A, Vanommeslaeghe L, Coenye T. Is Increased Biofilm Formation Associated with Decreased Antimicrobial Susceptibility? A Systematic Literature Review. Microorganisms. 2025; 13(10):2292. https://doi.org/10.3390/microorganisms13102292
Chicago/Turabian StyleMadduri, Abhinav, Lobke Vanommeslaeghe, and Tom Coenye. 2025. "Is Increased Biofilm Formation Associated with Decreased Antimicrobial Susceptibility? A Systematic Literature Review" Microorganisms 13, no. 10: 2292. https://doi.org/10.3390/microorganisms13102292
APA StyleMadduri, A., Vanommeslaeghe, L., & Coenye, T. (2025). Is Increased Biofilm Formation Associated with Decreased Antimicrobial Susceptibility? A Systematic Literature Review. Microorganisms, 13(10), 2292. https://doi.org/10.3390/microorganisms13102292