Analysis of Bacterial and Fungal Communities and Organic Acid Content in New Zealand Lambic-Style Beers: A Climatic and Global Perspective †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Beer Production and Sampling
2.2. DNA Extraction and Sequencing
2.3. Amplicon Sequence Variant (ASV) Cluster and Annotation of Species
2.4. Climate Data
2.5. Organic Acid Determination Using HPLC
2.6. Statistical Analysis
3. Results
3.1. Climatic Variables in Oamaru, New Zealand
3.2. Temperature Ranges in Brewing Locations of New Zealand and Belgium
3.3. Bacterial and Fungal Community Composition in All Vintages
3.4. Alpha and Beta Diversity Measure
3.5. Influence of Climate on Microbial Community Composition in Oamaru-Brewed Beers
3.6. Organic Acid Concentrations and Correlations with Microbial Data
3.7. Analysis of ASVs That Were Differentially Abundant in All Vintages
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tyakht, A.; Kopeliovich, A.; Klimenko, N.; Efimova, D.; Dovidchenko, N.; Odintsova, V.; Kleimenov, M.; Toshchakov, S.; Popova, A.; Khomyakova, M.; et al. Characteristics of bacterial and yeast microbiomes in spontaneous and mixed-fermentation beer and cider. Food Microbiol. 2021, 94, 103658. [Google Scholar] [CrossRef] [PubMed]
- Vermote, L.; De Roos, J.; Cnockaert, M.; Vandamme, P.; Weckx, S.; De Vuyst, L. New insights into the role of key microorganisms and wooden barrels during lambic beer fermentation and maturation. Int. J. Food Microbiol. 2023, 394, 110163. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Bamforth, C.W. The microbiology of malting and brewing. Microbiol. Mol. Biol. Rev. 2013, 77, 157–172. [Google Scholar] [CrossRef] [PubMed]
- De Roos, J.; De Vuyst, L. Microbial acidification, alcoholization, and aroma production during spontaneous lambic beer production. J. Sci. Food Agric. 2019, 99, 25–38. [Google Scholar] [CrossRef]
- De Keersmaecker, J. The mystery of lambic beer. Sci. Am. 1996, 275, 74–80. [Google Scholar] [CrossRef]
- Bongaerts, D.; De Roos, J.; De Vuyst, L. Technological and Environmental Features Determine the Uniqueness of the Lambic Beer Microbiota and Production Process. Appl. Environ. Microbiol. 2021, 87, e0061221. [Google Scholar] [CrossRef]
- Avermaete, T.; Vandermosten, G. Traditional Belgian beers in a global market economy. In Traditional Food Production and Rural Sustainable Development; Routledge: London, UK, 2016; pp. 253–268. [Google Scholar]
- Carriglio, J.; Budner, D.; Thompson-Witrick, K.A. Comparison Review of the Production, Microbiology, and Sensory Profile of Lambic and American Coolship Ales. Fermentation 2022, 8, 646. [Google Scholar] [CrossRef]
- Brewers Association of New Zealand. 2023. Available online: https://www.brewers.org.nz/2022-brewing-in-nz-report/ (accessed on 16 December 2024).
- Stats, N.Z. Alcohol Available for Consumption: Year Ended December 2022. 2022. Available online: https://www.stats.govt.nz/information-releases/alcohol-available-for-consumption-year-ended-december-2022/ (accessed on 16 October 2024).
- Dubey, A.; Malla, M.A.; Kumar, A. Role of next-generation sequencing (NGS) in understanding the microbial diversity. In Molecular Genetics and Genomics Tools in Biodiversity Conservation; Springer: Berlin/Heidelberg, Germany, 2022; pp. 307–328. [Google Scholar]
- Rivas, G.A.; Guillade, A.C.; Semorile, L.C.; Delfederico, L. Influence of Climate on Soil and Wine Bacterial Diversity on a Vineyard in a Non-traditional Wine Region in Argentina. Front. Microbiol. 2021, 12, 726384. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Hopfer, H.; Cockburn, D.W.; Wee, J. Characterization of Microbial Dynamics and Volatile Metabolome Changes During Fermentation of Chambourcin Hybrid Grapes from Two Pennsylvania Regions. Front. Microbiol. 2021, 11, 614278. [Google Scholar] [CrossRef]
- Ohwofasa, A.; Dhami, M.; Tian, B.; Winefield, C.; On, S.L.W. Environmental influences on microbial community development during organic pinot noir wine production in outdoor and indoor fermentation conditions. Heliyon 2023, 9, e15658. [Google Scholar] [CrossRef] [PubMed]
- Sobel, J.; Henry, L.; Rotman, N.; Rando, G. BeerDeCoded: The open beer metagenome project. F1000Research 2017, 6, 1676. [Google Scholar] [CrossRef] [PubMed]
- De Roos, J.; Verce, M.; Weckx, S.; De Vuyst, L. Temporal Shotgun Metagenomics Revealed the Potential Metabolic Capabilities of Specific Microorganisms During Lambic Beer Production. Front. Microbiol. 2020, 11, 1692. [Google Scholar] [CrossRef]
- Oamaru Climate—New Zealand. 2024. Available online: https://en.climate-data.org/oceania/new-zealand/otago/oamaru-21447/ (accessed on 16 October 2024).
- Asemaninejad, A.; Weerasuriya, N.; Gloor, G.B.; Lindo, Z.; Thorn, R.G. New Primers for Discovering Fungal Diversity Using Nuclear Large Ribosomal DNA. PLoS ONE 2016, 11, e0159043. [Google Scholar] [CrossRef] [PubMed]
- San Juan, P.A.; Castro, I.; Dhami, M.K. Captivity reduces diversity and shifts composition of the Brown Kiwi microbiome. Anim. Microbiome 2021, 3, 48. [Google Scholar] [CrossRef] [PubMed]
- Rohland, N.; Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 2012, 22, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, A.S.; Toju, H. Two new computational methods for universal DNA barcoding: A benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants. PLoS ONE 2013, 8, e76910. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Abarenkov, K.; Zirk, A.; Piirmann, T.; Pöhönen, R.; Ivanov, F.; Nilsson, R.H.; Kõljalg, U. UNITE general FASTA release for Fungi 2. UNITE Community 2021. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Harvest. Ostler Vineyard Weather Station. Available online: https://live.harvest.com/?cmd=gph&sid=1861&loc=1-1-24-385&typ=5&startdate=20220630120000&graph_id=24090 (accessed on 15 November 2023).
- Shi, S.; Condron, L.; Larsen, S.; Richardson, A.E.; Jones, E.; Jiao, J.; O’Callaghan, M.; Stewart, A. In situ sampling of low molecular weight organic anions from rhizosphere of radiata pine (Pinus radiata) grown in a rhizotron system. Environ. Exp. Bot. 2011, 70, 131–142. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.O.; Gauch, H.G., Jr. Detrended correspondence analysis: An improved ordination technique. Vegetatio 1980, 42, 47–58. [Google Scholar] [CrossRef]
- Oksanen, J.; Minchin, P.R. Instability of ordination results under changes in input data order: Explanations and remedies. J. Veg. Sci. 1997, 8, 447–454. [Google Scholar] [CrossRef]
- Trading Economics. Available online: https://tradingeconomics.com/russia/temperature (accessed on 27 September 2024).
- Bokulich, N.A.; Thorngate, J.H.; Richardson, P.M.; Mills, D.A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. USA 2014, 111, E139–E148. [Google Scholar] [CrossRef] [PubMed]
- Bossaert, S.; Winne, V.; Van Opstaele, F.; Buyse, J.; Verreth, C.; Herrera-Malaver, B.; Van Geel, M.; Verstrepen, K.J.; Crauwels, S.; De Rouck, G.; et al. Description of the temporal dynamics in microbial community composition and beer chemistry in sour beer production via barrel ageing of finished beers. Int. J. Food Microbiol. 2021, 339, 109030. [Google Scholar] [CrossRef] [PubMed]
- Snauwaert, I.; Stragier, P.; De Vuyst, L.; Vandamme, P. Comparative genome analysis of Pediococcus damnosus LMG 28219, a strain well-adapted to the beer environment. BMC Genom. 2015, 16, 267. [Google Scholar] [CrossRef]
- Postigo, V.; García, M.; Arroyo, T. Study of a First Approach to the Controlled Fermentation for Lambic Beer Production. Microorganisms 2023, 11, 1681. [Google Scholar] [CrossRef]
- De Roos, J.; Vandamme, P.; De Vuyst, L. Wort substrate consumption and metabolite production during lambic beer fermentation and maturation explain the successive growth of specific bacterial and yeast species. Front. Microbiol. 2018, 9, 2763. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Sun, L.; Qiu, C.; Ding, Y.; Gu, H.; Wang, L.; Wang, Z.; Ding, Z. Organic mulching positively regulates the soil microbial communities and ecosystem functions in tea plantation. BMC Microbiol. 2020, 20, 103. [Google Scholar] [CrossRef]
- Schlatter, D.C.; Kahl, K.; Carlson, B.; Huggins, D.R.; Paulitz, T. Soil acidification modifies soil depth-microbiome relationships in a no-till wheat cropping system. Soil Biol. Biochem. 2020, 149, 107939. [Google Scholar] [CrossRef]
- Liao, H.; Zheng, C.; Li, J.; Long, J. Dynamics of soil microbial recovery from cropland to orchard along a 20-year chronosequence in a degraded karst ecosystem. Sci. Total Environ. 2018, 639, 1051–1059. [Google Scholar] [CrossRef]
- De Roos, J.; Van Der Veken, D.; De Vuyst, L. The Interior Surfaces of Wooden Barrels Are an Additional Microbial Inoculation Source for Lambic Beer Production. Appl. Environ. Microbiol. 2019, 85, e02226-18. [Google Scholar] [CrossRef]
- Piraine, R.E.A.; Leite, F.P.L.; Bochman, M.L. Mixed-culture metagenomics of the microbes making sour beer. Fermentation 2021, 7, 174. [Google Scholar] [CrossRef]
- Bush, R.K.; Portnoy, J.M. The role and abatement of fungal allergens in allergic diseases. J. Allergy Clin. Immunol. 2001, 107, S430–S440. [Google Scholar] [CrossRef] [PubMed]
- Spitaels, F.; Wieme, A.D.; Janssens, M.; Aerts, M.; Daniel, H.M.; Van Landschoot, A.; De Vuyst, L.; Vandamme, P. The microbial diversity of traditional spontaneously fermented lambic beer. PLoS ONE 2014, 9, e95384. [Google Scholar] [CrossRef]
- Serra Colomer, M.; Funch, B.; Forster, J. The raise of Brettanomyces yeast species for beer production. Curr. Opin. Biotechnol. 2019, 56, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Menoncin, M.; Bonatto, D. Molecular and biochemical aspects of Brettanomyces in brewing. J. Inst. Brew. 2019, 125, 402–411. [Google Scholar] [CrossRef]
- Granato, T.M.; Romano, D.; Vigentini, I.; Foschino, R.C.; Monti, D.; Mamone, G.; Ferranti, P.; Nitride, C.; Iametti, S.; Bonomi, F. New insights on the features of the vinyl phenol reductase from the wine-spoilage yeast Dekkera/Brettanomyces bruxellensis. Ann. Microbiol. 2015, 65, 321–329. [Google Scholar] [CrossRef]
- Wang, C.; García-Fernández, D.; Mas, A.; Esteve-Zarzoso, B. Fungal diversity in grape must and wine fermentation assessed by massive sequencing, quantitative PCR and DGGE. Front. Microbiol. 2015, 6, 1156. [Google Scholar] [CrossRef] [PubMed]
- Costantini, A.; Vaudano, E.; Pulcini, L.; Boatti, L.; Gamalero, E.; Garcia-Moruno, E. Yeast biodiversity in vineyard during grape ripening: Comparison between culture dependent and NGS analysis. Processes 2022, 10, 901. [Google Scholar] [CrossRef]
- Bourbon-Melo, N.; Palma, M.; Rocha, M.P.; Ferreira, A.; Bronze, M.R.; Elias, H.; Sá-Correia, I. Use of Hanseniaspora guilliermondii and Hanseniaspora opuntiae to enhance the aromatic profile of beer in mixed-culture fermentation with Saccharomyces cerevisiae. Food Microbiol. 2021, 95, 103678. [Google Scholar] [CrossRef]
- Steensels, J.; Verstrepen, K.J. Taming wild yeast: Potential of conventional and nonconventional yeasts in industrial fermentations. Annu. Rev. Microbiol. 2014, 68, 61–80. [Google Scholar] [CrossRef] [PubMed]
- Piraine, R.E.A.; Retzlaf, G.M.; Gonçalves, V.S.; Cunha, R.C.; Conrad, N.L.; Bochman, M.L.; Leite, F.P.L. Brewing and probiotic potential activity of wild yeasts Hanseniaspora uvarum PIT001, Pichia kluyveri LAR001 and Candida intermedia ORQ001. Eur. Food Res. Technol. 2023, 249, 133–148. [Google Scholar] [CrossRef]
- Lopandic, K.; Tiefenbrunner, W.; Gangl, H.; Mandl, K.; Berger, S.; Leitner, G.; Abd-Ellah, G.A.; Querol, A.; Gardner, R.C.; Sterflinger, K.; et al. Molecular profiling of yeasts isolated during spontaneous fermentations of Austrian wines. FEMS Yeast Res. 2008, 8, 1063–1075. [Google Scholar] [CrossRef] [PubMed]
- Medina, E.; Brenes, M.; García-García, P.; Romero, C.; de Castro, A. Microbial ecology along the processing of Spanish olives darkened by oxidation. Food Control 2018, 86, 35–41. [Google Scholar] [CrossRef]
- Mandujano, G.P.L.; Alves, H.C.; Prado, C.D.; Martins, J.G.; Novaes, H.R.; Teixeira, G.S.; Ohara, A.; Alves, M.H.; Pedrino, I.C.; Malavazi, I. Identification and selection of a new Saccharomyces cerevisiae strain isolated from Brazilian ethanol fermentation process for application in beer production. Food Microbiol. 2022, 103, 103958. [Google Scholar] [CrossRef]
- Nikulin, J.; Eerikäinen, R.; Hutzler, M.; Gibson, B. Brewing characteristics of the maltotriose-positive yeast Zygotorulaspora florentina isolated from oak. Beverages 2020, 6, 58. [Google Scholar] [CrossRef]
- Verachtert, H.; Derdelinckx, G. Belgian acidic beers: Daily reminiscences of the past. Cerevisia 2014, 38, 121–128. [Google Scholar] [CrossRef]
- Liu, S.-Q. Impact of yeast and bacteria on beer appearance and flavour. In Brewing Microbiology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 357–374. [Google Scholar]
- Canonico, L.; Galli, E.; Ciani, E.; Comitini, F.; Ciani, M. Exploitation of three non-conventional yeast species in the brewing process. Microorganisms 2019, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Guo, M.; Du, J.; Zhang, Z. Cloudy wheat beer enriched with okra [Abelmoschus esculentus (L.) Moench]: Effects on volatile compound and sensorial attributes. Int. J. Food Prop. 2018, 21, 289–300. [Google Scholar] [CrossRef]
- Kaufmann, M.; Schwarz, K.J.; Dallmann, A.; Kuballa, T.; Bergmann, M. 1 H NMR spectroscopic discrimination of different beer styles combined with a chemical shift-based quantification approach. Eur. Food Res. Technol. 2022, 248, 635–645. [Google Scholar] [CrossRef]
- Li, G.; Liu, F. Changes in Organic Acids during Beer Fermentation. J. Am. Soc. Brew. Chem. 2018, 73, 275–279. [Google Scholar] [CrossRef]
- On, S.L.W.; Dhami, M.K.; Winefield, C.; Ohwofasa, A. Influence of Climatic Variables on Bacterial and Fungal Communities and Organic Acid Content in New Zealand Lambic-Style Beers. In Proceedings of the IUMS 2024 Conference, Florence, Italy, 23–25 October 2024. [Google Scholar]
Vintage | Min. Temp. (°C) | Average Temp. (°C) | Max. Temp. (°C) | Rain (mm) | Humidity (%) | Average Wind (km/h) | Gust (km/h) |
---|---|---|---|---|---|---|---|
2016 | 1.4 ± 3.23 | 11.5 ± 3.61 | 24.7 ± 4.80 | 39.8 ± 23.8 | 82.9 ± 15.3 | 5.9 ± 2.05 | 67.5 ± 9.92 |
2017 | 1.5 ± 3.26 | 10.5 ± 3.46 | 23.8 ± 5.68 | 57.6 ± 35.3 | 86.7 ± 9.6 | 4.2 ± 1.41 | 58.8 ± 9.95 |
2019 | 2.1 ± 3.02 | 11.5 ± 3.4 | 24.9 ± 5.6 | 51.0 ± 53.5 | 76.4 ± 16.3 | 2.65 ± 2.46 | 37.31 ± 29.10 |
2020 | 1.8 ± 3.62 | 11.1 ± 3.38 | 25.7 ± 5.17 | 30.8 ± 20.5 | 71.9 ± 16.7 | 0.98 ± 3.4 | 4.33 ± 14.61 |
2021 | 1.1 ± 2.76 | 11.39 ± 3.03 | 23.2 ± 6.81 | 42.5 ± 35.1 | 83.2 ± 14.1 | 6.28 ± 2.83 | 56.32 ±19.75 |
2022 | 2.2 ± 3.34 | 11.1 ± 3.05 | 23.8 ± 4.35 | 62 ± 53.1 | 75.5 ± 14.5 | 6.91 ± 1.87 | 58.95 ± 15.12 |
Region | Minima/SD | Mean/SD | Maxima/SD |
---|---|---|---|
Oamaru | 1.68 ± 3.2 | 12.4 ± 3.98 | 24.35 ± 5.4 |
Brussels | −4.25 ± 1.3 | 11.26 ± 7.25 | 32.5 ± 0.5 |
Sample ID | Sample | Vintage | Citric Acid (mg/L) | L-Malic Acid (mg/L) | Succinic Acid (mg/L) | L-Lactic Acid (mg/L) | Acetic Acid (mg/L) |
---|---|---|---|---|---|---|---|
1 | OBYR16 | 2016 | 36.49 ± 1.03 a | 805.68 ± 7.54 ab | 1518.42 ± 21.33 a | 2059.67 ± 1.50 b | 2719.22 ± 7.24 a |
2 | OBYR17 | 2017 | 164.29 ± 2.34 a | 554.57 ± 5.95 c | 7853.93 ± 19.09 b | 2378.92 ± 7.85 b | 1935.60 ± 24.09 a |
3 | OBYR19 | 2019 | 91.38 ± 0.57 a | 632.50 ± 1.51 bc | 1355.53 ± 1.03 a | 3996.11 ± 48.61 b | 2165.75 ± 41.01 a |
4 | OBYR20A | 2020 | 181.40 ± 1.45 a | 668.04 ± 4.54 c | 5219.40 ± 11.46 ab | 7389.08 ± 4.31 a | 2395.66 ± 25.22 a |
5 | OBYR20B | 2020 | 195.44 ± 0.47 a | 646.63 ± 3.72 c | 3760.15 ± 9.05 ab | 9002.02 ± 21.01 a | 540.26 ± 3.20 a |
6 | OBYR20C | 2020 | 849.73 ± 1.91 a | 607.24 ± 1.51 c | 5087.91 ± 2.80 ab | 7741.88 ± 52.59 a | 1308.62 ± 23.91 a |
7 | OBYR20D | 2020 | 194.73 ± 1.74 a | 624.33 ± 2.65 c | 3256.08 ± 8.78 ab | 8220.19 ± 1.44 a | 1040.83 ± 6.00 a |
8 | OBYR21A | 2021 | 178.76 ± 1.90 a | 874.71 ± 2.76 a | 1357.05 ± 2.50 a | 8517.37 ± 4.36 a | 346.51 ± 1.00 a |
9 | OBYR21B | 2021 | 189.55 ± 0.22 a | 909.43 ± 1.09 a | 1335.33 ± 2.47 a | 8831.55 ± 17.25 a | 191.48 ± 6.28 a |
10 | OBYR21C | 2021 | 163.23 ± 1.51 a | 821.00 ± 5.64 a | 3051.26 ± 5.24 a | 7160.86 ± 6.01 a | 208.54 ± 1.61 a |
25 | NBFM12 | 2022 | 142.73 ± 0.26 a | 503.93 ± 0.43 c | 1092.93 ± 2.47 a | 5318.81 ± 7.17 ab | 2395.86 ± 18.68 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohwofasa, A.; Dhami, M.; Winefield, C.; On, S.L.W. Analysis of Bacterial and Fungal Communities and Organic Acid Content in New Zealand Lambic-Style Beers: A Climatic and Global Perspective. Microorganisms 2025, 13, 224. https://doi.org/10.3390/microorganisms13020224
Ohwofasa A, Dhami M, Winefield C, On SLW. Analysis of Bacterial and Fungal Communities and Organic Acid Content in New Zealand Lambic-Style Beers: A Climatic and Global Perspective. Microorganisms. 2025; 13(2):224. https://doi.org/10.3390/microorganisms13020224
Chicago/Turabian StyleOhwofasa, Aghogho, Manpreet Dhami, Christopher Winefield, and Stephen L. W. On. 2025. "Analysis of Bacterial and Fungal Communities and Organic Acid Content in New Zealand Lambic-Style Beers: A Climatic and Global Perspective" Microorganisms 13, no. 2: 224. https://doi.org/10.3390/microorganisms13020224
APA StyleOhwofasa, A., Dhami, M., Winefield, C., & On, S. L. W. (2025). Analysis of Bacterial and Fungal Communities and Organic Acid Content in New Zealand Lambic-Style Beers: A Climatic and Global Perspective. Microorganisms, 13(2), 224. https://doi.org/10.3390/microorganisms13020224