Probiotics in Poultry: Unlocking Productivity Through Microbiome Modulation and Gut Health
Abstract
:1. Introduction
2. Gut Microbiome and Its Role
3. Probiotics and Their Role in Gut Health
4. Mode of Action and Factors Affecting the Efficacy of Probiotics
5. Early-Life Gut Microbiome and Factors Affecting Its Development
6. Impact of Probiotics on Early-Life Microbiome Development
7. Impact of Probiotics on Gastrointestinal Tract Microbiome
8. Impact of Probiotics on Gut Health
9. Impact of Probiotics on Gut Morphology
10. Impact of Probiotics on Disease Resistance
11. Impact of Probiotics on Immune Modulation
12. Impacts of Probiotics on the Growth Performance of Poultry
13. Impact of Probiotics on Carcass
14. Impact of Probiotics on Egg Production in Laying Hens
15. Challenges and Future Perspectives
16. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alnahhas, N.; Pouliot, E.; Saucier, L. The Hypoxia-Inducible Factor 1 Pathway Plays a Critical Role in the Development of Breast Muscle Myopathies in Broiler Chickens: A Comprehensive Review. Front. Physiol. 2023, 14, 1260987. [Google Scholar] [CrossRef] [PubMed]
- Aljuwayd, M.; Malli, I.A.; Kwon, Y.M. Application of Eugenol in Poultry to Control Salmonella Colonization and Spread. Vet. Sci. 2023, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Tellez, G.; Bielke, L.R.; Hargis, B.M. Alternative Strategies for Salmonella Control in Poultry. In Salmonella—A Dangerous Foodborne Pathogen; IntechOpen Limited: London, UK, 2012; ISBN 978-953-307-782-6. [Google Scholar] [CrossRef]
- Mehdi, Y.; Létourneau-Montminy, M.-P.; Gaucher, M.-L.; Chorfi, Y.; Suresh, G.; Rouissi, T.; Brar, S.K.; Côté, C.; Ramirez, A.A.; Godbout, S. Use of Antibiotics in Broiler Production: Global Impacts and Alternatives. Anim. Nutr. (Zhongguo Xu Mu Shou Yi Xue Hui) 2018, 4, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z. Probiotics: Common Genera, Mechanisms, Current Phase and the Future. Highlights Sci. Eng. Technol. 2024, 109, 204–224. [Google Scholar] [CrossRef]
- Kabir, S.M.L. The Role of Probiotics in the Poultry Industry. Int. J. Mol. Sci. 2009, 10, 3531–3546. [Google Scholar] [CrossRef]
- Shehata, A.A.; Yalçın, S.; Latorre, J.D.; Basiouni, S.; Attia, Y.A.; El-Wahab, A.A.; Visscher, C.; El-Seedi, H.R.; Huber, C.; Hafez, H.M.; et al. Probiotics, Prebiotics, and Phytogenic Substances for Optimizing Gut Health in Poultry. Microorganisms 2022, 10, 395. [Google Scholar] [CrossRef]
- Sirisopapong, M.; Shimosato, T.; Okrathok, S.; Khempaka, S. Assessment of Lactic Acid Bacteria Isolated from the Chicken Digestive Tract for Potential Use as Poultry Probiotics. Anim. Biosci. 2023, 36, 1209–1220. [Google Scholar] [CrossRef]
- Khasanah, H.; Kusbianto, D.E.; Purnamasari, L.; Dela Cruz, J.F.; Widianingrum, D.C.; Hwang, S.G. Modulation of Chicken Gut Microbiota for Enhanced Productivity and Health: A Review. Vet. World 2024, 17, 1073–1083. [Google Scholar] [CrossRef]
- Chen, L.; Bai, X.; Wang, T.; Liu, J.; Miao, X.; Zeng, B.; Li, D. Gut Microbial Diversity Analysis of Different Native Chickens and Screening of Chicken-Derived Probiotics. Animals 2023, 13, 3672. [Google Scholar] [CrossRef]
- Shen, H.; Wang, T.; Dong, W.; Sun, G.; Liu, J.; Peng, N.; Zhao, S. Metagenome-Assembled Genome Reveals Species and Functional Composition of Jianghan Chicken Gut Microbiota and Isolation of Pediococcus Acidilactic with Probiotic Properties. Microbiome 2024, 12, 25. [Google Scholar] [CrossRef]
- Saint-Martin, V.; Guillory, V.; Chollot, M.; Fleurot, I.; Kut, E.; Roesch, F.; Caballero, I.; Helloin, E.; Chambellon, E.; Ferguson, B.; et al. The Gut Microbiota and Its Metabolite Butyrate Shape Metabolism and Antiviral Immunity along the Gut-Lung Axis in the Chicken. Commun. Biol. 2024, 7, 1185. [Google Scholar] [CrossRef] [PubMed]
- Kogut, M.H.; Fernandez-Miyakawa, M.E. Editorial: Functional Mechanisms at the Avian Gut Microbiome-Intestinal Immunity Interface and Its Regulation of Avian Physiological Responses. Front. Physiol. 2022, 13, 1063102. [Google Scholar] [CrossRef]
- Raheem, A.; Liang, L.; Zhang, G.; Cui, S. Modulatory Effects of Probiotics During Pathogenic Infections with Emphasis on Immune Regulation. Front. Immunol. 2021, 12, 616713. [Google Scholar] [CrossRef]
- Lim, H.J.; Shin, H.S. Antimicrobial and Immunomodulatory Effects of Bifidobacterium Strains: A Review. J. Microbiol. Biotechnol. 2020, 30, 1793–1800. [Google Scholar] [CrossRef]
- Costa, N.D.A.; Martins, A.F.L.; Guimarães, A.D.B.; Capela, A.P.D.; Magalhães, I.S.; Arruda, T.R.; Vieira, É.N.R.; Leite Júnior, B.R.D.C. Probiotic and Paraprobiotic Potential of Bacillus Coagulans: Impact of Processing and Storage on Viability and Resistance in the Gastrointestinal Tract. Res. Soc. Dev. 2022, 11, e26211831013. [Google Scholar] [CrossRef]
- Miceli De Farias, F.; Silva Francisco, M.; Nascimento De Sousa Santos, I.; Salustiano Marques-Bastos, S.L.; Lemos Miguel, M.A.; Mattos Albano, R.; De Freire Bastos, M.D.C. Draft Genome Sequence of Enterococcus Faecium E86, a Strain Producing Broad-Spectrum Antimicrobial Peptides: Description of a Novel Bacteriocin Immunity Protein and a Novel Sequence Type. J. Glob. Antimicrob. Resist. 2019, 17, 195–197. [Google Scholar] [CrossRef]
- Van De Wouw, M.; Schellekens, H.; Dinan, T.G.; Cryan, J.F. Microbiota-Gut-Brain Axis: Modulator of Host Metabolism and Appetite. J. Nutr. 2017, 147, 727–745. [Google Scholar] [CrossRef]
- Sinisterra-Loaiza, L.I.; Lamas, A.; Miranda, J.M.; Cepeda, A.; Cardelle-Cobas, A. Probiotics and Human Gut Microbiota Modulation. In Probiotics for Human Nutrition in Health and Disease; Elsevier: Amsterdam, The Netherlands, 2022; pp. 199–230. ISBN 978-0-323-89908-6. [Google Scholar] [CrossRef]
- Rai, A.K.; Pandey, A.; Sahoo, D. Biotechnological Potential of Yeasts in Functional Food Industry. Trends Food Sci. Technol. 2019, 83, 129–137. [Google Scholar] [CrossRef]
- Barrow, P.A.; Mead, G.C.; Wary, C.; Duchet-Suchaux, M. Control of Food-Poisoning Salmonella in Poultry—Biological Options. World’s Poult. Sci. J. 2003, 59, 373–383. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Salem, H.M.; El-Tahan, A.M.; Soliman, M.M.; Youssef, G.B.A.; Taha, A.E.; Soliman, S.M.; Ahmed, A.E.; El-kott, A.F.; et al. Alternatives to Antibiotics for Organic Poultry Production: Types, Modes of Action and Impacts on Bird’s Health and Production. Poult. Sci. 2022, 101, 101696. [Google Scholar] [CrossRef]
- Dame-Korevaar, A.; Fischer, E.A.J.; van der Goot, J.; Velkers, F.; Ceccarelli, D.; Mevius, D.; Stegeman, A. Early Life Supply of Competitive Exclusion Products Reduces Colonization of Extended Spectrum Beta-Lactamase-Producing Escherichia Coli in Broilers. Poult. Sci. 2020, 99, 4052–4064. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.U.; Naz, S. The Applications of Probiotics in Poultry Production. World’s Poult. Sci. J. 2013, 69, 621–632. [Google Scholar] [CrossRef]
- Emami, N.K.; Calik, A.; White, M.B.; Kimminau, E.A.; Dalloul, R.A. Effect of Probiotics and Multi-Component Feed Additives on Microbiota, Gut Barrier and Immune Responses in Broiler Chickens During Subclinical Necrotic Enteritis. Front. Vet. Sci. 2020, 7, 572142. [Google Scholar] [CrossRef] [PubMed]
- Hoseinifar, S.H.; Sun, Y.-Z.; Wang, A.; Zhou, Z. Probiotics as Means of Diseases Control in Aquaculture, a Review of Current Knowledge and Future Perspectives. Front. Microbiol. 2018, 9, 2429. [Google Scholar] [CrossRef]
- Halder, N.; Sunder, J.; De, A.K.; Bhattacharya, D.; Joardar, S.N. Probiotics in Poultry: A Comprehensive Review. J. Basic Appl. Zool. 2024, 85, 23. [Google Scholar] [CrossRef]
- Angelakis, E.; Raoult, D. Gut Microbiota Modifications and Weight Gain in Early Life. Hum. Microbiome J. 2018, 7–8, 10–14. [Google Scholar] [CrossRef]
- Hylander, B.L.; Repasky, E.A. Temperature as a Modulator of the Gut Microbiome: What Are the Implications and Opportunities for Thermal Medicine? Int. J. Hyperth. 2019, 36, 83–89. [Google Scholar] [CrossRef]
- Jha, R.; Das, R.; Oak, S.; Mishra, P. Probiotics (Direct-Fed Microbials) in Poultry Nutrition and Their Effects on Nutrient Utilization, Growth and Laying Performance, and Gut Health: A Systematic Review. Animals 2020, 10, 1863. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Weng, M.; Walker, W.A. The Role of Gut Microbiota in Programming the Immune Phenotype. J. Dev. Orig. Health Dis 2013, 4, 203–214. [Google Scholar] [CrossRef]
- Baldwin, S.; Hughes, R.J.; Hao Van, T.T.; Moore, R.J.; Stanley, D. At-Hatch Administration of Probiotic to Chickens Can Introduce Beneficial Changes in Gut Microbiota. PLoS ONE 2018, 13, e0194825. [Google Scholar] [CrossRef] [PubMed]
- Alali, W.Q.; Hofacre, C.L. Preharvest Food Safety in Broiler Chicken Production. Microbiol. Spectr. 2016, 4, PFS-00022014. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.S. Control of Salmonella and Campylobacter in Poultry Production. A Summary of Work at Russell Research Center. Poult. Sci. 1993, 72, 1169–1173. [Google Scholar] [CrossRef]
- Gast, R.K. Serotype-Specific and Serotype-Independent Strategies for Preharvest Control of Food-Borne Salmonella in Poultry. Avian Dis. 2007, 51, 817–828. [Google Scholar] [CrossRef]
- Park, Y.H.; Hamidon, F.; Rajangan, C.; Soh, K.P.; Gan, C.Y.; Lim, T.S.; Abdullah, W.N.W.; Liong, M.T. Application of Probiotics for the Production of Safe and High-Quality Poultry Meat. Korean J. Food Sci. Anim. Resour. 2016, 36, 567–576. [Google Scholar] [CrossRef]
- Latorre, J.D.; Hernandez-Velasco, X.; Wolfenden, R.E.; Vicente, J.L.; Wolfenden, A.D.; Menconi, A.; Bielke, L.R.; Hargis, B.M.; Tellez, G. Evaluation and Selection of Bacillus Species Based on Enzyme Production, Antimicrobial Activity, and Biofilm Synthesis as Direct-Fed Microbial Candidates for Poultry. Front. Vet. Sci. 2016, 3, 95. [Google Scholar] [CrossRef]
- Wang, W.; Dang, G.; Hao, W.; Li, A.; Zhang, H.; Guan, S.; Ma, T. Dietary Supplementation of Compound Probiotics Improves Intestinal Health by Modulated Microbiota and Its SCFA Products as Alternatives to In-Feed Antibiotics. Probiotics Antimicrob. Prot. 2024. [Google Scholar] [CrossRef]
- Pimenov, N.V.; Smirnova, E.; Ivannikova, R.F. Foreign Research Experience of the Effect of Probiotic Agent on the Intestinal Microbiome of Poultry. Leg. Regul. Vet. Med. 2023, 104–108. [Google Scholar] [CrossRef]
- Shini, S.; Bryden, W.L. Probiotics and Gut Health: Linking Gut Homeostasis and Poultry Productivity. Anim. Prod. Sci. 2021, 62, 1090–1112. [Google Scholar] [CrossRef]
- Chen, K. Effects of Probiotics and Antibiotics on Diversity and Structure of Intestinal Microflora in Broiler Chickens. Afr. J. Microbiol. Res. 2012, 6, 6612–6617. [Google Scholar] [CrossRef]
- Mountzouris, K.C.; Palamidi, I.; Paraskeuas, V.; Griela, E.; Fegeros, K. Dietary Probiotic Form Modulates Broiler Gut Microbiota Indices and Expression of Gut Barrier Genes Including Essential Components for Gut Homeostasis. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1143–1159. [Google Scholar] [CrossRef] [PubMed]
- Grozina, A.A.; Ilina, L.A.; Laptev, G.Y.; Yildirim, E.A.; Ponomareva, E.S.; Filippova, V.A.; Tyurina, D.G.; Fisinin, V.I.; Kochish, I.I.; Griffin, D.K.; et al. Probiotics as an Alternative to Antibiotics in Modulating the Intestinal Microbiota and Performance of Broiler Chickens. J. Appl. Microbiol. 2023, 134, lxad213. [Google Scholar] [CrossRef] [PubMed]
- Markowiak-Kopeć, P.; Śliżewska, K.; Lipiński, K. Insight into Dominant Intestinal Microbiota and the Fatty Acids Profile of Turkeys Following the Administration of Synbiotic Preparations. J. Sci. Food Agric. 2022, 102, 5272–5287. [Google Scholar] [CrossRef]
- Hoepers, P.G.; Nunes, P.L.F.; Almeida-Souza, H.O.; Martins, M.M.; Carvalho, R.D.d.O.; Dreyer, C.T.; Aburjaile, F.F.; Sommerfeld, S.; Azevedo, V.; Fonseca, B.B. Harnessing Probiotics Capability to Combat Salmonella Heidelberg and Improve Intestinal Health in Broilers. Poult. Sci. 2024, 103, 103739. [Google Scholar] [CrossRef]
- Bajagai, Y.S.; Yeoh, Y.K.; Li, X.; Zhang, D.; Dennis, P.G.; Ouwerkerk, D.; Dart, P.J.; Klieve, A.V.; Bryden, W.L. Enhanced Meat Chicken Productivity in Response to the Probiotic Bacillus Amyloliquefaciens H57 Is Associated with the Enrichment of Microbial Amino Acid and Vitamin Biosynthesis Pathways. J. Appl. Microbiol. 2023, 134, lxad085. [Google Scholar] [CrossRef]
- Bilal, M.; Achard, C.; Barbe, F.; Chevaux, E.; Ronholm, J.; Zhao, X. Bacillus Pumilus and Bacillus subtilis Promote Early Maturation of Cecal Microbiota in Broiler Chickens. Microorganisms 2021, 9, 1899. [Google Scholar] [CrossRef]
- Rodrigues, D.R.; Briggs, W.; Duff, A.; Chasser, K.; Murugesan, R.; Pender, C.; Ramirez, S.; Valenzuela, L.; Bielke, L.R. Cecal microbiome composition and metabolic function in probiotic treated broilers. PLoS ONE 2020, 15, e0225921. [Google Scholar] [CrossRef]
- Chang, C.H.; Teng, P.Y.; Lee, T.T.; Yu, B. Effects of Multi-Strain Probiotic Supplementation on Intestinal Microbiota, Tight Junctions, and Inflammation in Young Broiler Chickens Challenged with Salmonella Enterica Subsp. Enterica. Asian-Australas. J. Anim. Sci. 2020, 33, 1797–1808. [Google Scholar] [CrossRef]
- Redweik, G.A.J.; Daniels, K.; Severin, A.J.; Lyte, M.; Mellata, M. Oral Treatments with Probiotics and Live Salmonella Vaccine Induce Unique Changes in Gut Neurochemicals and Microbiome in Chickens. Front. Microbiol. 2020, 10, 3064. [Google Scholar] [CrossRef]
- Fedorova, Z.L.; Perinek, O.Y.; Ilina, L.A. Effect of Herbal Flour and Probiotic in Diet for Poultry of Gene Pool Breeds on Intestinal Microbiome, Fat Deposition and Foliculogenesis. Vescì Nacyânalʹnaj akadèmìì navuk Belarusì. Seryâ Agrar. 2021, 59, 90–101. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, J.; Zhong, H.; Li, N.; Xu, H.; Zhu, Q.; Liu, Y. Effect of Probiotics on the Meat Flavour and Gut Microbiota of Chicken. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, D.R.; Briggs, W.; Duff, A.; Chasser, K.; Murugesan, R.; Pender, C.; Ramirez, S.; Valenzuela, L.; Bielke, L.R. Comparative Effectiveness of Probiotic-Based Formulations on Cecal Microbiota Modulation in Broilers. PLoS ONE 2020, 15, e0225871. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Teng, P.Y.; Lee, T.T.; Yu, B. Effects of Multi-Strain Probiotics Combined with Gardeniae Fructus on Intestinal Microbiota, Metabolites, and Morphology in Broilers. J. Poult. Sci. 2019, 56, 32–43. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Z.; Wang, Y.; Li, L.; Jia, H.; Zhang, L. Compound Probiotics Can Improve Intestinal Health by Affecting the Gut Microbiota of Broilers. J. Anim. Sci. 2023, 101, skad388. [Google Scholar] [CrossRef]
- Ghimire, S.; Subedi, K.; Zhang, X.; Wu, C. Efficacy of Bacillus subtilis Probiotic in Preventing Necrotic Enteritis in Broilers: A Systematic Review and Meta-Analysis. Avian Pathol. 2024, 53, 451–466. [Google Scholar] [CrossRef]
- Ferrocino, I.; Biasato, I.; Dabbou, S.; Colombino, E.; Rantsiou, K.; Squara, S.; Gariglio, M.; Capucchio, M.T.; Gasco, L.; Cordero, C.E.; et al. Lactiplantibacillus Plantarum, Lactiplantibacillus Pentosus and Inulin Meal Inclusion Boost the Metagenomic Function of Broiler Chickens. Anim. Microbiome 2023, 5, 36. [Google Scholar] [CrossRef]
- Dubrovin, A.; Tarlavin, N.; Brazhnik, E.; Melikidi, V. Terminal RFLP and Quantitative PCR Analysis to Determine the Poultry Microbiota and Gene Expression Changes While Using Probiotic Strains. In Agriculture Digitalization and Organic Production; Ronzhin, A., Berns, K., Kostyaev, A., Eds.; Smart Innovation, Systems and Technologies; Springer Nature: Singapore, 2022; Volume 245, pp. 91–102. ISBN 978-981-16-3348-5. [Google Scholar]
- Yu, Y.; Li, Q.; Zeng, X.; Xu, Y.; Jin, K.; Liu, J.; Cao, G. Effects of Probiotics on the Growth Performance, Antioxidant Functions, Immune Responses, and Caecal Microbiota of Broilers Challenged by Lipopolysaccharide. Front. Vet. Sci. 2022, 9, 846649. [Google Scholar] [CrossRef]
- Dixon, B.; Kilonzo-Nthenge, A.; Nzomo, M.; Bhogoju, S.; Nahashon, S. Evaluation of Selected Bacteria and Yeast for Probiotic Potential in Poultry Production. Microorganisms 2022, 10, 676. [Google Scholar] [CrossRef]
- Memon, F.U.; Yang, Y.; Zhang, G.; Leghari, I.H.; Lv, F.; Wang, Y.; Laghari, F.; Khushk, F.A.; Si, H. Chicken Gut Microbiota Responses to Dietary Bacillus subtilis Probiotic in the Presence and Absence of Eimeria Infection. Microorganisms 2022, 10, 1548. [Google Scholar] [CrossRef]
- Mazanko, M.S.; Popov, I.V.; Prazdnova, E.V.; Refeld, A.G.; Bren, A.B.; Zelenkova, G.A.; Chistyakov, V.A.; Algburi, A.; Weeks, R.M.; Ermakov, A.M.; et al. Beneficial Effects of Spore-Forming Bacillus Probiotic Bacteria Isolated From Poultry Microbiota on Broilers’ Health, Growth Performance, and Immune System. Front. Vet. Sci. 2022, 9, 877360. [Google Scholar] [CrossRef]
- Khan, S.; Chousalkar, K.K. Salmonella Typhimurium Infection Disrupts but Continuous Feeding of Bacillus Based Probiotic Restores Gut Microbiota in Infected Hens. J. Anim. Sci. Biotechnol. 2020, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Tabashsum, Z.; Peng, M.; Alvarado-Martinez, Z.; Aditya, A.; Bhatti, J.; Romo, P.B.; Young, A.; Biswas, D. Competitive Reduction of Poultry-Borne Enteric Bacterial Pathogens in Chicken Gut with Bioactive Lactobacillus Casei. Sci. Rep. 2020, 10, 16259. [Google Scholar] [CrossRef] [PubMed]
- Ayoola, M.B.; Pillai, N.; Nanduri, B.; Rothrock, M.J., Jr.; Ramkumar, M. Predicting Foodborne Pathogens and Probiotics Taxa within Poultry-Related Microbiomes Using a Machine Learning Approach. Anim. Microbiome 2023, 5, 57. [Google Scholar] [CrossRef] [PubMed]
- Obianwuna, U.E.; Agbai Kalu, N.; Wang, J.; Zhang, H.; Qi, G.; Qiu, K.; Wu, S. Recent Trends on Mitigative Effect of Probiotics on Oxidative-Stress-Induced Gut Dysfunction in Broilers under Necrotic Enteritis Challenge: A Review. Antioxidants 2023, 12, 911. [Google Scholar] [CrossRef]
- Danladi, Y.; Loh, T.C.; Foo, H.L.; Akit, H.; Md Tamrin, N.A.; Mohammad Naeem, A. Impact of Feeding Postbiotics and Paraprobiotics Produced From Lactiplantibacillus Plantarum on Colon Mucosa Microbiota in Broiler Chickens. Front. Vet. Sci. 2022, 9, 859284. [Google Scholar] [CrossRef]
- Khan, S.; Chousalkar, K.K. Functional Enrichment of Gut Microbiome by Early Supplementation of Bacillus Based Probiotic in Cage Free Hens: A Field Study. Anim. Microbiome 2021, 3, 50. [Google Scholar] [CrossRef]
- Xu, H.; Lu, Y.; Li, D.; Yan, C.; Jiang, Y.; Hu, Z.; Zhang, Z.; Du, R.; Zhao, X.; Zhang, Y.; et al. Probiotic Mediated Intestinal Microbiota and Improved Performance, Egg Quality and Ovarian Immune Function of Laying Hens at Different Laying Stage. Front. Microbiol. 2023, 14, 1041072. [Google Scholar] [CrossRef]
- Naumova, N.B.; Alikina, T.Y.; Zolotova, N.S.; Konev, A.V.; Pleshakova, V.I.; Lescheva, N.A.; Kabilov, M.R. Bacillus-Based Probiotic Treatment Modified Bacteriobiome Diversity in Duck Feces. Agriculture 2021, 11, 406. [Google Scholar] [CrossRef]
- Yousaf, S.; Nouman, H.M.; Ahmed, I.; Husain, S.; Waseem, M.; Nadeem, S.; Tariq, M.; Sizmaz, O.; Chudhry, M.F.Z. A Review of Probiotic Applications in Poultry: Improving Immunity and Having Beneficial Effects on Production and Health. Adv. Microbiol. 2022, 61, 115–123. [Google Scholar] [CrossRef]
- Darboe, A.K. Review on the Use of Probiotics in Poultry Production (Layers and Broilers) as Feed Additives. Int. J. Vet. Sci. Anim. Husb. 2022, 7, 37–42. [Google Scholar] [CrossRef]
- Fathima, S.; Shanmugasundaram, R.; Adams, D.; Selvaraj, R.K. Gastrointestinal Microbiota and Their Manipulation for Improved Growth and Performance in Chickens. Foods 2022, 11, 1401. [Google Scholar] [CrossRef] [PubMed]
- Awad, W.; Ghareeb, K.; Böhm, J. Intestinal Structure and Function of Broiler Chickens on Diets Supplemented with a Synbiotic Containing Enterococcus Faecium and Oligosaccharides. Int. J. Mol. Sci. 2008, 9, 2205–2216. [Google Scholar] [CrossRef] [PubMed]
- Markovi, R.; Efer, D.; Krsti, M.; Petrujki, B. Effect of Different Growth Promoters on Broiler Performance and Gut Morphology. Arch. Med. Vet. 2009, 41, 163–169. [Google Scholar] [CrossRef]
- Awad, W.A.; Böhm, J.; Razzazi-Fazeli, E.; Ghareeb, K.; Zentek, J. Effect of Addition of a Probiotic Microorganism to Broiler Diets Contaminated with Deoxynivalenol on Performance and Histological Alterations of Intestinal Villi of Broiler Chickens. Poult. Sci. 2006, 85, 974–979. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, M.; Shojadoost, B.; Fletcher, C.; Wang, A.; Abdelaziz, K.; Sharif, S. Treatment of Chickens with Lactobacilli Prior to Challenge with Clostridium Perfringens Modifies Innate Responses and Gut Morphology. Res. Vet. Sci. 2024, 172, 105241. [Google Scholar] [CrossRef]
- Mirsalami, S.M.; Mirsalami, M. Effects of Duo-Strain Probiotics on Growth, Digestion, and Gut Health in Broiler Chickens. Vet. Anim. Sci. 2024, 24, 100343. [Google Scholar] [CrossRef]
- Topuria, G.M. Influence of the Probiotic Preparation Immunofloor on the Immune Status of Broiler Chickens. Innov. Prodovol. Bezop. 2024, 20–28. [Google Scholar] [CrossRef]
- Gopal, V.; Dhanasekaran, D. Probiotics as a Growth Promotant for Livestock and Poultry Production. In Advances in Probiotics; Elsevier: Amsterdam, The Netherlands, 2021; pp. 349–364. ISBN 978-0-12-822909-5. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Hossain, M.N.; Das, N.C.; Ahmed, M.M.; Hoque, M.M. Potential Thermotolerant Lactobacilli Isolated from Chicken Gastrointestinal Tract for Probiotic Use in Poultry Feeds. Bangladesh J. Microbiol. 2020, 36, 63–68. [Google Scholar] [CrossRef]
- Cisek, A.A.; Binek, M. Chicken Intestinal Microbiota Function with a Special Emphasis on the Role of Probiotic Bacteria. Pol. J. Vet. Sci. 2014, 17, 385–394. [Google Scholar] [CrossRef]
- Iakubchak, O.M.; Vivych, A.Y.; Hryb, J.V.; Danylenko, S.H.; Taran, T.V. Production and Meat Quality of Broiler Chickens with the Use of a Probiotic Complex of Bifidobacteria and Lactobacilli. Regul. Mech. Biosyst. 2024, 15, 477–482. [Google Scholar] [CrossRef]
- Larsberg, F.; Sprechert, M.; Hesse, D.; Falker-Gieske, C.; Loh, G.; Brockmann, G.A.; Kreuzer-Redmer, S. In Vitro Assessment of the Immunomodulatory Effects of Probiotic Bacillus Strains on Chicken PBMCs. Front. Immunol. 2024, 15, 1415009. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Moore, R.J.; Stanley, D.; Chousalkar, K.K. The Gut Microbiota of Laying Hens and Its Manipulation with Prebiotics and Probiotics to Enhance Gut Health and Food Safety. Appl. Environ. Microbiol. 2020, 86, e00600-20. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, R.R.; Gaghan, C.; Gorrell, K.; Sharif, S.; Taha-Abdelaziz, K. Probiotics as Alternatives to Antibiotics for the Prevention and Control of Necrotic Enteritis in Chickens. Pathogens 2022, 11, 692. [Google Scholar] [CrossRef] [PubMed]
- Korver, D.R. Intestinal Nutrition: Role of Vitamins and Biofactors and Gaps of Knowledge. Poult. Sci. 2022, 101, 101665. [Google Scholar] [CrossRef]
- Sidorenko, S.V.; Ryzhkova, G.F. Effect of Probiotics on the Formation of Intestinal Microbiocenosis and Feed Digestibility in Broiler Chickens. Vet. Korml 2022. [Google Scholar] [CrossRef]
- Al-Otaibi, A.M.; Abd El-Hack, M.E.; Dmour, S.M.; Alsowayeh, N.; Khafaga, A.F.; Ashour, E.A.; Nour-Eldeen, M.A.; Świątkiewicz, S. A Narrative Review on the Beneficial Impacts of Probiotics on Poultry: An Updated Knowledge. Ann. Anim. Sci. 2023, 23, 405–418. [Google Scholar] [CrossRef]
- Saili, T.; Aka, R.; Auza, F.A.; Salido, W.L.; Sari, A.M.; Napirah, A. Production Performance of Local Village Chicken Fed by Agriculture By-Product Supplemented with Herbal Probiotics and Mud Clams Extract (Polymesoda erosa) in Kendari-South-East Sulawesi. J. Peternak. Indones. 2019, 21, 327. [Google Scholar] [CrossRef]
- Fesseha, H.; Demlie, T.; Mathewos, M.; Eshetu, E. Effect of Lactobacillus Species Probiotics on Growth Performance of Dual-Purpose Chicken. Vet. Med. 2021, 12, 75–83. [Google Scholar] [CrossRef]
- Koschayev, I.; Mezinova, C.; Sorokina, N.; Ryadinskaya, A.; Ordina, N.; Chuyev, S. Efficiency of Feed Use by Broiler Chickens of the “Cobb-500” Cross When Feeding a Probiotic Preparation. E3S Web Conf. 2021, 273, 02009. [Google Scholar] [CrossRef]
- Almeida Paz, I.C.D.L.; De Lima Almeida, I.C.; De La Vega, L.T.; Milbradt, E.L.; Borges, M.R.; Chaves, G.H.C.; Dos Ouros, C.C.; Lourenço Da Silva, M.I.; Caldara, F.R.; Andreatti Filho, R.L. Productivity and Well-Being of Broiler Chickens Supplemented with Probiotic. J. Appl. Poult. Res. 2019, 28, 930–942. [Google Scholar] [CrossRef]
- Sardar, D.; Afsana, S.; Habib, A.; Hossain, T. Dietary Effects of Multi-Strain Probiotics as an Alternative to Antibiotics on Growth Performance, Carcass Characteristics, Blood Profiling and Meat Quality of Broilers. Vet. Integr. Sci. 2024, 23, 1–17. [Google Scholar] [CrossRef]
- Abdelqader, A.; Al-Fataftah, A.-R.; Daş, G. Effects of Dietary Bacillus subtilis and Inulin Supplementation on Performance, Eggshell Quality, Intestinal Morphology and Microflora Composition of Laying Hens in the Late Phase of Production. Anim. Feed. Sci. Technol. 2013, 179, 103–111. [Google Scholar] [CrossRef]
- Tang, X.; Liu, X.; Liu, H. Effects of Dietary Probiotic (Bacillus subtilis) Supplementation on Carcass Traits, Meat Quality, Amino Acid, and Fatty Acid Profile of Broiler Chickens. Front. Vet. Sci. 2021, 8, 767802. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.B.; Cho, S.; Jeong, Y.J.; Kim, I.H. PSVI-26 The Benefits of Probiotics (L. plantarum and L. acidophilus) Supplement in Growth Performance, Egg Production, Gas Emission and Gut Microbiome Diversity in Hy-Line Brown Laying Hens. J. Anim. Sci. 2024, 102, 709–710. [Google Scholar] [CrossRef]
- Tajudeen, H.; Ha, S.H.; Hosseindoust, A.; Mun, J.Y.; Park, S.; Park, S.; Choi, P.; Hermes, R.G.; Taechavasonyoo, A.; Rodriguez, R.; et al. Effect of Dietary Inclusion of Bacillus-Based Probiotics on Performance, Egg Quality, and the Faecal Microbiota of Laying Hen. Anim. Biosci. 2024, 37, 689–696. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, G.; Qu, G.; Liu, B.; Zhang, X.; Li, G.; Jin, N.; Li, C.; Bai, J.; Zhao, C. Effects of Dietary Lactobacillus rhamnosus GG Supplementation on the Production Performance, Egg Quality, Eggshell Ultrastructure, and Lipid Metabolism of Late-Phase Laying Hens. BMC Vet. Res. 2023, 19, 150. [Google Scholar] [CrossRef]
- Tsai, M.-Y.; Shih, B.-L.; Liaw, R.-B.; Chen, W.-T.; Lee, T.-Y.; Hung, H.-W.; Hung, K.-H.; Lin, Y.-F. Effect of Dietary Supplementation of Bacillus subtilis TLRI 211-1 on Laying Performance, Egg Quality and Blood Characteristics of Leghorn Layers. Anim. Biosci. 2023, 36, 609–618. [Google Scholar] [CrossRef]
- Ovchinnikov, A.; Ovchinnikov, L.; Matrosov, Y.; Bryukhanov, D.; Belookov, A. Incubation Qualities of the Eggs of the Laying Hens of the Parent Herd When Using Probiotics in the Diet. E3S Web Conf. 2020, 176, 01012. [Google Scholar] [CrossRef]
- Tran Nguyen Minh, H.; Kuo, T.-F.; Lin, W.-Y.; Peng, T.-C.; Yang, G.; Lin, C.-Y.; Chang, T.-H.; Yang, Y.-L.; Ho, C.-H.; Ou, B.-R.; et al. A Novel Phytogenic Formulation, EUBIO-BPSG, as a Promising One Health Approach to Replace Antibiotics and Promote Reproduction Performance in Laying Hens. Bioengineering 2023, 10, 346. [Google Scholar] [CrossRef]
- McFarland, L.V.; Evans, C.T.; Goldstein, E.J.C. Strain-Specificity and Disease-Specificity of Probiotic Efficacy: A Systematic Review and Meta-Analysis. Front. Med. 2018, 5, 124. [Google Scholar] [CrossRef]
- Soumeh, E.A.; Cedeno, A.D.R.C.; Niknafs, S.; Bromfield, J.; Hoffman, L.C. The Efficiency of Probiotics Administrated via Different Routes and Doses in Enhancing Production Performance, Meat Quality, Gut Morphology, and Microbial Profile of Broiler Chickens. Animals 2021, 11, 3607. [Google Scholar] [CrossRef] [PubMed]
- Terpou, A.; Papadaki, A.; Lappa, I.K.; Kachrimanidou, V.; Bosnea, L.A.; Kopsahelis, N. Probiotics in Food Systems: Significance and Emerging Strategies Towards Improved Viability and Delivery of Enhanced Beneficial Value. Nutrients 2019, 11, 1591. [Google Scholar] [CrossRef] [PubMed]
- Fenster, K.; Freeburg, B.; Hollard, C.; Wong, C.; Rønhave Laursen, R.; Ouwehand, A.C. The Production and Delivery of Probiotics: A Review of a Practical Approach. Microorganisms 2019, 7, 83. [Google Scholar] [CrossRef]
- Veiga, P.; Suez, J.; Derrien, M.; Elinav, E. Moving from Probiotics to Precision Probiotics. Nat. Microbiol. 2020, 5, 878–880. [Google Scholar] [CrossRef] [PubMed]
- Victoria Obayomi, O.; Folakemi Olaniran, A.; Olugbemiga Owa, S. Unveiling the Role of Functional Foods with Emphasis on Prebiotics and Probiotics in Human Health: A Review. J. Funct. Foods 2024, 119, 106337. [Google Scholar] [CrossRef]
Probiotics | Description | References |
---|---|---|
Lactobacillus species | Lactobacillus acidophilus, Lactobacillus reuteri, Lactobacillus fermentum, and Lactobacillus johnsonii. They enhance gut barrier integrity and SCFA production. These strains are typically abundant in the crop and small intestine. | [3,4,14] |
Bifidobacterium species | Bifidobacterium bifidum, Bifidobacterium longum, and Bifidobacterium animalis. They modulate immune responses and reduce pathogenic load. These microbes are more prevalent in the cecum. | [15] |
Bacillus species | Bacillus subtilis, Bacillus cereus, and Bacillus coagulans. Bacillus is known for spore-forming capability, ensuring stability in feed. Bacillus strains are widely used due to their resilience during processing and storage of feed. | [16] |
Enterococcus species | Enterococcus faecium. They contribute to gut health through antimicrobial peptide production and pathogen inhibition. | [17] |
Streptococcus species | They contribute to gut health by modulating intestinal microbiota and producing SCFAs. | [18,19] |
Saccharomyces cerevisiae (yeast) | They help in the fermentation process of indigestible materials in the intestinal tract. During fermentation, S. cerevisiae produces bioactive compounds such as β-glucans and prebiotic oligosaccharides, which promote gut health and enhance the immune response. | [20] |
Mode of Action | Description | References |
---|---|---|
Lowering pH | Probiotics work by reducing gut pH, which is achieved through the production of volatile fatty acids and organic acids during the breakdown of the probiotic product. Low pH conditions inhibit pathogenic organisms’ growth, especially in the foregut. | [22] |
Competitive exclusion | Probiotics can compete with pathogenic bacteria for nutrients, attachment sites, and other resources within the gut, thereby preventing their colonization and proliferation. | [23] |
Production of antimicrobial compounds | Certain probiotic strains can produce a variety of antimicrobial compounds, such as organic acids, hydrogen peroxide, and bacteriocins, which can inhibit the growth of harmful bacteria. | [24] |
Immune modulation | Probiotics can stimulate the host’s immune system, enhancing the production of antimicrobial compounds, increasing the activity of immune cells, and promoting a robust immune response against pathogens. | [24] |
Improvement of gut barrier function | Probiotics can strengthen the gut barrier, reducing intestinal permeability and preventing the translocation of pathogenic bacteria. | [25] |
Modulation of the gut microbiome | Probiotics can influence the composition and diversity of the gut microbial community, promoting the growth of beneficial bacteria and excluding the colonization of harmful microorganisms. | [9] |
Improved nutrient utilization | Probiotics can improve the digestion and absorption of nutrients, leading to more efficient feed conversion and better growth performance. | [14,26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naeem, M.; Bourassa, D. Probiotics in Poultry: Unlocking Productivity Through Microbiome Modulation and Gut Health. Microorganisms 2025, 13, 257. https://doi.org/10.3390/microorganisms13020257
Naeem M, Bourassa D. Probiotics in Poultry: Unlocking Productivity Through Microbiome Modulation and Gut Health. Microorganisms. 2025; 13(2):257. https://doi.org/10.3390/microorganisms13020257
Chicago/Turabian StyleNaeem, Muhammad, and Dianna Bourassa. 2025. "Probiotics in Poultry: Unlocking Productivity Through Microbiome Modulation and Gut Health" Microorganisms 13, no. 2: 257. https://doi.org/10.3390/microorganisms13020257
APA StyleNaeem, M., & Bourassa, D. (2025). Probiotics in Poultry: Unlocking Productivity Through Microbiome Modulation and Gut Health. Microorganisms, 13(2), 257. https://doi.org/10.3390/microorganisms13020257