Rapid Detection of Salmonella Typhimurium During Cell Attachment on Three Food-Contact Surfaces Using Long-Read Sequencing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Strain
2.2. Food-Contact Surfaces
2.3. Cell Attachment and Quantification
2.4. Cell Attachment and Quantification Using Conventional Microbiological Methods
2.5. Rapid Detection of Salmonella During Early Attachment
2.6. DNA Sequencing and Bioinformatics
2.7. Electron Microscopy
2.8. Statistical Analysis
3. Results
3.1. Culturing
3.2. Long-Read Sequencing
3.3. Scanning Electron Microscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EPS | Extra polymeric substances |
TSB | Tryptic soy broth |
YE | Yeast extract |
TSBYE | Tryptic soy broth with 0.6% yeast extract |
XLD | Xylose lysine deoxycholate |
CFU | Colony-forming units |
rpm | Revolutions per minute |
LWE | Liquid whole egg |
mL | Milliliter |
BPW | Buffered peptone water |
PBS | Phosphate-buffered saline |
g | Gravity |
ONT | Oxford Nanopore Technologies |
SEM | Scanning electron microscope |
WIMP | What’s In My Pot |
ng | Nanogram |
µL | Microliter |
DNA | Deoxyribonucleic acid |
References
- Whiley, H.; Ross, K. Salmonella and eggs: From production to plate. Int. J. Environ. Res. Public Health 2015, 12, 2543–2556. [Google Scholar] [CrossRef]
- Cardoso, M.J.; Nicolau, A.I.; Borda, D.; Nielsen, L.; Maia, R.L.; Møretrø, T.; Ferreira, V.; Knøchel, S.; Langsrud, S.; Teixeira, P. Salmonella in eggs: From shopping to consumption—A review providing an evidence-based analysis of risk factors. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2716–2741. [Google Scholar] [CrossRef] [PubMed]
- Counihan, K.L.; Kanrar, S.; Tilman, S.; Capobianco, J.; Armstrong, C.M.; Gehring, A. Detection of Escherichia coli O157:H7 in ground beef using long-read sequencing. Foods 2024, 13, 828. [Google Scholar] [CrossRef]
- Bermudez-Aguirre, D.; Niemira, B. A review on egg pasteurization and disinfection: Traditional and novel processing technologies. Compr. Rev. Food Sci. Food Saf. 2022, 22, 756–784. [Google Scholar] [CrossRef] [PubMed]
- Obe, T.; Nannapaneni, R.; Schilling, W.; Zhang, L.; Kiess, A. Antimicrobial tolerance, biofilm formation, and molecular characterization of Salmonella isolates from poultry processing equipment. J. App Poult. Res. 2021, 30, 100195. [Google Scholar] [CrossRef]
- Obe, T.; Nannapaneni, R.; Schilling, W.; Zhang, L.; McDaniel, C.; Kiess, A. Prevalence of Salmonella enterica on poultry processing equipment after completion of sanitation procedures. Poult. Sci. 2020, 99, 4539–4548. [Google Scholar] [CrossRef]
- Chousalkar, K.; Gast, R.; Martelli, F.; Pande, V. Review of egg-related salmonellosis and reduction strategies in United States, Australia, United Kingdom and New Zealand. Crit. Rev. Microbiol. 2018, 44, 290–303. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hue, Y.W.; Zheng, Q.; Chung, H.J.; Yuk, H.G. Biofilm formation by Salmonella Enteritidis in a simulated liquid egg processing environment and its sensitivity to chlorine and hot water. Food Control 2017, 73, 595–600. [Google Scholar] [CrossRef]
- von Hertwig, A.M.; Prestes, F.S.; Nascimento, M.S. Biofilm formation and resistance to sanitizers by Salmonella spp. isolated from the peanut supply chain. Food Res. Int. 2022, 152, 110882. [Google Scholar] [CrossRef]
- Nahar, S.; Ha, A.J.; Byun, K.H.; Hossain, M.I.; Mizan, M.F.R.; Ha, S.D. Efficacy of flavoenzyme against Salmonella Typhimurium, Escherichia coli, and Pseudomonas aeruginosa biofilms on food-contact surfaces. Int. J. Food Microbiol. 2021, 336, 108897. [Google Scholar] [CrossRef]
- Lee, K.H.; Lee, J.Y.; Roy, P.K.; Mizan, M.F.R.; Hossain, M.I.; Park, S.H.; Ha, S.D. Viability of Salmonella Typhimurium biofilms on major food-contact surfaces and eggshell treated during 35 days with and without water storage at room temperature. Poult. Sci. 2020, 99, 4558–4565. [Google Scholar] [CrossRef]
- Pande, V.V.; McWhorter, A.R.; Chosalkar, K.K. Salmonella enterica isolates from layer farm environments are able to form biofilm on eggshell surfaces. Biofouling 2016, 32, 699–710. [Google Scholar] [CrossRef]
- Petrin, S.; Mancin, M.; Losasso, C.; Deotto, S.; Olsen, J.E.; Barco, L. Effect of pH and salinity on the ability of Salmonella serotypes to form biofilm. Front. Microbiol. 2022, 13, 821679. [Google Scholar] [CrossRef] [PubMed]
- Ivers, C.; Kaya, E.C.; Yucel, U.; Boyle, D.; Trinetta, V. Evaluation of Salmonella biofilm attachment and hydrophobicity characteristics on food contact surfaces. BCM Microbiol. 2024, 24, 387. [Google Scholar] [CrossRef] [PubMed]
- Speranza, B.; Monacis, N.; Sinigaglia, M.; Corbo, M.R. Approaches to removal and killing of Salmonella spp. biofilms. J. Food Process Pres. 2016, 41, 12758. [Google Scholar] [CrossRef]
- Lin, L.; Liao, X.; Li, C.; Abdel-Samie, M.A.; Cui, H. Inhibitory effect of cold nitrogen plasma on Salmonella Typhimurium biofilm and its application on poultry egg preservation. LWT 2020, 126, 109340. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, C.; Cui, H.; Lin, L. Feasibility of cold plasma for the control of biofilms in food industry. Trends Food Sci. Tech. 2020, 99, 142–151. [Google Scholar] [CrossRef]
- Niemira, B.A.; Boyd, G.; Sites, J. Cold plasma rapid decontamination of food contact surfaces contaminated with Salmonella biofilms. J. Food Sci. 2014, 79, M917–M922. [Google Scholar] [CrossRef] [PubMed]
- Niemira, B.; Boyd, G.; Sites, J. Cold plasma inactivation of Escherichia coli O157:H7 biofilms. Front. Sustain. Food Syst. 2018, 2. [Google Scholar] [CrossRef]
- Shao, L.; Dong, Y.; Chen, X.; Xu, X.; Wang, H. Modeling the elimination of mature biofilms formed by Staphylococcus aureus and Salmonella spp. using combined ultrasound and disinfectants. Ultrason. Sonochem. 2020, 69, 105269. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liu, Y.; Li, L.; Guo, Y.; Xie, Y.; Cheng, Y.; Yao, W. Ultrasound-involving emerging strategies for controlling foodborne microbial films. Trends Food Sci. Tech. 2020, 96, 91–101. [Google Scholar] [CrossRef]
- Yang, Q.; Zu, J.; Zhang, S.; Liu, C.; Qin, X.; Xu, W. An overview of rapid detection methods for Salmonella. Food Control 2025, 167, 110771. [Google Scholar] [CrossRef]
- Shen, W.; Le, S.; Li, Y.; Hu, F. SeqKit: A cross-platform and ultrafast toolkit for FASTA/FASTQ file manipulation. PLoS ONE 2016, 11, e0163962. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zheng, Q.; Lin, J.; Yuk, H.G.; Guo, L. Immuno- and nucleic acid-based current technologies for Salmonella detection in food. Eur. Food Res. Technol. 2020, 246, 373–395. [Google Scholar] [CrossRef]
- Shen, Y.; Xu, L.; Li, Y. Biosensors for rapid detection of Salmonella in food: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 149–197. [Google Scholar] [CrossRef] [PubMed]
- Loman, N.; Pallen, M. Twenty years of bacterial genome sequencing. Nat. Rev. Microbiol. 2015, 13, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Olsen, H.; Paten, B.; Akeson, M. The Oxford Nanopore MinION: Delivery of nanopore sequencing to the genomics community. Genome Biol. 2016, 17, 239. [Google Scholar] [CrossRef]
- Bermudez-Aguirre, D.; Uknalis, J.; Niemira, B.A. Attachment and removal of biofilm of Salmonella Typhimurium embedded in liquid whole egg on stainless steel, silicone, and nylon. Food Control 2025, 171, 111104. [Google Scholar] [CrossRef]
- The Galaxy Community. The Galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update. Nucleic Acids Res. 2024, 52, W83–W94. [Google Scholar] [CrossRef]
- Wood, D.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Yoshida, C.; Kruczkiewicz, P.; Laing, C.; Lingohr, E.; Gannon, V.; Nash, J.; Taboada, E. The Salmonella In Silico Typing Resource (SISTR): An open web-accessible tool for rapidly typing and subtyping draft Salmonella genome assemblies. PLoS ONE 2016, 11, e0147101. [Google Scholar] [CrossRef]
- Zhang, S.; den Bakker, H.; Li, S.; Chen, J.; Dinsmore, B.; Lane, C.; Lauer, A.; Fields, P.; Deng, X. SeqSero2: Rapid and improved Salmonella serotype determination using whole-genome sequencing data. Appl. Environ. Microbiol. 2019, 85, e01746-19. [Google Scholar] [CrossRef]
- Ondov, B.; Treangen, T.; Melsted, P.; Mallonee, A.; Bergman, N.; Koren, S.; Phillippy, A. Mash: Fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016, 17, 132. [Google Scholar] [CrossRef]
- Lu, J.; Rincon, N.; Wood, D.; Breitwiesser, F.; Pockrandt, C.; Langmead, B.; Salzberg, S.; Steinegger, M. Metagenome analysis using the Kraken software suite. Nat. Protoc. 2022, 17, 2815–2839. [Google Scholar] [CrossRef] [PubMed]
- Juul, S.; Izquierdo, F.; Hurst, A.; Dai, X.; Wright, A.; Kulesha, E.; Pettett, R.; Turner, D. What’s in my pot? Real-time species identification on the MinION. bioRxiv 2015. [Google Scholar] [CrossRef]
- Sauer, K.; Stoodley, P.; Goeres, D.; Hall-Stoodlley, L.; Burmølle, M.; Stewart, P.; Bjarnholt, T. The biofilm life cycle: Expanding the conceptual model of biofilm formation. Nature 2022, 20, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Armbruster, C.R.; Parsek, M.R. New insight into the early stages of biofilm formation. Proc. Natl. Acad. Sci. USA 2018, 115, 4317–4319. [Google Scholar] [CrossRef]
- Alvarez-Ordonez, A.; Coughlan, L.M.; Briandet, R.; Cotter, P.D. Biofilms in food processing environments: Challenges and opportunities. Annu. Rev. Food Sci. Technol. 2019, 10, 173–195. [Google Scholar] [CrossRef] [PubMed]
- Falcó, F.; Verdeguer, M.; Aznar, R.; Sanchez, G.; Randazzo, W. Sanitizing food contact surfaces by the use of essential oils. Innov. Food Sci. Emerg. Technol. 2019, 51, 220–228. [Google Scholar] [CrossRef]
- Pinto, L.; Cervellieri, S.; Netti, T.; Lippolis, V.; Baruzzi, F. Antibacterial activity of oregano (Origanum vulgare L.) essential oil vapors against microbial contaminants of food-contact surfaces. Antibiotics 2024, 13, 371. [Google Scholar] [CrossRef]
- Oliveira, K.; Oliveira, T.; Teixeira, P.; Azeredo, J.; Oliveira, R. Adhesion of Salmonella Enteritidis to stainless steel surfaces. Braz. J. Microbiol. 2007, 38, 318–323. [Google Scholar] [CrossRef]
- Obe, T.; Richards, A.; Shariat, N. Differences in biofilm formation of Salmonella serovars on two surfaces under two temperature conditions. J. Appl. Microbiol. 2022, 132, 2410–2420. [Google Scholar] [CrossRef] [PubMed]
- Fink, R.; Okanovič, D.; Dražič, G.; Abram, A.; Oder, M.; Jevŝnik, M.; Bohinc, K. Bacterial adhesion capacity on food service contact surfaces. Int. J. Environ. Health Res. 2017, 27, 131088. [Google Scholar] [CrossRef]
- Nguyen, H.D.N.; Yang, Y.S.; Yuk, H.G. Biofilm formation of Salmonella Typhimurium on stainless steel and acrylic surfaces as affected by temperature and pH level. LWT 2014, 55, 383–388. [Google Scholar] [CrossRef]
- Byun, K.; Han, S.; Yoon, J.; Park, S.; Ha, S. Efficacy of chlorine-based disinfectants (sodium hypochlorite and chlorine dioxide) on Salmonella Enteritidis planktonic cells, biofilms on food contact surfaces and chicken skin. Food Control 2021, 123, 107838. [Google Scholar] [CrossRef]
- Rossi, S.; Leso, S.M.; Calovi, M. Study on the corrosion behavior of stainless steel in the food industry. Materials 2024, 17, 1617. [Google Scholar] [CrossRef]
- Boulange-Pertermann, L. Processes of bioadhesion on stainless steel surfaces and cleanability: A review with special reference to the food industry. Biofouling 1996, 10, 275–300. [Google Scholar] [CrossRef]
- Lopez-Galvez, F.; Posada-Izquierdo, G.D.; Selma, M.V.; Perez-Rodriguez, F.; Gobet, J.; Gil, M.F.; Allende, A. Electrochemical disinfection: An efficient treatment to inactivate Escherichia coli O157:H7 in process wash water containing organic matter. Food Microbiol. 2012, 30, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Westerhoff, P.; Chao, P.; Mash, H. Reactivity of natural organic matter with aqueous chlorine and bromine. Water Res. 2004, 38, 1502–1513. [Google Scholar] [CrossRef] [PubMed]
- Counihan, K.; Tilman, S.; Niemira, B.; Bermudez-Aguirre, D. Data from: A Fast Method for the Detection of Salmonella Typhimurium Cells in Egg Biofilms on Three Different Surfaces. Dataset. 2024. Available online: https://agdatacommons.nal.usda.gov/articles/dataset/Data_from_A_fast_method_for_the_detection_of_i_Salmonella_i_Typhimurium_cells_in_egg_biofilms_on_three_different_surfaces/26866363 (accessed on 30 August 2024).
Sample Description | Mean Length (b) | Length Standard Deviation (b) | Estimated Bases (Mb) | Reads Generated | Mean PHRED Score | N50 (b) | WIMP | Kraken2 |
---|---|---|---|---|---|---|---|---|
NC Stainless Steel | 2562.8 | 1558.8 | 52.8420 | 20,619 | 10.8 | 2971.0 | ||
NC Silicone | 3037.8 | 2069.5 | 91.7236 | 30,194 | 10.8 | 3748.0 | ||
NC Nylon | 3097.5 | 2051.6 | 76.0129 | 24,540 | 10.8 | 3812.0 | ||
Stainless Steel | 2752.6 | 1817.3 | 33.9995 | 12,352 | 10.8 | 3296.0 | + | + |
Silicone | 2351.2 | 1418.6 | 55.3644 | 23,547 | 10.8 | 2682.0 | + | + |
Nylon | 3011.0 | 1942.1 | 68.1127 | 22,621 | 10.8 | 3667.0 | + | + |
NC Wash Stainless Steel | 2658.3 | 1440.8 | 0.0266 | 10 | 10.2 | 3535.0 | ||
NC Wash Silicone | 2293.3 | 1806.2 | 0.0871 | 38 | 11.3 | 2821.0 | ||
NC Wash Nylon | 2392.0 | 1182.9 | 0.0574 | 24 | 10.5 | 2759.0 | ||
Wash Stainless Steel | 1786.1 | 663.8 | 0.0125 | 7 | 11.4 | 2087.0 | ||
Wash Silicone | 2085.8 | 1010.4 | 0.1043 | 50 | 10.5 | 2314.0 | ||
Wash Nylon | 2486.3 | 2176.7 | 0.0696 | 28 | 10.9 | 2894.0 | + |
Sample Description | Mean Length (b) | Length Standard Deviation (b) | Estimated Bases (Mb) | Reads Generated | Mean PHRED Score | N50 (b) | WIMP | Kraken2 |
---|---|---|---|---|---|---|---|---|
NC Stainless Steel | 3158.0 | 1092.0 | 0.0063 | 2 | 11.5 | 4250.0 | ||
NC Silicone | 1335.0 | 358.5 | 0.0093 | 7 | 10.5 | 1279.0 | ||
NC Nylon | 1210.0 | 0.0 | 0.0012 | 1 | 10.0 | 1210.0 | ||
Stainless Steel | 1247.0 | 66.3 | 0.0037 | 3 | 9.9 | 1283.0 | + | + |
Silicone | 3659.3 | 32.6 | 0.0110 | 3 | 9.6 | 3642.0 | + | + |
Nylon | 17,083.9 | 55,646.2 | 0.5638 | 33 | 9.1 | 315,569.0 | + | + |
NC Wash Stainless Steel | 94,082.5 | 92,959.5 | 0.1882 | 2 | 8.0 | 187,042.0 | ||
NC Wash Silicone | 0 | |||||||
NC Wash Nylon | 425,978.0 | 0.0 | 0.4260 | 1 | 15.0 | 425,978.0 | ||
Wash Stainless Steel | 1192.0 | 0.0 | 0.0012 | 1 | 9.0 | 1192.0 | ||
Wash Silicone | 8533.0 | 0.0 | 0.0085 | 1 | 8.0 | 8533.0 | ||
Wash Nylon | 1720.5 | 188.5 | 0.0034 | 2 | 11.0 | 1909.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bermudez-Aguirre, D.; Tilman, S.; Uknalis, J.; Niemira, B.A.; Counihan, K.L. Rapid Detection of Salmonella Typhimurium During Cell Attachment on Three Food-Contact Surfaces Using Long-Read Sequencing. Microorganisms 2025, 13, 548. https://doi.org/10.3390/microorganisms13030548
Bermudez-Aguirre D, Tilman S, Uknalis J, Niemira BA, Counihan KL. Rapid Detection of Salmonella Typhimurium During Cell Attachment on Three Food-Contact Surfaces Using Long-Read Sequencing. Microorganisms. 2025; 13(3):548. https://doi.org/10.3390/microorganisms13030548
Chicago/Turabian StyleBermudez-Aguirre, Daniela, Shannon Tilman, Joseph Uknalis, Brendan A. Niemira, and Katrina L. Counihan. 2025. "Rapid Detection of Salmonella Typhimurium During Cell Attachment on Three Food-Contact Surfaces Using Long-Read Sequencing" Microorganisms 13, no. 3: 548. https://doi.org/10.3390/microorganisms13030548
APA StyleBermudez-Aguirre, D., Tilman, S., Uknalis, J., Niemira, B. A., & Counihan, K. L. (2025). Rapid Detection of Salmonella Typhimurium During Cell Attachment on Three Food-Contact Surfaces Using Long-Read Sequencing. Microorganisms, 13(3), 548. https://doi.org/10.3390/microorganisms13030548