Mechanisms of Salmonella typhimurium Resistance to Cannabidiol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Media, Chemicals, Bacterial Strains, and Other Reagents
2.2. Extraction of Lipids
2.3. Ergosterols Quantification Using UV-Vis Spectrophotometry
2.4. Mysristic, Palmitic Acid, Palmitoleic Acid, Stearic Acid, Erucic Acid, and Oleic Acids Quantification Using UV-Vis Spectrophotometry
2.5. Unsaturated and Other Uncategorized Bacterial Membrane Sterols Quantification Using UV-Vis Spectrophotometry
LPS Extraction Protocol
2.6. Quantitative PCR Analysis of Gene Expression
2.7. Anti-Invasion Assay
2.8. LPS Extraction
2.9. Statistical Analysis
3. Results
3.1. Comparisons of LPS, Ergosterols, Mysristic, Palmitic, and Oleic Acids of Susceptible and Resistant Strains of S. typhimurium
3.2. Membrane Fatty Acids Composition of Susceptible and Resistant S. typhimurium
3.3. Immunofluorescence Panels of S. typhimurium Infection of Vero Cells and Treatment with CBD
3.4. Gene Expressions of Susceptible and Resistant Strains of S. typhimurium
3.5. Interactions of S. typhimurium Resistance Genes with Closely Related Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vivas, R.; Barbosa, A.A.T.; Dolabela, S.S.; Jain, S. Multidrug-resistant bacteria and alternative methods to control them: An overview. Microb. Drug Resist. 2019, 25, 890–908. [Google Scholar] [CrossRef] [PubMed]
- Terreni, M.; Taccani, M.; Pregnolato, M. New antibiotics for multidrug-resistant bacterial strains: Latest research developments and future perspectives. Molecules 2021, 26, 2671. [Google Scholar] [CrossRef] [PubMed]
- Simons, A.; Alhanout, K.; Duval, R.E. Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms 2020, 8, 639. [Google Scholar] [CrossRef] [PubMed]
- Jernigan, J.A.; Hatfield, K.M.; Wolford, H.; Nelson, R.E.; Olubajo, B.; Reddy, S.C.; Baggs, J. Multidrug-resistant bacterial infections in US hospitalized patients, 2012–2017. N. Engl. J. Med. 2020, 382, 1309–1319. [Google Scholar] [CrossRef]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef]
- Čiginskienė, A.; Dambrauskienė, A.; Rello, J.; Adukauskienė, D. Ventilator-associated pneumonia due to drug-resistant Acinetobacter baumannii: Risk factors and mortality relation with resistance profiles, and independent predictors of in-hospital mortality. Medicina 2019, 55, 49. [Google Scholar] [CrossRef]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nwobodo, D.C.; Ugwu, M.C.; Anie, C.O.; Al-Ouqaili, M.T.S.; Ikem, J.C.; Chigozie, U.V.; Saki, M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar]
- Bagińska, N.; Cieślik, M.; Górski, A.; Jończyk-Matysiak, E. The role of antibiotic resistant A. baumannii in the pathogenesis of urinary tract infection and the potential of its treatment with the use of bacteriophage therapy. Antibiotics 2021, 10, 281. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Foodborne Illness Source Attribution Estimates—United States. 2022. Available online: https://www.cdc.gov/ifsac/php/data-research/annual-report-2022.html (accessed on 15 February 2025).
- Griffith, R.W.; Carlson, S.A.; Krull, A.C. Salmonellosis. In Diseases of Swine; Wiley Online Library: Hoboken, NJ, USA, 2019; pp. 912–925. [Google Scholar]
- Ehuwa, O.; Jaiswal, A.K.; Jaiswal, S. Salmonella, food safety and food handling Practices. Foods 2021, 10, 907. [Google Scholar] [CrossRef]
- Gong, B.; Li, H.; Feng, Y.; Zeng, S.; Zhuo, Z.; Luo, J.; Chen, X.; Li, X. Prevalence, Serotype Distribution and Antimicrobial Resistance of Non-Typhoidal Salmonella in Hospitalized Patients in Conghua District of Guangzhou, China. Front. Cell. Infect. Microbiol. 2022, 12, 805384. [Google Scholar] [CrossRef] [PubMed]
- Waltenburg, M.A.; Basler, C.; Nichols, M.; Scheftel, J.; Stobierski, M.G. Veterinarians’ role in preventing zoonotic salmonellosis from hedgehogs. J. Am. Vet. Med. Assoc. 2021, 258, 1066–1067. [Google Scholar] [PubMed]
- Xiao, X.; Bai, L.; Wang, S.; Liu, L.; Qu, X.; Zhang, J.; Xiao, Y.; Tang, B.; Li, Y.; Yang, H.; et al. Chlorine tolerance and cross-resistance to antibiotics in poultry-associated salmonella isolates in China. Front. Microbiol. 2022, 12, 833743. [Google Scholar] [CrossRef]
- Salles, É.L.; Khodadadi, H.; Jarrahi, A.; Ahluwalia, M.; Paffaro, V.A., Jr.; Costigliola, V.; Yu, J.C.; Hess, D.C.; Dhandapani, K.M.; Baban, B. Cannabidiol (CBD) modulation of apelin in acute respiratory distress syndrome. J. Cell. Mol. Med. 2020, 24, 12869–12872. [Google Scholar] [CrossRef]
- Huang, S.; Claassen, F.W.; van Beek, T.A.; Chen, B.; Zeng, J.; Zuilhof, H.; Salentijn, G.I. Rapid Distinction and semiquantitative Analysis of THC and CBD by silver-impregnated paper spray mass spectrometry. Anal. Chem. 2021, 93, 3794–3802. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Tian, D.; Tian, L.; Ju, X.; Qi, L.; Wang, Y.; Liang, C. Overview of cannabidiol (CBD) and its analogues: Structures, biological activities, and neuroprotective mechanisms in epilepsy and Alzheimer’s disease. Eur. J. Med. Chem. 2020, 192, 112163. [Google Scholar] [CrossRef]
- Millar, S.A.; Maguire, R.F.; Yates, A.S.; O’Sullivan, S.E. Towards better delivery of cannabidiol (CBD). Pharmaceuticals 2020, 13, 219. [Google Scholar] [CrossRef]
- Moreno, T.; Montanes, F.; Tallon, S.J.; Fenton, T.; King, J.W. Extraction of cannabinoids from hemp (Cannabis sativa L.) using high pressure solvents: An overview of different processing options. J. Supercrit. Fluids 2020, 161, 104850. [Google Scholar] [CrossRef]
- Valizadehderakhshan, M.; Shahbazi, A.; Kazem-Rostami, M.; Todd, M.S.; Bhowmik, A.; Wang, L. Extraction of cannabinoids from Cannabis sativa L. (Hemp). Agriculture 2021, 11, 384. [Google Scholar] [CrossRef]
- Karas, J.A.; Wong, L.J.M.; Paulin, O.K.A.; Mazeh, A.C.; Hussein, M.H.; Li, J.; Velkov, T. The Antimicrobial activity of cannabinoids. Antibiotics 2020, 9, 406. [Google Scholar] [CrossRef]
- Jacobs, B.; Klug, C.; McBride, J.; Raines, B. Rebirth of an Industry: Opportunities and Barriers to the Growth of Minnesota’s Hemp Industry. Master’s Thesis, University of Minnesota, Minneapolis, MN, USA, 3 August 2020. [Google Scholar]
- Fike, J. The History of Hemp. In Industrial Hemp as a Modern Commodity Crop; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 1–25. [Google Scholar]
- Fairaq, A.; El-Ashmony, S.; AL-Hindi, Y. A Review of Studies Assessing Cannabidiol’s (CBD) Therapeutic Action and Potentials in Respiratory Diseases. Med.-Leg. Update 2021, 21, 87. [Google Scholar]
- Sekar, K.; Pack, A. Epidiolex as adjunct therapy for treatment of refractory epilepsy: A comprehensive review with a focus on adverse effects. F1000Research 2019, 8, 234. [Google Scholar] [CrossRef] [PubMed]
- Abu-Sawwa, R.; Scutt, B.; Park, Y. Emerging use of epidiolex (cannabidiol) in epilepsy. J. Pediatr. Pharmacol. Ther. 2020, 25, 485–499. [Google Scholar] [CrossRef] [PubMed]
- Gildea, L.; Ayariga, J.A.; Ajayi, O.S.; Xu, J.; Villafane, R.; Samuel-Foo, M. Cannabis sativa CBD Extract Shows Promising Antibacterial Activity against Salmonella typhimurium and S. newington. Molecules 2022, 27, 2669. [Google Scholar] [CrossRef] [PubMed]
- Suyamud, B.; Lohwacharin, J.; Yang, Y.; Sharma, V.K. Antibiotic resistant bacteria and genes in shrimp aquaculture water: Identification and removal by ferrate (VI). J. Hazard. Mater. 2021, 420, 126572. [Google Scholar] [CrossRef] [PubMed]
- Larsson, D.G.; Flach, C.F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Ibrahim, I.; Ayariga, J.A.; Xu, J.; Adebanjo, A.; Robertson, B.K.; Samuel-Foo, M.; Ajayi, O.S. CBD resistant Salmonella strains are susceptible to epsilon 34 phage tailspike protein. Front. Med. 2023, 10, 1075698. [Google Scholar] [CrossRef]
- Ayariga, J.A.; Abugri, D.A.; Amrutha, B.; Villafane, R. Capsaicin potently blocks Salmonella typhimurium invasion of vero cells. Antibiotics 2022, 11, 666. [Google Scholar] [CrossRef]
- Gorgich, M.; Mata, T.; Martins, A.; Branco-Vieira, M.; Caetano, N. Comparison of different lipid extraction procedures applied to three microalgal species. Energy Rep. 2020, 6, 477–482. [Google Scholar] [CrossRef]
- Arami, S.-I.; Hada, M.; Tada, M.; Chen, C.F.; Lan, J.; Korovine, M.; Shao, Z.Q.; Tao, L.; Zhang, J.; Newman, E.B. Near-UV-induced absorbance change and photochemical decomposition of ergosterol in the plasma membrane of the yeast Saccharomyces cerevisiae. Microbiology 1997, 143 Pt 5, 1665–1671. [Google Scholar] [CrossRef] [PubMed]
- Guarrasi, V.; Mangione, M.R.; Sanfratello, V.; Martorana, V.; Bulone, D. Quantification of underivatized fatty acids from vegetable oils by HPLC with UV detection. J. Chromatogr. Sci. 2010, 48, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Wieja, K.; Tarakowski, R.; Siegoczyński, R.M.; Rostocki, A.J. Pressure-induced changes in electronic absorption spectrum in oleic acid. High Press. Res. 2010, 30, 130–134. [Google Scholar] [CrossRef]
- Ayariga, J.A.; Huang, H.; Dean, D. Decellularized Avian Cartilage, a Promising Alternative for Human Cartilage Tissue Regeneration. Materials 2022, 15, 1974. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, C.; Lee, M.D.; Sanchez, S.; Hudson, C.; Phillips, B.; Register, B.; Grady, M.; Liebert, C.; Summers, A.O.; White, D.G.; et al. Incidence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. Antimicrob. Agents Chemother. 2001, 45, 723–726. [Google Scholar] [CrossRef]
- Alvarez, J.; Sota, M.; Vivanco, A.B.; Perales, I.; Cisterna, R.; Rementeria, A.; Garaizar, J. Development of a multiplex PCR technique for detection and epidemiological typing of Salmonella in human clinical samples. J. Clin. Microbiol. 2004, 42, 1734–1738. [Google Scholar] [CrossRef]
- Aarestrup, F.M.; Lertworapreecha, M.; Evans, M.C.; Bangtrakulnonth, A.; Chalermchaikit, T.; Hendriksen, R.S.; Wegener, H.C. Antimicrobial susceptibility and occurrence of resistance genes among Salmonella enterica serovar Weltevreden from different countries. J. Antimicrob. Chemother. 2003, 52, 715–718. [Google Scholar] [CrossRef]
- Marini, E.; Magi, G.; Mingoia, M.; Pugnaloni, A.; Facinelli, B. Antimicrobial, and anti-virulence activity of capsaicin againsterythromycin-resistant, cell-invasive group A streptococci. Front. Microbiol. 2015, 6, 1281. [Google Scholar] [CrossRef]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4, 10-1128. [Google Scholar] [CrossRef]
- Giedraitienė, A.; Vitkauskienė, A.; Naginienė, R.; Pavilonis, A. Antibiotic resistance mechanisms of clinically important bacteria. Medicina 2011, 47, 137–146. [Google Scholar] [CrossRef]
- Ayari, S.; Dussault, D.; Millette, M.; Hamdi, M.; Lacroix, M. Changes in membrane fatty acids and murein composition of Bacillus cereus and Salmonella Typhi induced by gamma irradiation treatment. Int. J. Food Microbiol. 2009, 135, 1–6. [Google Scholar] [CrossRef]
- Bertani, B.; Ruiz, N. Function and Biogenesis of Lipopolysaccharides. EcoSal Plus 2018, 8, 10-1128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ruiz, N.; Wu, T.; Kahne, D.; Silhavy, T.J. Probing the barrier function of the outer membrane with chemical conditionality. ACS Chem. Biol. 2006, 1, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.; Chen, M.; Black, S.S.; Bushell, S.R.; Ceccarelli, M.; Mach, T.; Beis, K.; Low, A.S.; Bamford, V.A.; Booth, I.R.; et al. Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multi-drug resistant E. coli. PLoS ONE 2011, 6, e25825. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-F.; Yan, J.-J.; Lei, H.-Y.; Teng, C.-H.; Wang, M.-C.; Tseng, C.-C.; Wu, J.-J. Loss of outer membrane protein C in Escherichia coli contributes to both antibiotic resistance and escaping antibody-dependent bactericidal Activity. Infect. Immun. 2012, 80, 1815–1822. [Google Scholar] [CrossRef]
- Althouse, C.; Patterson, S.; Fedorka-Cray, P.; Isaacson, R.E. Type 1 Fimbriae of Salmonella enterica Serovar Typhimurium Bind to Enterocytes and Contribute to Colonization of Swine In Vivo. Infect. Immun. 2003, 71, 6446–6452. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koebnik, R.; Locher, K.P.; Van Gelder, P. Structure and function of bacterial outer membrane proteins: Barrels in a nutshell. Mol. Microbiol. 2000, 37, 239–253. [Google Scholar] [CrossRef]
- Vizcarra, I.A.; Hosseini, V.; Kollmannsberger, P.; Meier, S.; Weber, S.S.; Arnoldini, M.; Ackermann, M.; Vogel, V. How type 1 fimbriae help Escherichia coli to evade extracellular antibiotics. Sci. Rep. 2016, 6, 18109. [Google Scholar] [CrossRef]
- Zeiner, S.A.; Dwyer, B.E.; Clegg, S. FimA, FimF, and FimH are necessary for assembly of type 1 fimbriae on salmonella enterica serovar typhimurium. Infect. Immun. 2012, 80, 3289–3296. [Google Scholar] [CrossRef]
- Deng, Y.; Bao, X.; Ji, L.; Chen, L.; Liu, J.; Miao, J.; Chen, D.; Bian, H.; Li, Y.; Yu, G. Resistance integrons: Class 1, 2 and 3 integrons. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jones-Dias, D.; Manageiro, V.; Ferreira, E.; Barreiro, P.; Vieira, L.; Moura, I.B.; Manuela, C. Architecture of class 1, 2, and 3 integrons from gram negative bacteria recovered among fruits and vegetables. Front. Microbiol. 2016, 7, 1400. [Google Scholar] [CrossRef]
- Firoozeh, F.; Mahluji, Z.; Khorshidi, A.; Zibaei, M. Molecular characterization of class 1, 2 and 3 integrons in clinical multidrug resistant Klebsiella pneumoniae isolates. Antimicrob. Resist. Infect. Control 2019, 8, 59. [Google Scholar] [CrossRef] [PubMed]
- Mobarak-Qamsari, M.; Ashayeri-Panah, M.; Eftekhar, F.; Feizabadi, M.M. Integron mediated multidrug resistance in extended spectrum beta-lactamase producing clinical isolates of Klebsiella pneumoniae. Braz. J. Microbiol. 2013, 44, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Salverda, M.L.; De Visser, J.A.G.; Barlow, M. Natural evolution of TEM-1 β-lactamase: Experimental reconstruction and clinical relevance. FEMS Microbiol. Rev. 2010, 34, 1015–1036. [Google Scholar] [CrossRef] [PubMed]
- Ojdana, D.; Sacha, P.; Wieczorek, P.; Czaban, S.; Michalska, A.; Jaworowska, J.; Jurczak, A.; Poniatowski, B.; Tryniszewska, E. The occurrence of blaCTX-M, blaSHV, and blaTEM genes in extended-spectrum β-lactamase-positive strains of Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis in Poland. Int. J. Antibiot. 2014, 2014, 935842. [Google Scholar] [CrossRef]
- Mąka, Ł.; Popowska, M. Antimicrobial resistance of Salmonella spp. isolated from food. Rocz. Państwowego Zakładu Higieny 2016, 67, 343–358. [Google Scholar]
- Algammal, A.M.; Mabrok, M.; Sivaramasamy, E.; Youssef, F.M.; Atwa, M.H.; El-Kholy, A.W.; Hetta, H.F.; Hozzein, W.N. Emerging multiple drug resistance-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and blaTEM, blaCTX-M, and tetA antibiotic-resistance genes. Sci. Rep. 2020, 10, 15961. [Google Scholar] [CrossRef]
- Yang, J.; Gao, S.; Chang, Y.; Su, M.; Xie, Y.; Sun, S. Occurrence and characterization of Salmonella isolated from large-scale breeder farms in Shandong province, China. BioMed Res. Int. 2019, 2019, 8159567. [Google Scholar] [CrossRef]
- Chuanchuen, R.; Padungtod, P. Antimicrobial resistance genes in Salmonella enterica isolates from poultry and swine in Thailand. J. Vet.-Med. Sci. 2009, 71, 1349–1355. [Google Scholar] [CrossRef]
- Jeong, S.M.; Lee, H.J.; Park, Y.M.; Kim, J.S.; Lee, S.D.; Bang, I.S. Inducible spy transcription acts as a sensor for envelope stress of salmonella typhimurium. Korean J. Food Sci. Anim. Resour. 2017, 37, 134–138. [Google Scholar] [CrossRef]
- Hagenmaier, S.; Stierhof, Y.D.; Henning, U. A new periplasmic protein of Escherichia coli which is synthesized in spheroplasts but not in intact cells. J. Bacteriol. 1997, 179, 2073–2076. [Google Scholar] [CrossRef]
- Bury-Moné, S.; Nomane, Y.; Reymond, N.; Barbet, R.; Jacquet, E.; Imbeaud, S.; Jacq, A.; Bouloc, P. Global analysis of extracytoplasmic stress signaling in Escherichia coli. PLOS Genet. 2009, 5, e1000651. [Google Scholar] [CrossRef] [PubMed]
- Quan, S.; Koldewey, P.; Tapley, T.; Kirsch, N.; Ruane, K.M.; Pfizenmaier, J.; Shi, R.; Hofmann, S.; Foit, L.; Ren, G.; et al. Genetic selection designed to stabilize proteins uncovers a chaperone called Spy. Nat. Struct. Mol. Biol. 2011, 18, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Onufryk, C.; Crouch, M.L.; Fang, F.C.; Gross, C.A. Characterization of six lipoproteins in the σE regulon. J. Bacteriol. 2005, 187, 4552–4561. [Google Scholar] [CrossRef] [PubMed]
- Jing, W.; Liu, J.; Wu, S.; Li, X.; Liu, Y. Role of cpxA mutations in the resistance to aminoglycosides and β-lactams in Salmonella enterica serovar Typhimurium. Front. Microbiol. 2021, 12, 604079. [Google Scholar] [CrossRef] [PubMed]
- Tintino, S.R.; Oliveira-Tintino, C.D.M.; Campina, F.F.; Costa, M.S.; Cruz, R.P.; Pereira, R.L.S.; Andrade, J.C.; Sousa, E.O.; Siqueira-Junior, J.P.; Coutinho, H.D.M.; et al. Cholesterol and ergosterol affect the activity of Staphylococcus aureus antibiotic efflux pumps. Microb. Pathog. 2017, 104, 133–136. [Google Scholar] [CrossRef]
Primer | Sequence | Gene Name | Fragment Size/bp | Reference |
---|---|---|---|---|
Fw-int1 | CCTCCCGCACGATGATC | Integron1 | 280 | [38] |
Rv-int1 | TCCACGCATCGTCAGGC | Integron1 | 280 | [38] |
Fw-int2 | TTATTGCTGGGATTAGGC | Integron2 | 233 | [38] |
Rv-int2 | ACGGCTACCCTCTGTTATC | Integron2 | 233 | [38] |
Fw-int3 | AGTGGGTGGCGAATGAGTG | Integron3 | 600 | [38] |
Rv-int3 | TGTTCTTGTATCGGCAGGTG | Integron3 | 600 | [38] |
Fw-ompC | ATCGCTGACTTATGCAATCG | Outer membrane proteins | 204 | [39] |
RV-ompC | CGGGTTGCGTTATAGGTCGT | Outer membrane proteins | 204 | [39] |
Fw-blaTEM | ATGAGTATTCAACATTTCCG | Beta-lactamase | 859 | [40] |
Rv-blaTEM | ACCAATGCTTAATCAGTGAG | Beta-lactamase | 859 | [40] |
Fw-fimA | GCGAGTCTGATGTTTGTCGC | Fimbriae | 215 | NC_003197.2 |
Rv-fimA | ACGATGGAGAAAGGCACCTG | Fimbriae | 215 | NC_003197.2 |
Fw-fimZ | GGATGATAGCCGAACAGCGA | Fimbriae | 376 | NC_003197.2 |
Rv-fimZ | ATAGCGCAGCACGGTAACTT | Fimbriae | 376 | NC_003197.2 |
Fw-STM0716 | CTGTCAGCGACCGACAGAAT | DNA recombinase | 115 | NC_003197.2 |
Rv-STM0716 | CAATATCCGACAAGCGCAGC | DNA recombinase | 115 | NC_003197.2 |
Fw-STM0959 | GCGTATTTCCAACGTCGAGC | leucine-responsive transcriptional regulator | 225 | NC_003197.2 |
Rv-STM0959 | TCTTCAAGCTTTTGCACGGC | leucine-responsive transcriptional regulator | 225 | NC_003197.2 |
Fw-spy | CGCCAGCGATACCTTCGATA | Spheroplast | 205 | NC_003197.2 |
Rw-spy | CGCAGCAGGCATTTTACCTT | Spheroplast | 205 | NC_003197.2 |
Fw-gyrB | GTTGGTGAAGGTTTCGTGGC | 458 | NC_003197.2 | |
Rv-gyrB | ATATCGGCGACACGGATGAC | DNA gyrase subunit B | 458 | NC_003197.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, I.; Ayariga, J.A.; Xu, J.; Abugri, D.A.; Boakai, R.K.; Ajayi, O.S. Mechanisms of Salmonella typhimurium Resistance to Cannabidiol. Microorganisms 2025, 13, 551. https://doi.org/10.3390/microorganisms13030551
Ibrahim I, Ayariga JA, Xu J, Abugri DA, Boakai RK, Ajayi OS. Mechanisms of Salmonella typhimurium Resistance to Cannabidiol. Microorganisms. 2025; 13(3):551. https://doi.org/10.3390/microorganisms13030551
Chicago/Turabian StyleIbrahim, Iddrisu, Joseph Atia Ayariga, Junhuan Xu, Daniel A. Abugri, Robertson K. Boakai, and Olufemi S. Ajayi. 2025. "Mechanisms of Salmonella typhimurium Resistance to Cannabidiol" Microorganisms 13, no. 3: 551. https://doi.org/10.3390/microorganisms13030551
APA StyleIbrahim, I., Ayariga, J. A., Xu, J., Abugri, D. A., Boakai, R. K., & Ajayi, O. S. (2025). Mechanisms of Salmonella typhimurium Resistance to Cannabidiol. Microorganisms, 13(3), 551. https://doi.org/10.3390/microorganisms13030551