Study Models for Chlamydia trachomatis Infection of the Female Reproductive Tract
Abstract
:1. Introduction
2. In Vivo Models
2.1. Mouse Models
2.2. Porcine (Pig) Models
2.3. Guinea Pig Models
2.4. Non-Human Primate Models
3. In Vitro Models
3.1. Cell Sources
3.2. Two-Dimensional Models
3.2.1. Traditional Mono-Cell Culture
3.2.2. Membrane Inserts, Including Corning Transwell® and the Greiner ThinCert™
3.2.3. Co-Culture
3.3. Three-Dimensional Models and Organoids
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jury, B.; Fleming, C.; Huston, W.M.; Luu, L.D.W. Molecular Pathogenesis of Chlamydia trachomatis. Front. Cell. Infect. Microbiol. 2023, 13, 1281823. [Google Scholar] [CrossRef] [PubMed]
- Stelzner, K.; Vollmuth, N.; Rudel, T. Intracellular Lifestyle of Chlamydia trachomatis and Host–Pathogen Interactions. Nat. Rev. Microbiol. 2023, 21, 448–462. [Google Scholar] [CrossRef] [PubMed]
- Chlamydia; World Health Organization. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/chlamydia (accessed on 20 September 2024).
- Chauhan, V.; Shah, M.; Thakkar, S.; Patel, S.; Marfatia, Y. Sexually Transmitted Infections in Women: A Correlation of Clinical and Laboratory Diagnosis in Cases of Vaginal Discharge Syndrome. Indian Dermatol. Online J. 2014, 5, 1. [Google Scholar] [CrossRef]
- Lane, A.B.; Decker, C.F. Chlamydia trachomatis Infections. Dis. A-Mon. 2016, 62, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, N.; Daniel, J.; Forsyth, S. The Risk of Pelvic Inflammatory Disease in Women Infected with Chlamydia (Chlamydia trachomatis): A Literature Review. Cureus 2024, 16, e66316. [Google Scholar] [CrossRef] [PubMed]
- Alexiou, Z.W.; Hoenderboom, B.M.; Hoebe, C.J.P.A.; Dukers-Muijrers, N.H.T.M.; Götz, H.M.; Van Der Sande, M.A.B.; De Vries, H.J.C.; Den Hartog, J.E.; Morré, S.A.; Van Benthem, B.H.B. Reproductive Tract Complication Risks Following Chlamydia trachomatis Infections: A Long-Term Prospective Cohort Study from 2008 to 2022. Lancet Reg. Health—Eur. 2024, 45, 101027. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, J.; Luo, L.; Min, S.; Wang, L.; Peng, L.; Hou, Y.; He, P.; He, S.; Tang, S.; et al. Characterization of Genital Chlamydia trachomatis Infection among Women Attending Infertility and Gynecology Clinics in Hunan, China. BMC Infect. Dis. 2024, 24, 405. [Google Scholar] [CrossRef]
- Beatty, W.L.; Morrison, R.P.; Byrne, G.I. Persistent Chlamydiae: From Cell Culture to a Paradigm for Chlamydial Pathogenesis. Microbiol. Rev. 1994, 58, 686–699. [Google Scholar] [CrossRef]
- Kozusnik, T.; Adams, S.E.; Greub, G. Aberrant Bodies: An Alternative Metabolic Homeostasis Allowing Survivability? Microorganisms 2024, 12, 495. [Google Scholar] [CrossRef] [PubMed]
- Hocking, J.S.; Geisler, W.M.; Kong, F.Y.S. Update on the Epidemiology, Screening, and Management of Chlamydia trachomatis Infection. Infect. Dis. Clin. N. Am. 2023, 37, 267–288. [Google Scholar] [CrossRef]
- Wiesenfeld, H.C. Screening for Chlamydia trachomatis Infections in Women. N. Engl. J. Med. 2017, 376, 765–773. [Google Scholar] [CrossRef]
- Poston, T.B. Advances in Vaccine Development for Chlamydia Trachomatis. Pathog. Dis. 2024, 82, ftae017. [Google Scholar] [CrossRef]
- Wang, X.; Wu, H.; Fang, C.; Li, Z. Insights into Innate Immune Cell Evasion by Chlamydia trachomatis. Front. Immunol. 2024, 15, 1289644. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.; Sousa, C.; Vale, N. Chlamydia trachomatis as a Current Health Problem: Challenges and Opportunities. Diagnostics 2022, 12, 1795. [Google Scholar] [CrossRef]
- Toumasis, P.; Vrioni, G.; Tsinopoulos, I.T.; Exindari, M.; Samonis, G. Insights into Pathogenesis of Trachoma. Microorganisms 2024, 12, 1544. [Google Scholar] [CrossRef] [PubMed]
- Morré, S.A.; Rozendaal, L.; van Valkengoed, I.G.M.; Boeke, A.J.P.; van Voorst Vader, P.C.; Schirm, J.; de Blok, S.; van den Hoek, J.A.R.; van Doornum, G.J.J.; Meijer, C.J.L.M.; et al. Urogenital Chlamydia trachomatis Serovars in Men and Women with a Symptomatic or Asymptomatic Infection: An Association with Clinical Manifestations? J. Clin. Microbiol. 2000, 38, 2292–2296. [Google Scholar] [CrossRef] [PubMed]
- Taraktchoglou, M.; Pacey, A.A.; Turnbull, J.E.; Eley, A. Infectivity of Chlamydia trachomatis Serovar LGV but Not E Is Dependent on Host Cell Heparan Sulfate. Infect. Immun. 2001, 69, 968–976. [Google Scholar] [CrossRef]
- Marangoni, A.; Amadesi, S.; Djusse, M.E.; Foschi, C.; Gaspari, V.; Lazzarotto, T.; Gaibani, P. Whole Genome Sequencing of a Chlamydia trachomatis Strain Responsible for a Case of Rectal Lymphogranuloma Venereum in Italy. Curr. Issues Mol. Biol. 2023, 45, 1852–1859. [Google Scholar] [CrossRef]
- Nieuwenhuis, R.F.; Ossewaarde, J.M.; Götz, H.M.; Dees, J.; Thio, H.B.; Thomeer, M.G.J.; den Hollander, J.C.; Neumann, M.H.A.; van der Meijden, W.I. Resurgence of Lymphogranuloma Venereum in Western Europe: An Outbreak of Chlamydia trachomatis Serovar L2 Proctitis in The Netherlands among Men Who Have Sex with Men. Clin. Infect. Dis. 2004, 39, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Shao, R.; Hu, J.; Billig, H. Toward Understanding Chlamydia Infection–Induced Infertility Caused by Dysfunctional Oviducts. J. Infect. Dis. 2013, 208, 707–709. [Google Scholar] [CrossRef]
- Morrison, R.P. Differential Sensitivities of Chlamydia trachomatis Strains to Inhibitory Effects of Gamma Interferon. Infect. Immun. 2000, 68, 6038–6040. [Google Scholar] [CrossRef]
- Sturdevant, G.L.; Kari, L.; Gardner, D.J.; Olivares-Zavaleta, N.; Randall, L.B.; Whitmire, W.M.; Carlson, J.H.; Goheen, M.M.; Selleck, E.M.; Martens, C.; et al. Frameshift Mutations in a Single Novel Virulence Factor Alter the In Vivo Pathogenicity of Chlamydia trachomatis for the Female Murine Genital Tract. Infect. Immun. 2010, 78, 3660–3668. [Google Scholar] [CrossRef]
- Phillips, S.; Quigley, B.L.; Timms, P. Seventy Years of Chlamydia Vaccine Research—Limitations of the Past and Directions for the Future. Front. Microbiol. 2019, 10, 70. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Zhang, T.; Shu, C.; Han, Z.; Huang, Y.; Wan, J.; Wang, L.; Sun, X. Diverse Animal Models for Chlamydia Infections: Unraveling Pathogenesis through the Genital and Gastrointestinal Tracts. Front. Microbiol. 2024, 15, 1386343. [Google Scholar] [CrossRef]
- Moysidou, C.-M.; Barberio, C.; Owens, R.M. Advances in Engineering Human Tissue Models. Front. Bioeng. Biotechnol. 2021, 8, 620962. [Google Scholar] [CrossRef]
- Filardo, S.; Di Pietro, M.; Sessa, R. Better In Vitro Tools for Exploring Chlamydia trachomatis Pathogenesis. Life 2022, 12, 1065. [Google Scholar] [CrossRef]
- Zhong, G. Chlamydia Spreading from the Genital Tract to the Gastrointestinal Tract—A Two-Hit Hypothesis. Trends Microbiol. 2018, 26, 611–623. [Google Scholar] [CrossRef] [PubMed]
- De La Maza, L.M.; Zhong, G.; Brunham, R.C. Update on Chlamydia trachomatis Vaccinology. Clin. Vaccine Immunol. 2017, 24, e00543-16. [Google Scholar] [CrossRef]
- De Clercq, E.; Kalmar, I.; Vanrompay, D. Animal Models for Studying Female Genital Tract Infection with Chlamydia trachomatis. Infect. Immun. 2013, 81, 3060–3067. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.H.; Behar, A.R.; Snider, T.A.; Allen, N.A.; Lutter, E.I. Comparison of Murine Cervicovaginal Infection by Chlamydial Strains: Identification of Extrusions Shed In Vivo. Front. Cell. Infect. Microbiol. 2017, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, K.H.; Sigar, I.M.; Schripsema, J.H.; Denman, C.J.; Bowlin, A.K.; Myers, G.A.S.; Rank, R.G. Strain and Virulence Diversity in the Mouse Pathogen Chlamydia Muridarum. Infect. Immun. 2009, 77, 3284–3293. [Google Scholar] [CrossRef] [PubMed]
- Dockterman, J.; Coers, J. Immunopathogenesis of Genital Chlamydia Infection: Insights from Mouse Models. Pathog. Dis. 2021, 79, ftab012. [Google Scholar] [CrossRef] [PubMed]
- Lyons, J.M.; Ito, J.I.; Morré, S.A. Chlamydia trachomatis Serovar E Isolates from Patients with Different Clinical Manifestations Have Similar Courses of Infection in a Murine Model: Host Factors as Major Determinants of C. trachomatis Mediated Pathogenesis. J. Clin. Pathol. 2004, 57, 657–659. [Google Scholar] [CrossRef]
- Gondek, D.C.; Olive, A.J.; Stary, G.; Starnbach, M.N. CD4+ T Cells Are Necessary and Sufficient To Confer Protection against Chlamydia trachomatis Infection in the Murine Upper Genital Tract. J. Immunol. 2012, 189, 2441–2449. [Google Scholar] [CrossRef] [PubMed]
- Sturdevant, G.L.; Caldwell, H.D. Innate Immunity Is Sufficient for the Clearance of Chlamydia trachomatis from the Female Mouse Genital Tract. Pathog. Dis. 2014, 72, 70–73. [Google Scholar] [CrossRef]
- Nguyen, N.D.N.T.; Olsen, A.W.; Lorenzen, E.; Andersen, P.; Hvid, M.; Follmann, F.; Dietrich, J. Parenteral Vaccination Protects against Transcervical Infection with Chlamydia trachomatis and Generate Tissue-Resident T Cells Post-Challenge. npj Vaccines 2020, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Zhang, T.; Melero, J.; Huang, Y.; Liu, Y.; Liu, Q.; He, C.; Nelson, D.E.; Zhong, G. The Genital Tract Virulence Factor pGP3 Is Essential for Chlamydia Muridarum Colonization in the Gastrointestinal Tract. Infect. Immun. 2018, 86, e00429-17. [Google Scholar] [CrossRef]
- Ramsey, K.H.; Schripsema, J.H.; Smith, B.J.; Wang, Y.; Jham, B.C.; O’Hagan, K.P.; Thomson, N.R.; Murthy, A.K.; Skilton, R.J.; Chu, P.; et al. Plasmid CDS5 Influences Infectivity and Virulence in a Mouse Model of Chlamydia trachomatis Urogenital Infection. Infect. Immun. 2014, 82, 3341–3349. [Google Scholar] [CrossRef] [PubMed]
- Stary, G.; Olive, A.; Radovic-Moreno, A.F.; Gondek, D.; Alvarez, D.; Basto, P.A.; Perro, M.; Vrbanac, V.D.; Tager, A.M.; Shi, J.; et al. A Mucosal Vaccine against Chlamydia trachomatis Generates Two Waves of Protective Memory T Cells. Science 2015, 348, aaa8205. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Tifrea, D.F.; Zhong, G.; De La Maza, L.M. Transcervical Inoculation with Chlamydia trachomatis Induces Infertility in HLA-DR4 Transgenic and Wild-Type Mice. Infect. Immun. 2018, 86, e00722-17. [Google Scholar] [CrossRef]
- Gros, P.; Casanova, J.-L. Reconciling Mouse and Human Immunology at the Altar of Genetics. Annu. Rev. Immunol. 2023, 41, 39–71. [Google Scholar] [CrossRef] [PubMed]
- Vasilevsky, S.; Greub, G.; Nardelli-Haefliger, D.; Baud, D. Genital Chlamydia trachomatis: Understanding the Roles of Innate and Adaptive Immunity in Vaccine Research. Clin. Microbiol. Rev. 2014, 27, 346–370. [Google Scholar] [CrossRef] [PubMed]
- Käser, T.; Cnudde, T.; Hamonic, G.; Rieder, M.; Pasternak, J.A.; Lai, K.; Tikoo, S.K.; Wilson, H.L.; Meurens, F. Porcine Retinal Cell Line VIDO R1 and Chlamydia Suis to Modelize Ocular Chlamydiosis. Vet. Immunol. Immunopathol. 2015, 166, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Amaral, A.F.; Rahman, K.S.; Kick, A.R.; Cortes, L.M.; Robertson, J.; Kaltenboeck, B.; Gerdts, V.; O’Connell, C.M.; Poston, T.B.; Zheng, X.; et al. Mucosal Vaccination with UV-Inactivated Chlamydia Suis in Pre-Exposed Outbred Pigs Decreases Pathogen Load and Induces CD4 T-Cell Maturation into IFN-Γ+ Effector Memory Cells. Vaccines 2020, 8, 353. [Google Scholar] [CrossRef]
- Häcker, G. Chlamydia in Pigs: Intriguing Bacteria Associated with Sub-Clinical Carriage and Clinical Disease, and with Zoonotic Potential. Front. Cell Dev. Biol. 2024, 12, 1301892. [Google Scholar] [CrossRef] [PubMed]
- Käser, T.; Renois, F.; Wilson, H.L.; Cnudde, T.; Gerdts, V.; Dillon, J.-A.R.; Jungersen, G.; Agerholm, J.S.; Meurens, F. Contribution of the Swine Model in the Study of Human Sexually Transmitted Infections. Infect. Genet. Evol. 2018, 66, 346–360. [Google Scholar] [CrossRef] [PubMed]
- Käser, T.; Pasternak, J.A.; Delgado-Ortega, M.; Hamonic, G.; Lai, K.; Erickson, J.; Walker, S.; Dillon, J.R.; Gerdts, V.; Meurens, F. Chlamydia Suis and Chlamydia trachomatis Induce Multifunctional CD4 T Cells in Pigs. Vaccine 2017, 35, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Lorenzen, E.; Follmann, F.; Jungersen, G.; Agerholm, J.S. A Review of the Human vs. Porcine Female Genital Tract and Associated Immune System in the Perspective of Using Minipigs as a Model of Human Genital Chlamydia Infection. Vet. Res. 2015, 46, 116. [Google Scholar] [CrossRef]
- Erneholm, K.; Lorenzen, E.; Bøje, S.; Olsen, A.W.; Andersen, P.; Cassidy, J.P.; Follmann, F.; Jensen, H.E.; Agerholm, J.S. Genital Tract Lesions in Sexually Mature Göttingen Minipigs during the Initial Stages of Experimental Vaginal Infection with Chlamydia trachomatis Serovar D. BMC Vet. Res. 2016, 12, 200. [Google Scholar] [CrossRef] [PubMed]
- Lorenzen, E.; Follmann, F.; Secher, J.O.; Goericke-Pesch, S.; Hansen, M.S.; Zakariassen, H.; Olsen, A.W.; Andersen, P.; Jungersen, G.; Agerholm, J.S. Intrauterine Inoculation of Minipigs with Chlamydia trachomatis during Diestrus Establishes a Longer Lasting Infection Compared to Vaginal Inoculation during Estrus. Microbes Infect. 2017, 19, 334–342. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, E.; Van Gils, M.; Schautteet, K.; Devriendt, B.; Kiekens, C.; Chiers, K.; Van Den Broeck, W.; Cox, E.; Dean, D.; Vanrompay, D. Chlamydia trachomatis L2c Infection in a Porcine Model Produced Urogenital Pathology and Failed to Induce Protective Immune Responses Against Re-Infection. Front. Immunol. 2020, 11, 555305. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, W.; Li, J.; Jin, Y.; Qiu, Z. Application of the Transgenic Pig Model in Biomedical Research: A Review. Front. Cell Dev. Biol. 2022, 10, 1031812. [Google Scholar] [CrossRef] [PubMed]
- Rank, R.G.; Sanders, M.M. Pathogenesis of Endometritis and Salpingitis in a Guinea Pig Model of Chlamydial Genital Infection. Am. J. Pathol. 1992, 140, 927. [Google Scholar]
- Mount, D.T.; Bigazzi, P.E.; Barron, A.L. Experimental Genital Infection of Male Guinea Pigs with the Agent of Guinea Pig Inclusion Conjunctivitis and Transmission to Females. Infect. Immun. 1973, 8, 925–930. [Google Scholar] [CrossRef]
- Rank, R.G.; Bowlin, A.K.; Reed, R.L.; Darville, T. Characterization of Chlamydial Genital Infection Resulting from Sexual Transmission from Male to Female Guinea Pigs and Determination of Infectious Dose. Infect. Immun. 2003, 71, 6148–6154. [Google Scholar] [CrossRef]
- Rank, R.G.; White, H.J.; Hough, A.J.; Pasley, J.N.; Barron, A.L. Effect of Estradiol on Chlamydial Genital Infection of Female Guinea Pigs. Infect. Immun. 1982, 38, 699–705. [Google Scholar] [CrossRef]
- Agrawal, T.; Vats, V.; Wallace, P.K.; Salhan, S.; Mittal, A. Role of Cervical Dendritic Cell Subsets, Co-Stimulatory Molecules, Cytokine Secretion Profile and Beta-Estradiol in Development of Sequalae to Chlamydia trachomatis Infection. Reprod. Biol. Endocrinol. 2008, 6, 46. [Google Scholar] [CrossRef] [PubMed]
- Padilla-Carlin, D.J.; McMurray, D.N.; Hickey, A.J. The Guinea Pig as a Model of Infectious Diseases. Comp. Med. 2008, 58, 324–340. [Google Scholar] [PubMed]
- De Jonge, M.I.; Keizer, S.A.S.; El Moussaoui, H.M.; Van Dorsten, L.; Azzawi, R.; Van Zuilekom, H.I.; Peters, P.P.W.; Van Opzeeland, F.J.H.; Van Dijk, L.; Nieuwland, R.; et al. A Novel Guinea Pig Model of Chlamydia trachomatis Genital Tract Infection. Vaccine 2011, 29, 5994–6001. [Google Scholar] [CrossRef] [PubMed]
- Wali, S.; Gupta, R.; Yu, J.-J.; Mfuh, A.; Gao, X.; Guentzel, M.N.; Chambers, J.P.; Bakar, S.A.; Zhong, G.; Arulanandam, B.P. Guinea Pig Genital Tract Lipidome Reveals in Vivo and in Vitro Regulation of Phosphatidylcholine 16:0/18:1 and Contribution to Chlamydia trachomatis Serovar D Infectivity. Metabolomics 2016, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Wali, S.; Gupta, R.; Yu, J.; Lanka, G.K.K.; Chambers, J.P.; Guentzel, M.N.; Zhong, G.; Murthy, A.K.; Arulanandam, B.P. Chlamydial Protease-like Activity Factor Mediated Protection against C. Trachomatis in Guinea Pigs. Immunol. Cell Biol. 2017, 95, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Neuendorf, E.; Gajer, P.; Bowlin, A.K.; Marques, P.X.; Ma, B.; Yang, H.; Fu, L.; Humphrys, M.S.; Forney, L.J.; Myers, G.S.A.; et al. Chlamydia Caviae Infection Alters Abundance but Not Composition of the Guinea Pig Vaginal Microbiota. Pathog. Dis. 2015, 73, ftv019. [Google Scholar] [CrossRef] [PubMed]
- Adapen, C.; Réot, L.; Menu, E. Role of the Human Vaginal Microbiota in the Regulation of Inflammation and Sexually Transmitted Infection Acquisition: Contribution of the Non-Human Primate Model to a Better Understanding? Front. Reprod. Health 2022, 4, 992176. [Google Scholar] [CrossRef]
- Hargaden, M.; Singer, L. Chapter 20—Anatomy, Physiology, and Behavior. In The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents; Academic Press: Cambridge, MA, USA, 2012; pp. 575–602. [Google Scholar]
- Morrison, J.L.; Botting, K.J.; Darby, J.R.T.; David, A.L.; Dyson, R.M.; Gatford, K.L.; Gray, C.; Herrera, E.A.; Hirst, J.J.; Kim, B.; et al. Guinea Pig Models for Translation of the Developmental Origins of Health and Disease Hypothesis into the Clinic. J. Physiol. 2018, 596, 5535–5569. [Google Scholar] [CrossRef]
- VandeBerg, J.L.; Williams-Blangero, S. Advantages and Limitations of Nonhuman Primates as Animal Models in Genetic Research on Complex Diseases. J. Med. Primatol. 1997, 26, 113–119. [Google Scholar] [CrossRef]
- Bell, J.D.; Bergin, I.L.; Schmidt, K.; Zochowski, M.K.; Aronoff, D.M.; Patton, D.L. Nonhuman Primate Models Used to Study Pelvic Inflammatory Disease Caused by Chlamydia trachomatis. Infect. Dis. Obstet. Gynecol. 2011, 2011, 675360. [Google Scholar] [CrossRef] [PubMed]
- Catalini, L.; Fedder, J. Characteristics of the Endometrium in Menstruating Species: Lessons Learned from the Animal Kingdom†. Biol. Reprod. 2020, 102, 1160–1169. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Brokaw, A.; Furuta, A.M.; Coler, B.; Obregon-Perko, V.; Chahroudi, A.; Wang, H.-Y.; Permar, S.R.; Hotchkiss, C.E.; Golos, T.G.; et al. Non-Human Primate Models to Investigate Mechanisms of Infection-Associated Fetal and Pediatric Injury, Teratogenesis and Stillbirth. Front. Genet. 2021, 12, 680342. [Google Scholar] [CrossRef] [PubMed]
- Patton, D.L.; Teng, A.; Randall, A.; Liang, X.; Felgner, P.L.; De La Maza, L.M. Whole Genome Identification of C. trachomatis Immunodominant Antigens after Genital Tract Infections and Effect of Antibiotic Treatment of Pigtailed Macaques. J. Proteom. 2014, 108, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Frazer, L.C.; O’Connell, C.M.; Tarantal, A.F.; Andrews, C.W.; O’Connor, S.L.; Russell, A.N.; Sullivan, J.E.; Poston, T.B.; Vallejo, A.N.; et al. Comparable Genital Tract Infection, Pathology, and Immunity in Rhesus Macaques Inoculated with Wild-Type or Plasmid-Deficient Chlamydia trachomatis Serovar D. Infect. Immun. 2015, 83, 4056–4067. [Google Scholar] [CrossRef] [PubMed]
- Vishwanathan, S.A.; Aubert, R.D.; Morris, M.R.; Zhao, C.; Philips, C.; Khalil, G.M.; Deyounks, F.; Kelley, K.; Ritter, J.M.; Chen, C.Y.; et al. A Macaque Model for Rectal Lymphogranuloma Venereum and Non-Lymphogranuloma Venereum Chlamydia trachomatis: Impact on Rectal Simian/Human Immunodeficiency Virus Acquisition. Sex. Transm. Dis. 2017, 44, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Patton, D.L.; Sweeney, Y.C.; Baldessari, A.E.; Cles, L.; Kari, L.; Sturdevant, G.L.; Yang, C.; Caldwell, H.D. The Chlamydia trachomatis Plasmid and CT135 Virulence Factors Are Not Essential for Genital Tract Infection or Pathology in Female Pig-Tailed Macaques. Infect. Immun. 2018, 86, e00121-18. [Google Scholar] [CrossRef] [PubMed]
- Randall, A.; Teng, A.; Liang, X.; Pal, S.; Tarantal, A.F.; Fike, J.; Barry, P.A.; De La Maza, L.M. A Primary Chlamydia trachomatis Genital Infection of Rhesus Macaques Identifies New Immunodominant B-Cell Antigens. PLoS ONE 2021, 16, e0250317. [Google Scholar] [CrossRef]
- Lorenzen, E.; Contreras, V.; Olsen, A.W.; Andersen, P.; Desjardins, D.; Rosenkrands, I.; Juel, H.B.; Delache, B.; Langlois, S.; Delaugerre, C.; et al. Multi-Component Prime-Boost Chlamydia trachomatis Vaccination Regimes Induce Antibody and T Cell Responses and Accelerate Clearance of Infection in a Non-Human Primate Model. Front. Immunol. 2022, 13, 1057375. [Google Scholar] [CrossRef]
- Koene, M.G.; Mulder, H.A.; Stockhofe-Zurwieden, N.; Kruijt, L.; Smits, M.A. Serum Protein Profiles as Potential Biomarkers for Infectious Disease Status in Pigs. BMC Vet. Res. 2012, 8, 32. [Google Scholar] [CrossRef] [PubMed]
- Cauvin, A.J.; Peters, C.; Brennan, F. Advantages and Limitations of Commonly Used Nonhuman Primate Species in Research and Development of Biopharmaceuticals. In The Nonhuman Primate in Nonclinical Drug Development and Safety Assessment; Elsevier: Amsterdam, The Netherlands, 2015; pp. 379–395. [Google Scholar] [CrossRef]
- Schroeder, D.; Cook, J.; Hirsch, F.; Fenet, S.; Muthuswamy, V. (Eds.) Ethics Dumping: Case Studies from North-South Research Collaborations; SpringerBriefs in Research and Innovation Governance; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Kobayashi, A.; Behringer, R.R. Developmental Genetics of the Female Reproductive Tract in Mammals. Nat. Rev. Genet. 2003, 4, 969–980. [Google Scholar] [CrossRef]
- Nogueira, A.T.; Braun, K.M.; Carabeo, R.A. Characterization of the Growth of Chlamydia trachomatis in In Vitro-Generated Stratified Epithelium. Front. Cell. Infect. Microbiol. 2017, 7, 438. [Google Scholar] [CrossRef] [PubMed]
- Dolat, L.; Valdivia, R.H. A Renewed Tool Kit to Explore Chlamydia Pathogenesis: From Molecular Genetics to New Infection Models. F1000Research 2019, 8, 935. [Google Scholar] [CrossRef] [PubMed]
- Vitali, D.; Wessels, J.M.; Kaushic, C. Role of Sex Hormones and the Vaginal Microbiome in Susceptibility and Mucosal Immunity to HIV-1 in the Female Genital Tract. AIDS Res. Ther. 2017, 14, 39. [Google Scholar] [CrossRef] [PubMed]
- Wessels, J.M.; Felker, A.M.; Dupont, H.A.; Kaushic, C. The Relationship between Sex Hormones, the Vaginal Microbiome and Immunity in HIV-1 Susceptibility in Women. Dis. Models Mech. 2018, 11, dmm035147. [Google Scholar] [CrossRef] [PubMed]
- Plesniarski, A.; Siddik, A.B.; Su, R.-C. The Microbiome as a Key Regulator of Female Genital Tract Barrier Function. Front. Cell. Infect. Microbiol. 2021, 11, 790627. [Google Scholar] [CrossRef] [PubMed]
- Buckner, L.R.; Amedee, A.M.; Albritton, H.L.; Kozlowski, P.A.; Lacour, N.; McGowin, C.L.; Schust, D.J.; Quayle, A.J. Chlamydia trachomatis Infection of Endocervical Epithelial Cells Enhances Early HIV Transmission Events. PLoS ONE 2016, 11, e0146663. [Google Scholar] [CrossRef] [PubMed]
- Haddad, M.J.; Sztupecki, W.; Delayre-Orthez, C.; Rhazi, L.; Barbezier, N.; Depeint, F.; Anton, P.M. Complexification of In Vitro Models of Intestinal Barriers, A True Challenge for a More Accurate Alternative Approach. Int. J. Mol. Sci. 2023, 24, 3595. [Google Scholar] [CrossRef]
- Ekka, R.; Gutierrez, A.; Johnson, K.A.; Tan, M.; Sütterlin, C. Chlamydia trachomatis Induces Disassembly of the Primary Cilium to Promote the Intracellular Infection. PLoS Pathog. 2024, 20, e1012303. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Dufour, J.M. Cell Lines: Valuable Tools or Useless Artifacts. Spermatogenesis 2012, 2, 1–5. [Google Scholar] [CrossRef]
- Suchland, R.J.; Geisler, W.M.; Stamm, W.E. Methodologies and Cell Lines Used for Antimicrobial Susceptibility Testing of Chlamydia spp. Antimicrob. Agents Chemother. 2003, 47, 636–642. [Google Scholar] [CrossRef]
- Malathi, J.; Shyamala, G.; Madhavan, H. Relative susceptibility of six continuous cell lines for cultivation of chlamydia trachomatis strains. Indian J. Med. Microbiol. 2004, 22, 169–171. [Google Scholar] [CrossRef] [PubMed]
- King, A.E.; Wheelhouse, N.; Cameron, S.; McDonald, S.E.; Lee, K.-F.; Entrican, G.; Critchley, H.O.D.; Horne, A.W. Expression of Secretory Leukocyte Protease Inhibitor and Elafin in Human Fallopian Tube and in an In-Vitro Model of Chlamydia trachomatis Infection. Hum. Reprod. 2008, 24, 679–686. [Google Scholar] [CrossRef]
- Shaw, J.L.V.; Wills, G.S.; Lee, K.-F.; Horner, P.J.; McClure, M.O.; Abrahams, V.M.; Wheelhouse, N.; Jabbour, H.N.; Critchley, H.O.D.; Entrican, G.; et al. Chlamydia trachomatis Infection Increases Fallopian Tube PROKR2 via TLR2 and NFκB Activation Resulting in a Microenvironment Predisposed to Ectopic Pregnancy. Am. J. Pathol. 2011, 178, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.F.; Brown, J.K.; Campbell, L.L.; Koscielniak, M.; Oliver, C.; Wheelhouse, N.; Entrican, G.; McFee, S.; Wills, G.S.; McClure, M.O.; et al. Pelvic Chlamydial Infection Predisposes to Ectopic Pregnancy by Upregulating Integrin Β1 to Promote Embryo-Tubal Attachment. EBioMedicine 2018, 29, 159–165. [Google Scholar] [CrossRef] [PubMed]
- N’Gadjaga, M.D.; Perrinet, S.; Connor, M.G.; Bertolin, G.; Millot, G.A.; Subtil, A. Chlamydia trachomatis Development Requires Both Host Glycolysis and Oxidative Phosphorylation but Has Only Minor Effects on These Pathways. J. Biol. Chem. 2022, 298, 102338. [Google Scholar] [CrossRef]
- Walker, F.C.; Derré, I. Contributions of Diverse Models of the Female Reproductive Tract to the Study of Chlamydia trachomatis-Host Interactions. Curr. Opin. Microbiol. 2024, 77, 102416. [Google Scholar] [CrossRef] [PubMed]
- Voloshin, N.; Tyurin-Kuzmin, P.; Karagyaur, M.; Akopyan, Z.; Kulebyakin, K. Practical Use of Immortalized Cells in Medicine: Current Advances and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 12716. [Google Scholar] [CrossRef] [PubMed]
- Goodspeed, A.; Heiser, L.M.; Gray, J.W.; Costello, J.C. Tumor-Derived Cell Lines as Molecular Models of Cancer Pharmacogenomics. Mol. Cancer Res. 2016, 14, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, P.; Coppola, L.; Salvatore, M. Cancer Cell Lines Are Useful Model Systems for Medical Research. Cancers 2019, 11, 1098. [Google Scholar] [CrossRef]
- Richter, M.; Piwocka, O.; Musielak, M.; Piotrowski, I.; Suchorska, W.M.; Trzeciak, T. From Donor to the Lab: A Fascinating Journey of Primary Cell Lines. Front. Cell Dev. Biol. 2021, 9, 711381. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Kumar, C.; Bohl, S.; Klingmueller, U.; Mann, M. Comparative Proteomic Phenotyping of Cell Lines and Primary Cells to Assess Preservation of Cell Type-Specific Functions. Mol. Cell Proteom. 2009, 8, 443–450. [Google Scholar] [CrossRef]
- Bläuer, M.; Heinonen, P.K.; Martikainen, P.M.; Tomás, E.; Ylikomi, T. A Novel Organotypic Culture Model for Normal Human Endometrium: Regulation of Epithelial Cell Proliferation by Estradiol and Medroxyprogesterone Acetate. Hum. Reprod. 2005, 20, 864–871. [Google Scholar] [CrossRef]
- Chang, Y.-H.; Ding, D.-C.; Chu, T.-Y. Estradiol and Progesterone Induced Differentiation and Increased Stemness Gene Expression of Human Fallopian Tube Epithelial Cells. J. Cancer 2019, 10, 3028–3036. [Google Scholar] [CrossRef]
- Mollerup, S.; Jørgensen, K.; Berge, G.; Haugen, A. Expression of Estrogen Receptors a and b in Human Lung Tissue and Cell Lines. Lung Cancer 2002, 37, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Kaushic, C.; Murdin, A.D.; Underdown, B.J.; Wira, C.R. Chlamydia trachomatis Infection in the Female Reproductive Tract of the Rat: Influence of Progesterone on Infectivity and Immune Response. Infect. Immun. 1998, 66, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Berry, A.; Hall, J.V. The Complexity of Interactions Between Female Sex Hormones and Chlamydia trachomatis Infections. Curr. Clin. Microbiol. Rep. 2019, 6, 67–75. [Google Scholar] [CrossRef]
- McGlade, E.A.; Miyamoto, A.; Winuthayanon, W. Progesterone and Inflammatory Response in the Oviduct during Physiological and Pathological Conditions. Cells 2022, 11, 1075. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, N.D.; Shen, Y.; Ma, Q.; Yang, K.; Hannum, D.F.; Jones, A.; Machlin, J.; Randolph, J.F.; Smith, Y.R.; Schon, S.B.; et al. Cellular Heterogeneity of Human Fallopian Tubes in Normal and Hydrosalpinx Disease States Identified Using scRNA-Seq. Dev. Cell 2022, 57, 914–929.e7. [Google Scholar] [CrossRef] [PubMed]
- Barrila, J.; Crabbé, A.; Yang, J.; Franco, K.; Nydam, S.D.; Forsyth, R.J.; Davis, R.R.; Gangaraju, S.; Ott, C.M.; Coyne, C.B.; et al. Modeling Host-Pathogen Interactions in the Context of the Microenvironment: Three-Dimensional Cell Culture Comes of Age. Infect. Immun. 2018, 86, e00282-18. [Google Scholar] [CrossRef]
- Steube, K.G.; Koelz, A.-L.; Drexler, H.G. Identification and Verification of Rodent Cell Lines by Polymerase Chain Reaction. Cytotechnology 2008, 56, 49–56. [Google Scholar] [CrossRef]
- Shay, J.W.; Wright, W.E. Hayflick, His Limit, and Cellular Ageing. Nat. Rev. Mol. Cell Biol. 2000, 1, 72–76. [Google Scholar] [CrossRef]
- Hänzelmann, S.; Beier, F.; Gusmao, E.G.; Koch, C.M.; Hummel, S.; Charapitsa, I.; Joussen, S.; Benes, V.; Brümmendorf, T.H.; Reid, G.; et al. Replicative Senescence Is Associated with Nuclear Reorganization and with DNA Methylation at Specific Transcription Factor Binding Sites. Clin. Epigenet. 2015, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Ogrodnik, M. Cellular Aging beyond Cellular Senescence: Markers of Senescence Prior to Cell Cycle Arrest In Vitro and In Vivo. Aging Cell 2021, 20, e13338. [Google Scholar] [CrossRef]
- Wiley, C.D.; Campisi, J. The Metabolic Roots of Senescence: Mechanisms and Opportunities for Intervention. Nat. Metab. 2021, 3, 1290–1301. [Google Scholar] [CrossRef]
- Duell, B.L.; Cripps, A.W.; Schembri, M.A.; Ulett, G.C. Epithelial Cell Coculture Models for Studying Infectious Diseases: Benefits and Limitations. BioMed Res. Int. 2011, 2011, 852419. [Google Scholar] [CrossRef] [PubMed]
- Duval, K.; Grover, H.; Han, L.-H.; Mou, Y.; Pegoraro, A.F.; Fredberg, J.; Chen, Z. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology 2017, 32, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Dawney, N.S.; Cammarota, C.; Jia, Q.; Shipley, A.; Glichowski, J.A.; Vasandani, M.; Finegan, T.M.; Bergstralh, D.T. A Novel Tool for the Unbiased Characterization of Epithelial Monolayer Development in Culture. Mol. Biol. Cell 2023, 34, ar25. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.H.; Raulston, J.E.; Wyrick, P.B. Protein Disulfide Isomerase, a Component of the Estrogen Receptor Complex, Is Associated with Chlamydia trachomatis Serovar E Attached to Human Endometrial Epithelial Cells. Infect. Immun. 2002, 70, 3413–3418. [Google Scholar] [CrossRef]
- Mihalko, E.P.; Brown, A.C. Material Strategies for Modulating Epithelial to Mesenchymal Transitions. ACS Biomater. Sci. Eng. 2018, 4, 1149–1161. [Google Scholar] [CrossRef] [PubMed]
- Zadora, P.K.; Chumduri, C.; Imami, K.; Berger, H.; Mi, Y.; Selbach, M.; Meyer, T.F.; Gurumurthy, R.K. Integrated Phosphoproteome and Transcriptome Analysis Reveals Chlamydia-Induced Epithelial-to-Mesenchymal Transition in Host Cells. Cell Rep. 2019, 26, 1286–1302.e8. [Google Scholar] [CrossRef] [PubMed]
- Ruiter, F.A.A.; Morgan, F.L.C.; Roumans, N.; Schumacher, A.; Slaats, G.G.; Moroni, L.; LaPointe, V.L.S.; Baker, M.B. Soft, Dynamic Hydrogel Confinement Improves Kidney Organoid Lumen Morphology and Reduces Epithelial–Mesenchymal Transition in Culture. Adv. Sci. 2022, 9, 2200543. [Google Scholar] [CrossRef] [PubMed]
- Hagelaars, M.J.; Yousef Yengej, F.A.; Verhaar, M.C.; Rookmaaker, M.B.; Loerakker, S.; Bouten, C.V.C. Substrate Stiffness Determines the Establishment of Apical-Basal Polarization in Renal Epithelial Cells but Not in Tubuloid-Derived Cells. Front. Bioeng. Biotechnol. 2022, 10, 820930. [Google Scholar] [CrossRef]
- Abdul Halim, M.S.; Dyson, J.M.; Gong, M.M.; O’Bryan, M.K.; Nosrati, R. Fallopian Tube Rheology Regulates Epithelial Cell Differentiation and Function to Enhance Cilia Formation and Coordination. Nat. Commun. 2024, 15, 7411. [Google Scholar] [CrossRef] [PubMed]
- Al-Sayed, A.A.; Agu, R.U.; Massoud, E. Models for the Study of Nasal and Sinus Physiology in Health and Disease: A Review of the Literature. Laryngoscope Investig. Otolaryngol. 2017, 2, 398–409. [Google Scholar] [CrossRef]
- Reischl, J.; Prelle, K.; Schöl, H.; Neumüller, C.; Einspanier, R.; Sinowatz, F.; Wolf, E. Factors Affecting Proliferation and Dedifferentiation of Primary Bovine Oviduct Epithelial Cells In Vitro. Cell Tissue Res. 1999, 296, 371–383. [Google Scholar] [CrossRef]
- Taebnia, N.; Römling, U.; Lauschke, V.M. In Vitro and Ex Vivo Modeling of Enteric Bacterial Infections. Gut Microbes 2023, 15, 2158034. [Google Scholar] [CrossRef] [PubMed]
- Whitcutt, M.J.; Adler, K.B.; Wu, R. A Biphasic Chamber System for Maintaining Polarity of Differentiation of Culture Respiratory Tract Epithelial Cells. In Vitro Cell Dev. Biol. 1988, 24, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.H.; Mireles, M.; Kwarta, B.J.; Gaborski, T.R. Use of Porous Membranes in Tissue Barrier and Co-Culture Models. Lab Chip 2018, 18, 1671–1689. [Google Scholar] [CrossRef]
- Whiteley, J.T.; Fernandes, S.; Sharma, A.; Mendes, A.P.D.; Racha, V.; Benassi, S.K.; Marchetto, M.C. Reaching into the Toolbox: Stem Cell Models to Study Neuropsychiatric Disorders. Stem Cell Rep. 2022, 17, 187–210. [Google Scholar] [CrossRef] [PubMed]
- Justus, C.R.; Marie, M.A.; Sanderlin, E.J.; Yang, L.V. Transwell In Vitro Cell Migration and Invasion Assays. In Cell Viability Assays; Friedrich, O., Gilbert, D.F., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2023; Volume 2644, pp. 349–359. [Google Scholar] [CrossRef]
- Vinaiphat, A.; Charngkaew, K.; Thongboonkerd, V. More Complete Polarization of Renal Tubular Epithelial Cells by Artificial Urine. Cell Death Discov. 2018, 4, 47. [Google Scholar] [CrossRef] [PubMed]
- Yeste, J.; Illa, X.; Alvarez, M.; Villa, R. Engineering and Monitoring Cellular Barrier Models. J. Biol. Eng. 2018, 12, 18. [Google Scholar] [CrossRef]
- Hackett, T.-L.; Vasse, G.F.; Van Der Does, A.M.; Rae, B.; Nawijn, M.C.; Heijink, I.H. The Air–Liquid Interface Model. In 3D Lung Models for Regenerating Lung Tissue; Elsevier: Amsterdam, The Netherlands, 2022; pp. 51–72. [Google Scholar] [CrossRef]
- McQueen, B.E.; Kiatthanapaiboon, A.; Fulcher, M.L.; Lam, M.; Patton, K.; Powell, E.; Kollipara, A.; Madden, V.; Suchland, R.J.; Wyrick, P.; et al. Human Fallopian Tube Epithelial Cell Culture Model To Study Host Responses to Chlamydia trachomatis Infection. Infect. Immun. 2020, 88, e00105-20. [Google Scholar] [CrossRef] [PubMed]
- Goers, L.; Freemont, P.; Polizzi, K.M. Co-Culture Systems and Technologies: Taking Synthetic Biology to the next Level. J. R. Soc. Interface 2014, 11, 20140065. [Google Scholar] [CrossRef] [PubMed]
- Mountcastle, S.E.; Cox, S.C.; Sammons, R.L.; Jabbari, S.; Shelton, R.M.; Kuehne, S.A. A Review of Co-Culture Models to Study the Oral Microenvironment and Disease. J. Oral Microbiol. 2020, 12, 1773122. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.; Jnana, A.; Murali, T.S. Modeling Microbial Community Networks: Methods and Tools for Studying Microbial Interactions. Microb. Ecol. 2024, 87, 56. [Google Scholar] [CrossRef]
- Barreto-Duran, E.; Szczepański, A.; Gałuszka-Bulaga, A.; Surmiak, M.; Siedlar, M.; Sanak, M.; Rajfur, Z.; Milewska, A.; Lenart, M.; Pyrć, K. The Interplay between the Airway Epithelium and Tissue Macrophages during the SARS-CoV-2 Infection. Front. Immunol. 2022, 13, 991991. [Google Scholar] [CrossRef]
- Strand, D.W.; Hayward, S.W. Modeling Stromal-Epithelial Interactions in Disease Progression. Discov. Med. 2010, 9, 504–511. [Google Scholar] [PubMed]
- Hall, J.V.; Schell, M.; Dessus-Babus, S.; Moore, C.G.; Whittimore, J.D.; Sal, M.; Dill, B.D.; Wyrick, P.B. The Multifaceted Role of Oestrogen in Enhancing Chlamydia trachomatis Infection in Polarized Human Endometrial Epithelial Cells: Oestrogen Effects on C. trachomatis Infection. Cell. Microbiol. 2011, 13, 1183–1199. [Google Scholar] [CrossRef]
- Edwards, V.L.; Smith, S.B.; McComb, E.J.; Tamarelle, J.; Ma, B.; Humphrys, M.S.; Gajer, P.; Gwilliam, K.; Schaefer, A.M.; Lai, S.K.; et al. The Cervicovaginal Microbiota-Host Interaction Modulates Chlamydia trachomatis Infection. mBio 2019, 10, e01548-19. [Google Scholar] [CrossRef] [PubMed]
- Edwards, V.L.; McComb, E.; Gleghorn, J.P.; Forney, L.; Bavoil, P.M.; Ravel, J. Three-Dimensional Models of the Cervicovaginal Epithelia to Study Host–Microbiome Interactions and Sexually Transmitted Infections. Pathog. Dis. 2022, 80, ftac026. [Google Scholar] [CrossRef] [PubMed]
- Thayanithy, V.; O’Hare, P.; Wong, P.; Zhao, X.; Steer, C.J.; Subramanian, S.; Lou, E. A Transwell Assay That Excludes Exosomes for Assessment of Tunneling Nanotube-Mediated Intercellular Communication. Cell Commun. Signal. 2017, 15, 46. [Google Scholar] [CrossRef] [PubMed]
- Kopeček, J. Hydrogel Biomaterials: A Smart Future? Biomaterials 2007, 28, 5185–5192. [Google Scholar] [CrossRef] [PubMed]
- Annabi, N.; Nichol, J.W.; Zhong, X.; Ji, C.; Koshy, S.; Khademhosseini, A.; Dehghani, F. Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering. Tissue Eng. Part B Rev. 2010, 16, 371–383. [Google Scholar] [CrossRef]
- Maji, S.; Lee, H. Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. Int. J. Mol. Sci. 2022, 23, 2662. [Google Scholar] [CrossRef] [PubMed]
- Caliari, S.R.; Burdick, J.A. A Practical Guide to Hydrogels for Cell Culture. Nat. Methods 2016, 13, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Hu, H.; Kung, H.; Zou, R.; Dai, Y.; Hu, Y.; Wang, T.; Lv, T.; Yu, J.; Li, F. Organoids: The Current Status and Biomedical Applications. MedComm 2023, 4, e274. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.L.; Ang, L.T.; Loh, K.M. A Critical Look: Challenges in Differentiating Human Pluripotent Stem Cells into Desired Cell Types and Organoids. WIREs Dev. Biol. 2020, 9, e368. [Google Scholar] [CrossRef] [PubMed]
- Scalise, M.; Marino, F.; Salerno, L.; Cianflone, E.; Molinaro, C.; Salerno, N.; De Angelis, A.; Viglietto, G.; Urbanek, K.; Torella, D. From Spheroids to Organoids: The Next Generation of Model Systems of Human Cardiac Regeneration in a Dish. Int. J. Mol. Sci. 2021, 22, 13180. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, M.A.; Huch, M. Disease Modelling in Human Organoids. Dis. Models Mech. 2019, 12, dmm039347. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, Z.; Tang, Z.; Chen, Y.; Huang, M.; Liu, H.; Huang, W.; Ye, Q.; Jia, B. Research Progress, Challenges, and Breakthroughs of Organoids as Disease Models. Front. Cell Dev. Biol. 2021, 9, 740574. [Google Scholar] [CrossRef]
- Blutt, S.E.; Estes, M.K. Organoid Models for Infectious Disease. Annu. Rev. Med. 2022, 73, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Kessler, M.; Hoffmann, K.; Fritsche, K.; Brinkmann, V.; Mollenkopf, H.-J.; Thieck, O.; Teixeira Da Costa, A.R.; Braicu, E.I.; Sehouli, J.; Mangler, M.; et al. Chronic Chlamydia Infection in Human Organoids Increases Stemness and Promotes Age-Dependent CpG Methylation. Nat. Commun. 2019, 10, 1194. [Google Scholar] [CrossRef] [PubMed]
- Bishop, R.C.; Boretto, M.; Rutkowski, M.R.; Vankelecom, H.; Derré, I. Murine Endometrial Organoids to Model Chlamydia Infection. Front. Cell. Infect. Microbiol. 2020, 10, 416. [Google Scholar] [CrossRef] [PubMed]
- Rajeeve, K.; Vollmuth, N.; Janaki-Raman, S.; Wulff, T.F.; Baluapuri, A.; Dejure, F.R.; Huber, C.; Fink, J.; Schmalhofer, M.; Schmitz, W.; et al. Reprogramming of Host Glutamine Metabolism during Chlamydia trachomatis Infection and Its Key Role in Peptidoglycan Synthesis. Nat. Microbiol. 2020, 5, 1390–1402. [Google Scholar] [CrossRef]
- Dolat, L.; Valdivia, R.H. An Endometrial Organoid Model of Interactions between Chlamydia and Epithelial and Immune Cells. J. Cell Sci. 2021, 134, jcs252403. [Google Scholar] [CrossRef]
- Dolat, L.; Carpenter, V.K.; Chen, Y.-S.; Suzuki, M.; Smith, E.P.; Kuddar, O.; Valdivia, R.H. Chlamydia Repurposes the Actin-Binding Protein EPS8 to Disassemble Epithelial Tight Junctions and Promote Infection. Cell Host Microbe 2022, 30, 1685–1700.e10. [Google Scholar] [CrossRef] [PubMed]
- Koster, S.; Gurumurthy, R.K.; Kumar, N.; Prakash, P.G.; Dhanraj, J.; Bayer, S.; Berger, H.; Kurian, S.M.; Drabkina, M.; Mollenkopf, H.-J.; et al. Modelling Chlamydia and HPV Co-Infection in Patient-Derived Ectocervix Organoids Reveals Distinct Cellular Reprogramming. Nat. Commun. 2022, 13, 1030. [Google Scholar] [CrossRef]
- Callan, T.; Woodcock, S.; Huston, W.M. Ascension of Chlamydia Is Moderated by Uterine Peristalsis and the Neutrophil Response to Infection. PLoS Comput. Biol. 2021, 17, e1009365. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.B.; Hwangbo, S.; Jang, S.; Jo, Y.K. Bioengineered Co-Culture of Organoids to Recapitulate Host-Microbe Interactions. Mater. Today Bio 2022, 16, 100345. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Chen, X.; Dowbaj, A.M.; Sljukic, A.; Bratlie, K.; Lin, L.; Fong, E.L.S.; Balachander, G.M.; Chen, Z.; Soragni, A.; et al. Organoids. Nat. Rev. Methods Primers 2022, 2, 94. [Google Scholar] [CrossRef]
- Ergir, E.; Bachmann, B.; Redl, H.; Forte, G.; Ertl, P. Small Force, Big Impact: Next Generation Organ-on-a-Chip Systems Incorporating Biomechanical Cues. Front. Physiol. 2018, 9, 1417. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Abouleila, Y.; Si, L.; Ortega-Prieto, A.M.; Mummery, C.L.; Ingber, D.E.; Mashaghi, A. Human Organs-on-Chips for Virology. Trends Microbiol. 2020, 28, 934–946. [Google Scholar] [CrossRef]
- Fois, C.A.M.; Schindeler, A.; Valtchev, P.; Dehghani, F. Dynamic Flow and Shear Stress as Key Parameters for Intestinal Cells Morphology and Polarization in an Organ-on-a-Chip Model. Biomed. Microdevices 2021, 23, 55. [Google Scholar] [CrossRef] [PubMed]
- Ingber, D.E. Human Organs-on-Chips for Disease Modelling, Drug Development and Personalized Medicine. Nat. Rev. Genet. 2022, 23, 467–491. [Google Scholar] [CrossRef]
- Leung, C.M.; De Haan, P.; Ronaldson-Bouchard, K.; Kim, G.-A.; Ko, J.; Rho, H.S.; Chen, Z.; Habibovic, P.; Jeon, N.L.; Takayama, S.; et al. A Guide to the Organ-on-a-Chip. Nat. Rev. Methods Primers 2022, 2, 33. [Google Scholar] [CrossRef]
- Ferraz, M.A.M.M.; Henning, H.H.W.; Costa, P.F.; Malda, J.; Melchels, F.P.; Wubbolts, R.; Stout, T.A.E.; Vos, P.L.A.M.; Gadella, B.M. Improved Bovine Embryo Production in an Oviduct-on-a-Chip System: Prevention of Poly-Spermic Fertilization and Parthenogenic Activation. Lab Chip 2017, 17, 905–916. [Google Scholar] [CrossRef] [PubMed]
- Young, R.E.; Huh, D.D. Organ-on-a-Chip Technology for the Study of the Female Reproductive System. Adv. Drug Deliv. Rev. 2021, 173, 461–478. [Google Scholar] [CrossRef] [PubMed]
- Francés-Herrero, E.; Lopez, R.; Hellström, M.; De Miguel-Gómez, L.; Herraiz, S.; Brännström, M.; Pellicer, A.; Cervelló, I. Bioengineering Trends in Female Reproduction: A Systematic Review. Hum. Reprod. Update 2022, 28, 798–837. [Google Scholar] [CrossRef]
- Heinz, E.; Tischler, P.; Rattei, T.; Myers, G.; Wagner, M.; Horn, M. Comprehensive in Silico Prediction and Analysis of Chlamydial Outer Membrane Proteins Reflects Evolution and Life Style of the Chlamydiae. BMC Genom. 2009, 10, 634. [Google Scholar] [CrossRef] [PubMed]
- Akinlotan, M.D.; Mallet, D.G.; Araujo, R.P. Mathematical Modelling of the Role of Mucosal Vaccine on the Within-Host Dynamics of Chlamydia trachomatis. J. Theor. Biol. 2020, 497, 110291. [Google Scholar] [CrossRef]
- Lees, J.A.; Russell, T.W.; Shaw, L.P.; Hellewell, J. Recent Approaches in Computational Modelling for Controlling Pathogen Threats. Life Sci. Alliance 2024, 7, e202402666. [Google Scholar] [CrossRef] [PubMed]
- Dillard, L.R.; Glass, E.M.; Lewis, A.L.; Thomas-White, K.; Papin, J.A. Metabolic Network Models of the Gardnerella Pangenome Identify Key Interactions with the Vaginal Environment. mSystems 2023, 8, e00689-22. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Zhang, X.; Zhang, X. Artificial Intelligence Applications in the Diagnosis and Treatment of Bacterial Infections. Front. Microbiol. 2024, 15, 1449844. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, H.H.; Ikram, A.; Dang, L.T.; Bashir, A.; Zohra, T.; Ali, A.; Tanvir, H.; Mudassar, M.; Ravindran, R.; Akhtar, N.; et al. Comparing Machine Learning Screening Approaches Using Clinical Data and Cytokine Profiles for COVID-19 in Resource-Limited and Resource-Abundant Settings. Sci. Rep. 2024, 14, 14892. [Google Scholar] [CrossRef] [PubMed]
Model | Advantages | Limitations |
---|---|---|
Mouse |
|
|
Pig |
|
|
Guinea pig |
|
|
Non-humanprimate |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Ślęczkowska, M.; Nobre, B.; Wieringa, P. Study Models for Chlamydia trachomatis Infection of the Female Reproductive Tract. Microorganisms 2025, 13, 553. https://doi.org/10.3390/microorganisms13030553
Kim J, Ślęczkowska M, Nobre B, Wieringa P. Study Models for Chlamydia trachomatis Infection of the Female Reproductive Tract. Microorganisms. 2025; 13(3):553. https://doi.org/10.3390/microorganisms13030553
Chicago/Turabian StyleKim, Jaehyeon, Milena Ślęczkowska, Beatriz Nobre, and Paul Wieringa. 2025. "Study Models for Chlamydia trachomatis Infection of the Female Reproductive Tract" Microorganisms 13, no. 3: 553. https://doi.org/10.3390/microorganisms13030553
APA StyleKim, J., Ślęczkowska, M., Nobre, B., & Wieringa, P. (2025). Study Models for Chlamydia trachomatis Infection of the Female Reproductive Tract. Microorganisms, 13(3), 553. https://doi.org/10.3390/microorganisms13030553