Streptococcus salivarius and Ligilactobacillus salivarius: Paragons of Probiotic Potential and Reservoirs of Novel Antimicrobials
Abstract
:1. Introduction
2. Streptococcus salivarius and Its Bacteriocins
3. Biosynthesis and Bioactivity of the Lantibiotic salivaricins
3.1. Type 1 Lantho-Salivaricins
3.2. Type II Lantho-Salivaricins
3.3. Two-Component Salivaricins
3.4. Mode of Action of Salivaricins
4. Importance of Salivaricin-Producers in the Human Microbiota
5. Phosphorylated Salivaricin
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Williams, M.D. The Isolation and Partial Characterization of Novel Bacteriocins from the Oral Bacterium Streptococcus salivarius. Master’s Thesis, Texas A&M University, College Station, TX, USA, 2020. [Google Scholar]
- Mohareb, A.M.; Letourneau, A.R.; Sánchez, S.M.; Walensky, R.P.; Hyle, E.P. Addressing antibiotic overuse in the outpatient setting: Lessons from behavioral economics. Mayo Clin. Proc. 2021, 96, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Dafale, N.A.; Srivastava, S.; Purohit, H.J. Zoonosis: An emerging link to antibiotic resistance under “one health approach”. Indian J. Microbiol. 2020, 60, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.R.; Gales, A.C.; Laxminarayan, R.; Dodd, P.C. Antimicrobial Resistance: Addressing a Global Threat to Humanity; Public Library of Science: San Francisco, CA, USA, 2023; Volume 20, p. e1004264. [Google Scholar]
- Lawrence, G.W.; McCarthy, N.; Walsh, C.J.; Kunyoshi, T.M.; Lawton, E.M.; O’Connor, P.M.; Begley, M.; Cotter, P.D.; Guinane, C.M. Effect of a bacteriocin-producing Streptococcus salivarius on the pathogen Fusobacterium nucleatum in a model of the human distal colon. Gut Microbes 2022, 14, 2100203. [Google Scholar] [CrossRef]
- Rao, S.; Linke, L.; Magnuson, R.; Jauch, L.; Hyatt, D.R. Antimicrobial resistance and genetic diversity of Staphylococcus aureus collected from livestock, poultry and humans. One Health 2022, 15, 100407. [Google Scholar] [CrossRef]
- Chandrasekhar, D.; Joseph, C.M.; Murali, S.; Yahiya, M.; Shafeera, K. Superbugs: An invicible threat in post antibiotic era. Clin. Epidemiol. Glob. Health 2024, 28, 101499. [Google Scholar] [CrossRef]
- Merrick, R.; Cole, M.; Pitt, R.; Enayat, Q.; Ivanov, Z.; Day, M.; Sun, S.; Sinka, K.; Woodford, N.; Mohammed, H. Antimicrobial-resistant gonorrhoea: The national public health response, England, 2013 to 2020. Eurosurveillance 2022, 27, 2200057. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef]
- Hrncir, T.; Hrncirova, L.; Kverka, M.; Tlaskalova-Hogenova, H. The role of gut microbiota in intestinal and liver diseases. Lab. Anim. 2019, 53, 271–280. [Google Scholar]
- Hrncir, T. Gut microbiota dysbiosis: Triggers, consequences, diagnostic and therapeutic options. Microorganisms 2022, 10, 578. [Google Scholar] [CrossRef] [PubMed]
- Mousa, W.K.; Chehadeh, F.; Husband, S. Microbial dysbiosis in the gut drives systemic autoimmune diseases. Front. Immunol. 2022, 13, 906258. [Google Scholar] [CrossRef] [PubMed]
- Santana, P.T.; Rosas, S.L.B.; Ribeiro, B.E.; Marinho, Y.; de Souza, H.S. Dysbiosis in inflammatory bowel disease: Pathogenic role and potential therapeutic targets. Int. J. Mol. Sci. 2022, 23, 3464. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.E.; Kahana, D.D.; Ghuman, S.; Wilson, H.P.; Wilson, J.; Kim, S.C.; Lagishetty, V.; Jacobs, J.P.; Sinha-Hikim, A.P.; Friedman, T.C. Unhealthy lifestyle and gut dysbiosis: A better understanding of the effects of poor diet and nicotine on the intestinal microbiome. Front. Endocrinol. 2021, 12, 667066. [Google Scholar] [CrossRef]
- Ancona, G.; Alagna, L.; Alteri, C.; Palomba, E.; Tonizzo, A.; Pastena, A.; Muscatello, A.; Gori, A.; Bandera, A. Gut and airway microbiota dysbiosis and their role in COVID-19 and long-COVID. Front. Immunol. 2023, 14, 1080043. [Google Scholar] [CrossRef]
- Bidell, M.R.; Hobbs, A.L.; Lodise, T.P. Gut microbiome health and dysbiosis: A clinical primer. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2022, 42, 849–857. [Google Scholar] [CrossRef]
- Winter, S.E.; Bäumler, A.J. Gut dysbiosis: Ecological causes and causative effects on human disease. Proc. Natl. Acad. Sci. USA 2023, 120, e2316579120. [Google Scholar] [CrossRef]
- Georges, F.; Do, N.; Seleem, D. Oral dysbiosis and systemic diseases. Front. Dent. Med. 2022, 3, 995423. [Google Scholar] [CrossRef]
- Clapp, M.; Aurora, N.; Herrera, L.; Bhatia, M.; Wilen, E.; Wakefield, S. Gut microbiota’s effect on mental health: The gut-brain axis. Clin. Pract. 2017, 7, 987. [Google Scholar] [CrossRef]
- Patangia, D.V.; Anthony Ryan, C.; Dempsey, E.; Paul Ross, R.; Stanton, C. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen 2022, 11, e1260. [Google Scholar] [CrossRef]
- Fishbein, S.R.; Mahmud, B.; Dantas, G. Antibiotic perturbations to the gut microbiome. Nat. Rev. Microbiol. 2023, 21, 772–788. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Zogg, H.; Wei, L.; Bartlett, A.; Ghoshal, U.C.; Rajender, S.; Ro, S. Gut microbial dysbiosis in the pathogenesis of gastrointestinal dysmotility and metabolic disorders. J. Neurogastroenterol. Motil. 2021, 27, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.Y.; Weiss, S.J. The gut microbiome of youth who have behavioral and mental health problems: A scoping review. Ment. Health Prev. 2023, 31, 200288. [Google Scholar] [CrossRef]
- Li, S.; Li, N.; Wang, C.; Zhao, Y.; Cao, J.; Li, X.; Zhang, Z.; Li, Y.; Yang, X.; Wang, X.; et al. Gut microbiota and immune modulatory properties of human breast Milk Streptococcus salivarius and S. parasanguinis strains. Front. Nutr. 2022, 9, 798403. [Google Scholar] [CrossRef]
- Barbour, A.; Wescombe, P.; Smith, L. Evolution of lantibiotic salivaricins: New weapons to fight infectious diseases. Trends Microbiol. 2020, 28, 578–593. [Google Scholar] [CrossRef]
- Shah, A.B.; Baiseitova, A.; Zahoor, M.; Ahmad, I.; Ikram, M.; Bakhsh, A.; Shah, M.A.; Ali, I.; Idress, M.; Ullah, R. Probiotic significance of Lactobacillus strains: A comprehensive review on health impacts, research gaps, and future prospects. Gut Microbes 2024, 16, 2431643. [Google Scholar] [CrossRef]
- Tagg, J.R.; Harold, L.K.; Hale, J.D. Review of Streptococcus salivarius BLIS K12 in the Prevention and Modulation of Viral Infections. Appl. Microbiol. 2025, 5, 7. [Google Scholar] [CrossRef]
- Peng, X.; Li, Z.; Pei, Y.; Zheng, S.; Liu, J.; Wang, J.; Li, R.; Xu, X. Streptococcus salivarius K12 alleviates oral mucositis in patients undergoing radiotherapy for malignant head and neck tumors: A randomized controlled trial. J. Clin. Oncol. 2024, 42, 1426–1435. [Google Scholar] [CrossRef]
- Myers, S.; Do, T.; Meade, J.L.; Tugnait, A.; Vernon, J.J.; Pistolic, J.; Hancock, R.E.; Marsh, P.D.; Trivedi, H.M.; Chen, D. Immunomodulatory streptococci that inhibit CXCL8 secretion and NFκB activation are common members of the oral microbiota. J. Med. Microbiol. 2021, 70, 001329. [Google Scholar] [CrossRef]
- Corr, S.C.; Li, Y.; Riedel, C.U.; O’Toole, P.W.; Hill, C.; Gahan, C.G. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl. Acad. Sci. USA 2007, 104, 7617–7621. [Google Scholar] [CrossRef]
- La Fata, G.; Weber, P.; Mohajeri, M.H. Probiotics and the gut immune system: Indirect regulation. Probiot. Antimicrob. Proteins 2018, 10, 11–21. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Yan, H.; Ning, Z.; Wang, Z. Lactobacillus salivarius SNK-6 activates intestinal mucosal immune system by regulating cecal microbial community structure in laying hens. Microorganisms 2022, 10, 1469. [Google Scholar] [CrossRef] [PubMed]
- Messaoudi, S.; Manai, M.; Kergourlay, G.; Prévost, H.; Connil, N.; Chobert, J.-M.; Dousset, X. Lactobacillus salivarius: Bacteriocin and probiotic activity. Food Microbiol. 2013, 36, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Rendón, D.; Guzmán-Chávez, F.; García-Ausencio, C.; Rodríguez-Sanoja, R.; Sánchez, S. The untapped potential of actinobacterial lanthipeptides as therapeutic agents. Mol. Biol. Rep. 2023, 50, 10605–10616. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.C.; Eslami, S.M.; Hetrick, K.J.; Ackenhusen, S.E.; Mitchell, D.A.; Van Der Donk, W.A. Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family. BMC Genom. 2020, 21, 387. [Google Scholar] [CrossRef]
- Ayikpoe, R.S.; Shi, C.; Battiste, A.J.; Eslami, S.M.; Ramesh, S.; Simon, M.A.; Bothwell, I.R.; Lee, H.; Rice, A.J.; Ren, H. A scalable platform to discover antimicrobials of ribosomal origin. Nat. Commun. 2022, 13, 6135. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Wu, C.; Moreira, R.; Dorantes, D.; Pappas, T.; Sundararajan, A.; Lin, H.; Pamer, E.G.; van der Donk, W.A. Activity of Gut-Derived Nisin-like Lantibiotics against Human Gut Pathogens and Commensals. ACS Chem. Biol. 2024, 19, 357–369. [Google Scholar] [CrossRef]
- Sandiford, S.K. An overview of lantibiotic biosynthetic machinery promiscuity and its impact on antimicrobial discovery. Expert Opin. Drug Discov. 2020, 15, 373–382. [Google Scholar] [CrossRef]
- Guo, L.; Stoffels, K.; Broos, J.; Kuipers, O.P. Engineering hybrid lantibiotics yields the highly stable and bacteriocidal peptide cerocin V. Microbiol. Res. 2024, 282, 127640. [Google Scholar] [CrossRef]
- Li, H.; Ding, W.; Zhang, Q. Discovery and engineering of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. RSC Chem. Biol. 2024, 5, 90–108. [Google Scholar] [CrossRef]
- Escano, J.; Ravichandran, A.; Salamat, B.; Smith, L. Carboxyl analogue of mutacin 1140, a scaffold for lead antibacterial discovery. Appl. Environ. Microbiol. 2017, 83, e00668-17. [Google Scholar] [CrossRef] [PubMed]
- Geng, M.; Smith, L. Modifying the lantibiotic mutacin 1140 for increased yield, activity, and stability. Appl. Environ. Microbiol. 2018, 84, e00830-18. [Google Scholar] [CrossRef] [PubMed]
- Barbour, A.; Smith, L.; Oveisi, M.; Williams, M.; Huang, R.C.; Marks, C.; Fine, N.; Sun, C.; Younesi, F.; Zargaran, S. Discovery of phosphorylated lantibiotics with proimmune activity that regulate the oral microbiome. Proc. Natl. Acad. Sci. USA 2023, 120, e2219392120. [Google Scholar] [CrossRef] [PubMed]
- Wescombe, P.A.; Heng, N.C.; Burton, J.P.; Chilcott, C.N.; Tagg, J.R. Streptococcal bacteriocins and the case for Streptococcus salivarius as model oral probiotics. Future Microbiol. 2009, 4, 819–835. [Google Scholar] [CrossRef]
- Kaci, G.; Lakhdari, O.; Doré, J.; Ehrlich, S.D.; Renault, P.; Blottière, H.M.; Delorme, C. Inhibition of the NF-κB pathway in human intestinal epithelial cells by commensal Streptococcus salivarius. Appl. Environ. Microbiol. 2011, 77, 4681–4684. [Google Scholar] [CrossRef]
- Wescombe, P.A.; Burton, J.P.; Cadieux, P.A.; Klesse, N.A.; Hyink, O.; Heng, N.C.; Chilcott, C.N.; Reid, G.; Tagg, J.R. Megaplasmids encode differing combinations of lantibiotics in Streptococcus salivarius. Antonie Leeuwenhoek 2006, 90, 269–280. [Google Scholar] [CrossRef]
- Karbalaei, M.; Keikha, M.; Kobyliak, N.M.; Zadeh, Z.K.; Yousefi, B.; Eslami, M. Alleviation of halitosis by use of probiotics and their protective mechanisms in the oral cavity. New Microbes New Infect. 2021, 42, 100887. [Google Scholar] [CrossRef]
- Patras, K.A.; Wescombe, P.A.; Rösler, B.; Hale, J.D.; Tagg, J.R.; Doran, K.S. Streptococcus salivarius K12 limits group B Streptococcus vaginal colonization. Infect. Immun. 2015, 83, 3438–3444. [Google Scholar] [CrossRef]
- Wescombe, P.; Upton, M.; Renault, P.; Wirawan, R.; Power, D.; Burton, J.; Chilcott, C.; Tagg, J. Salivaricin 9, a new lantibiotic produced by Streptococcus salivarius. Microbiology 2011, 157, 1290–1299. [Google Scholar] [CrossRef]
- Hols, P.; Ledesma-García, L.; Gabant, P.; Mignolet, J. Mobilization of microbiota commensals and their bacteriocins for therapeutics. Trends Microbiol. 2019, 27, 690–702. [Google Scholar] [CrossRef]
- Darbandi, A.; Asadi, A.; Mahdizade Ari, M.; Ohadi, E.; Talebi, M.; Halaj Zadeh, M.; Darb Emamie, A.; Ghanavati, R.; Kakanj, M. Bacteriocins: Properties and potential use as antimicrobials. J. Clin. Lab. Anal. 2022, 36, e24093. [Google Scholar] [CrossRef] [PubMed]
- Hyink, O.; Wescombe, P.A.; Upton, M.; Ragland, N.; Burton, J.P.; Tagg, J.R. Salivaricin A2 and the novel lantibiotic salivaricin B are encoded at adjacent loci on a 190-kilobase transmissible megaplasmid in the oral probiotic strain Streptococcus salivarius K12. Appl. Environ. Microbiol. 2007, 73, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Birri, D.J.; Brede, D.A.; Nes, I.F. Salivaricin D, a novel intrinsically trypsin-resistant lantibiotic from Streptococcus salivarius 5M6c isolated from a healthy infant. Appl. Environ. Microbiol. 2012, 78, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Walker, G.V.; Heng, N.C.; Carne, A.; Tagg, J.R.; Wescombe, P.A. Salivaricin E and abundant dextranase activity may contribute to the anti-cariogenic potential of the probiotic candidate Streptococcus salivarius JH. Microbiology 2016, 162, 476–486. [Google Scholar] [CrossRef]
- Wescombe, P.A.; Dyet, K.H.; Dierksen, K.P.; Power, D.A.; Jack, R.W.; Burton, J.P.; Inglis, M.A.; Wescombe, A.L.; Tagg, J.R. Salivaricin G32, a Homolog of the Prototype Streptococcus pyogenes Nisin-Like Lantibiotic SA-FF22, Produced by the Commensal Species Streptococcus salivarius. Int. J. Microbiol. 2012, 2012, 738503. [Google Scholar] [CrossRef]
- O’Shea, E.F.; O’Connor, P.M.; Raftis, E.J.; O’Toole, P.W.; Stanton, C.; Cotter, P.D.; Ross, R.P.; Hill, C. Subspecies diversity in bacteriocin production by intestinal Lactobacillus salivarius strains. Gut Microbes 2012, 3, 468–473. [Google Scholar] [CrossRef]
- Barrett, E.; Hayes, M.; O’Connor, P.; Gardiner, G.; Fitzgerald, G.F.; Stanton, C.; Ross, R.P.; Hill, C. Salivaricin P, one of a family of two-component antilisterial bacteriocins produced by intestinal isolates of Lactobacillus salivarius. Appl. Environ. Microbiol. 2007, 73, 3719–3723. [Google Scholar] [CrossRef]
- Flynn, S.; Van Sinderen, D.; Thornton, G.M.; Holo, H.; Nes, I.F.; Collins, J.K. Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology 2002, 148, 973–984. [Google Scholar] [CrossRef]
- Wayah, S.B.; Philip, K. Purification, characterization, mode of action, and enhanced production of Salivaricin mmaye1, a novel bacteriocin from Lactobacillus salivarius SPW1 of human gut origin. Electron. J. Biotechnol. 2018, 35, 39–47. [Google Scholar] [CrossRef]
- Pingitore, E.V.; Hébert, E.M.; Nader-Macías, M.E.; Sesma, F. Characterization of salivaricin CRL 1328, a two-peptide bacteriocin produced by Lactobacillus salivarius CRL 1328 isolated from the human vagina. Res. Microbiol. 2009, 160, 401–408. [Google Scholar] [CrossRef]
- Repka, L.M.; Chekan, J.R.; Nair, S.K.; Van Der Donk, W.A. Mechanistic understanding of lanthipeptide biosynthetic enzymes. Chem. Rev. 2017, 117, 5457–5520. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yu, J.P.J.; Brunzelle, J.S.; Moll, G.N.; Van Der Donk, W.A.; Nair, S.K. Structure and mechanism of the lantibiotic cyclase involved in nisin biosynthesis. Science 2006, 311, 1464–1467. [Google Scholar] [CrossRef] [PubMed]
- Toogood, P.L. Model studies of lantibiotic biogenesis. Tetrahedron Lett. 1993, 34, 7833–7836. [Google Scholar] [CrossRef]
- Smith, L.; Hillman, J. Therapeutic potential of type A (I) lantibiotics, a group of cationic peptide antibiotics. Curr. Opin. Microbiol. 2008, 11, 401–408. [Google Scholar] [CrossRef]
- Chatterjee, C.; Paul, M.; Xie, L.; Van Der Donk, W.A. Biosynthesis and mode of action of lantibiotics. Chem. Rev. 2005, 105, 633–684. [Google Scholar] [CrossRef]
- Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003, 55, 27–55. [Google Scholar] [CrossRef]
- Breukink, E.; van Heusden, H.E.; Vollmerhaus, P.J.; Swiezewska, E.; Brunner, L.; Walker, S.; Heck, A.J.; de Kruijff, B. Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. J. Biol. Chem. 2003, 278, 19898–19903. [Google Scholar] [CrossRef]
- Hsu, S.-T.D.; Breukink, E.; Tischenko, E.; Lutters, M.A.; De Kruijff, B.; Kaptein, R.; Bonvin, A.M.; Van Nuland, N.A. The nisin–lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat. Struct. Mol. Biol. 2004, 11, 963–967. [Google Scholar] [CrossRef]
- Moll, G.N.; Konings, W.N.; Driessen, A.J. Bacteriocins: Mechanism of membrane insertion and pore formation. Antonie Leeuwenhoek 1999, 76, 185–198. [Google Scholar] [CrossRef]
- Barbour, A.; Tagg, J.; Abou-Zied, O.K.; Philip, K. New insights into the mode of action of the lantibiotic salivaricin B. Sci. Rep. 2016, 6, 31749. [Google Scholar] [CrossRef]
- Dicks, L.M.; Dreyer, L.; Smith, C.; Van Staden, A.D. A review: The fate of bacteriocins in the human gastro-intestinal tract: Do they cross the gut–blood barrier? Front. Microbiol. 2018, 9, 412492. [Google Scholar]
- Willey, J.M.; Van Der Donk, W.A. Lantibiotics: Peptides of diverse structure and function. Annu. Rev. Microbiol. 2007, 61, 477–501. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Salazar-Ocampo, L.M.; Van Der Donk, W.A. In vitro activity of the nisin dehydratase NisB. Proc. Natl. Acad. Sci. USA 2013, 110, 7258–7263. [Google Scholar] [CrossRef] [PubMed]
- Escano, J.; Stauffer, B.; Brennan, J.; Bullock, M.; Smith, L. Biosynthesis and transport of the lantibiotic mutacin 1140 produced by Streptococcus mutans. J. Bacteriol. 2015, 197, 1173–1184. [Google Scholar] [CrossRef]
- Meyer, C.; Bierbaum, G.; Heidrich, C.; Reis, M.; Süling, J.; Iglesias-Wind, M.I.; Kempter, C.; Molitor, E.; Sahl, H.G. Nucleotide sequence of the lantibiotic Pep5 biosynthetic gene cluster and functional analysis of PepP and PepC: Evidence for a role of PepC in thioether formation. Eur. J. Biochem. 1995, 232, 478–489. [Google Scholar] [CrossRef]
- Chatterjee, C.; Miller, L.M.; Leung, Y.L.; Xie, L.; Yi, M.; Kelleher, N.L.; Van Der Donk, W.A. Lacticin 481 synthetase phosphorylates its substrate during lantibiotic production. J. Am. Chem. Soc. 2005, 127, 15332–15333. [Google Scholar] [CrossRef]
- You, Y.O.; Van Der Donk, W.A. Mechanistic investigations of the dehydration reaction of lacticin 481 synthetase using site-directed mutagenesis. Biochemistry 2007, 46, 5991–6000. [Google Scholar] [CrossRef]
- You, Y.O.; Levengood, M.R.; Ihnken, L.F.; Knowlton, A.K.; Van Der Donk, W.A. Lacticin 481 synthetase as a general serine/threonine kinase. ACS Chem. Biol. 2009, 4, 379–385. [Google Scholar] [CrossRef]
- Gilmore, M.S.; Segarra, R.A.; Booth, M.C.; Bogie, C.P.; Hall, L.R.; Clewell, D.B. Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J. Bacteriol. 1994, 176, 7335–7344. [Google Scholar] [CrossRef]
- Xie, L.; Miller, L.M.; Chatterjee, C.; Averin, O.; Kelleher, N.L.; Van Der Donk, W.A. Lacticin 481: In vitro reconstitution of lantibiotic synthetase activity. Science 2004, 303, 679–681. [Google Scholar] [CrossRef]
- van den Hooven, H.W.; Lagerwerf, F.M.; Heerma, W.; Haverkamp, J.; Piard, J.-C.; Hilbers, C.W.; Siezen, R.J.; Kuipers, O.P.; Rollema, H.S. The structure of the lantibiotic lacticin 481 produced by Lactococcus lactis: Location of the thioether bridges. FEBS Lett. 1996, 391, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Garneau, S.; Martin, N.I.; Vederas, J.C. Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 2002, 84, 577–592. [Google Scholar] [CrossRef] [PubMed]
- Skaugen, M.; Nissen-Meyer, J.; Jung, G.; StevanoVic, S.; Sletten, K.; Inger, C.; Abildgaard, M.; Nes, I. In vivo conversion of L-serine to D-alanine in a ribosomally synthesized polypeptide. J. Biol. Chem. 1994, 269, 27183–27185. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.P.; Jack, R.W.; Josten, M.; Sahl, H.-G.; Jung, G.; Ross, R.P.; Hill, C. Extensive post-translational modification, including serine to D-alanine conversion, in the two-component lantibiotic, lacticin 3147. J. Biol. Chem. 1999, 274, 37544–37550. [Google Scholar] [CrossRef]
- Cotter, P.D.; O’Connor, P.M.; Draper, L.A.; Lawton, E.M.; Deegan, L.H.; Hill, C.; Ross, R.P. Posttranslational conversion of L-serines to D-alanines is vital for optimal production and activity of the lantibiotic lacticin 3147. Proc. Natl. Acad. Sci. USA 2005, 102, 18584–18589. [Google Scholar] [CrossRef]
- Dougherty, B.A.; Hill, C.; Weidman, J.F.; Richardson, D.R.; Venter, J.C.; Ross, R.P. Sequence and analysis of the 60 kb conjugative, bacteriocin-producing plasmid pMRC01 from Lactococcus lactis DPC3147. Mol. Microbiol. 1998, 29, 1029–1038. [Google Scholar] [CrossRef]
- Gherghisan-Filip, C.; Saalbach, G.; Hatziioanou, D.; Narbad, A.; Mayer, M.J. Processing and structure of the lantibiotic peptide Nso from the human gut bacterium Blautia obeum A2-162 analysed by mass spectrometry. Sci. Rep. 2018, 8, 10077. [Google Scholar] [CrossRef]
- Ross, K.F.; Ronson, C.; Tagg, J.R. Isolation and characterization of the lantibiotic salivaricin A and its structural gene salA from Streptococcus salivarius 20P3. Appl. Environ. Microbiol. 1993, 59, 2014–2021. [Google Scholar] [CrossRef]
- Bierbaum, G.; Szekat, C.; Josten, M.; Heidrich, C.; Kempter, C.; Jung, G.; Sahl, H.-G. Engineering of a novel thioether bridge and role of modified residues in the lantibiotic Pep5. Appl. Environ. Microbiol. 1996, 62, 385–392. [Google Scholar] [CrossRef]
- Suda, S.; Westerbeek, A.; O’Connor, P.M.; Ross, R.P.; Hill, C.; Cotter, P.D. Effect of bioengineering lacticin 3147 lanthionine bridges on specific activity and resistance to heat and proteases. Chem. Biol. 2010, 17, 1151–1160. [Google Scholar] [CrossRef]
- Bonelli, R.R.; Schneider, T.; Sahl, H.-G.; Wiedemann, I. Insights into in vivo activities of lantibiotics from gallidermin and epidermin mode-of-action studies. Antimicrob. Agents Chemother. 2006, 50, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Jack, R.; Benz, R.; Tagg, J.; Sahl, H.G. The mode of action of SA-FF22, a lantibiotic isolated from Streptococcus pyogenes strain FF22. Eur. J. Biochem. 1994, 219, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Hasper, H.E.; Kramer, N.E.; Smith, J.L.; Hillman, J.; Zachariah, C.; Kuipers, O.P.; De Kruijff, B.; Breukink, E. An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science 2006, 313, 1636–1637. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.R.; Nagao, J.-I.; Zendo, T.; Sonomoto, K. Antimicrobial mechanism of lantibiotics. Biochem. Soc. Trans. 2012, 40, 1528–1533. [Google Scholar] [CrossRef]
- Gherardini, P.F.; Helmer-Citterich, M. Structure-based function prediction: Approaches and applications. Brief. Funct. Genom. Proteom. 2008, 7, 291–302. [Google Scholar] [CrossRef]
- Barbour, A.; Philip, K.; Muniandy, S. Enhanced production, purification, characterization and mechanism of action of salivaricin 9 lantibiotic produced by Streptococcus salivarius NU10. PLoS ONE 2013, 8, e77751. [Google Scholar] [CrossRef]
- McAuliffe, O.; Ross, R.P.; Hill, C. Lantibiotics: Structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 2001, 25, 285–308. [Google Scholar] [CrossRef]
- Morgan, S.M.; O’connor, P.M.; Cotter, P.D.; Ross, R.P.; Hill, C. Sequential actions of the two component peptides of the lantibiotic lacticin 3147 explain its antimicrobial activity at nanomolar concentrations. Antimicrob. Agents Chemother. 2005, 49, 2606–2611. [Google Scholar] [CrossRef]
- McAuliffe, O.; Ryan, M.P.; Ross, R.P.; Hill, C.; Breeuwer, P.; Abee, T. Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl. Environ. Microbiol. 1998, 64, 439–445. [Google Scholar] [CrossRef]
- O’sullivan, L.; Ross, R.; Hill, C. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 2002, 84, 593–604. [Google Scholar] [CrossRef]
- Martin, N.I.; Sprules, T.; Carpenter, M.R.; Cotter, P.D.; Hill, C.; Ross, R.P.; Vederas, J.C. Structural characterization of lacticin 3147, a two-peptide lantibiotic with synergistic activity. Biochemistry 2004, 43, 3049–3056. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, E.B.; Cotter, P.D.; O’Connor, P.; O’sullivan, O.; Tagg, J.R.; Ross, R.P.; Hill, C. Relatedness between the two-component lantibiotics lacticin 3147 and staphylococcin C55 based on structure, genetics and biological activity. BMC Microbiol. 2007, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Iancu, C.; Grainger, A.; Field, D.; Cotter, P.D.; Hill, C.; Ross, R.P. Comparison of the potency of the lipid II targeting antimicrobials nisin, lacticin 3147 and vancomycin against Gram-positive bacteria. Probiot. Antimicrob. Proteins 2012, 4, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Bindman, N.A.; Van Der Donk, W.A. A general method for fluorescent labeling of the N-termini of lanthipeptides and its application to visualize their cellular localization. J. Am. Chem. Soc. 2013, 135, 10362–10371. [Google Scholar] [CrossRef]
- Bakhtiary, A.; Cochrane, S.A.; Mercier, P.; McKay, R.T.; Miskolzie, M.; Sit, C.S.; Vederas, J.C. Insights into the mechanism of action of the two-peptide lantibiotic lacticin 3147. J. Am. Chem. Soc. 2017, 139, 17803–17810. [Google Scholar] [CrossRef]
- Knerr, P.J.; Van Der Donk, W.A. Discovery, biosynthesis, and engineering of lantipeptides. Annu. Rev. Biochem. 2012, 81, 479–505. [Google Scholar] [CrossRef]
- Navaratna, M.A.; Sahl, H.-G.; Tagg, J.R. Two-component anti-Staphylococcus aureus lantibiotic activity produced by Staphylococcus aureus C55. Appl. Environ. Microbiol. 1998, 64, 4803–4808. [Google Scholar] [CrossRef]
- Oman, T.J.; Van Der Donk, W.A. Insights into the mode of action of the two-peptide lantibiotic haloduracin. ACS Chem. Biol. 2009, 4, 865–874. [Google Scholar] [CrossRef]
- Wiedemann, I.; Böttiger, T.; Bonelli, R.R.; Wiese, A.; Hagge, S.O.; Gutsmann, T.; Seydel, U.; Deegan, L.; Hill, C.; Ross, P. The mode of action of the lantibiotic lacticin 3147—A complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Mol. Microbiol. 2006, 61, 285–296. [Google Scholar] [CrossRef]
- McClerren, A.L.; Cooper, L.E.; Quan, C.; Thomas, P.M.; Kelleher, N.L.; Van Der Donk, W.A. Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. Proc. Natl. Acad. Sci. USA 2006, 103, 17243–17248. [Google Scholar] [CrossRef]
- Xin, B.; Zheng, J.; Liu, H.; Li, J.; Ruan, L.; Peng, D.; Sajid, M.; Sun, M. Thusin, a novel two-component lantibiotic with potent antimicrobial activity against several Gram-positive pathogens. Front. Microbiol. 2016, 7, 204660. [Google Scholar] [CrossRef]
- Chikindas, M.L.; García-Garcerá, M.J.; Driessen, A.; Ledeboer, A.M.; Nissen-Meyer, J.; Nes, I.F.; Abee, T.; Konings, W.N.; Venema, G. Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1. 0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl. Environ. Microbiol. 1993, 59, 3577–3584. [Google Scholar] [CrossRef] [PubMed]
- Belguesmia, Y.; Naghmouchi, K.; Chihib, N.-E.; Drider, D. Class IIa bacteriocins: Current knowledge and perspectives. In Prokaryotic Antimicrobial Peptides: From Genes to Applications; Springer: New York, NY, USA, 2011; pp. 171–195. [Google Scholar]
- Martínez, B.; Suárez, J.E.; Rodríguez, A. Lactococcin 972: A homodimeric lactococcal bacteriocin whose primary target is not the plasma membrane. Microbiology 1996, 142, 2393–2398. [Google Scholar] [CrossRef]
- Martínez, B.; Böttiger, T.; Schneider, T.; Rodríguez, A.; Sahl, H.-G.; Wiedemann, I. Specific interaction of the unmodified bacteriocin Lactococcin 972 with the cell wall precursor lipid II. Am. Soc. Microbiol. 2008, 74, 4666–4670. [Google Scholar] [CrossRef]
- Maftah, A.; Renault, D.; Vignoles, C.; Héchard, Y.; Bressollier, P.; Ratinaud, M.; Cenatiempo, Y.; Julien, R. Membrane permeabilization of Listeria monocytogenes and mitochondria by the bacteriocin mesentericin Y105. J. Bacteriol. 1993, 175, 3232–3235. [Google Scholar] [CrossRef] [PubMed]
- Kjos, M.; Salehian, Z.; Nes, I.F.; Diep, D.B. An extracellular loop of the mannose phosphotransferase system component IIC is responsible for specific targeting by class IIa bacteriocins. J. Bacteriol. 2010, 192, 5906–5913. [Google Scholar] [CrossRef] [PubMed]
- Kazazic, M.; Nissen-Meyer, J.; Fimland, G. Mutational analysis of the role of charged residues in target-cell binding, potency and specificity of the pediocin-like bacteriocin sakacin P. Microbiology 2002, 148, 2019–2027. [Google Scholar] [CrossRef]
- Diep, D.B.; Skaugen, M.; Salehian, Z.; Holo, H.; Nes, I.F. Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc. Natl. Acad. Sci. USA 2007, 104, 2384–2389. [Google Scholar] [CrossRef]
- Fimland, G.; Pirneskoski, J.; Kaewsrichan, J.; Jutila, A.; Kristiansen, P.E.; Kinnunen, P.K.; Nissen-Meyer, J. Mutational analysis and membrane-interactions of the β-sheet-like N-terminal domain of the pediocin-like antimicrobial peptide sakacin P. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2006, 1764, 1132–1140. [Google Scholar] [CrossRef]
- Aziz, Q.; Doré, J.; Emmanuel, A.; Guarner, F.; Quigley, E. Gut microbiota and gastrointestinal health: Current concepts and future directions. Neurogastroenterol. Motil. 2013, 25, 4–15. [Google Scholar] [CrossRef]
- Dogra, S.K.; Doré, J.; Damak, S. Gut microbiota resilience: Definition, link to health and strategies for intervention. Front. Microbiol. 2020, 11, 572921. [Google Scholar] [CrossRef] [PubMed]
- Ju, M.; Liu, Y.; Li, M.; Cheng, M.; Zhang, Y.; Deng, G.; Kang, X.; Liu, H. Baicalin improves intestinal microecology and abnormal metabolism induced by high-fat diet. Eur. J. Pharmacol. 2019, 857, 172457. [Google Scholar] [CrossRef]
- Tsiaoussis, J.; Antoniou, M.N.; Koliarakis, I.; Mesnage, R.; Vardavas, C.I.; Izotov, B.N.; Psaroulaki, A.; Tsatsakis, A. Effects of single and combined toxic exposures on the gut microbiome: Current knowledge and future directions. Toxicol. Lett. 2019, 312, 72–97. [Google Scholar] [CrossRef] [PubMed]
- Belizário, J.E.; Faintuch, J. Microbiome and gut dysbiosis. In Metabolic Interaction in Infection; Springer: Cham, Switzerland, 2018; pp. 459–476. [Google Scholar]
- Clerbaux, L.-A.; Filipovska, J.; Muñoz, A.; Petrillo, M.; Coecke, S.; Amorim, M.-J.; Grenga, L. Mechanisms leading to gut dysbiosis in COVID-19: Current evidence and uncertainties based on adverse outcome pathways. J. Clin. Med. 2022, 11, 5400. [Google Scholar] [CrossRef] [PubMed]
- Cosseau, C.; Devine, D.A.; Dullaghan, E.; Gardy, J.L.; Chikatamarla, A.; Gellatly, S.; Yu, L.L.; Pistolic, J.; Falsafi, R.; Tagg, J. The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect. Immun. 2008, 76, 4163–4175. [Google Scholar] [CrossRef]
- MacDonald, K.W.; Chanyi, R.M.; Macklaim, J.M.; Cadieux, P.A.; Reid, G.; Burton, J.P. Streptococcus salivarius inhibits immune activation by periodontal disease pathogens. BMC Oral Health 2021, 21, 245. [Google Scholar] [CrossRef]
- Garcia-Bonete, M.J.; Rajan, A.; Suriano, F.; Layunta, E. The underrated gut microbiota helminths, bacteriophages, fungi, and archaea. Life 2023, 13, 1765. [Google Scholar] [CrossRef]
- Belstrøm, D.; Holmstrup, P.; Bardow, A.; Kokaras, A.; Fiehn, N.-E.; Paster, B.J. Temporal stability of the salivary microbiota in oral health. PLoS ONE 2016, 11, e0147472. [Google Scholar] [CrossRef]
- He, X.; McLean, J.S.; Guo, L.; Lux, R.; Shi, W. The social structure of microbial community involved in colonization resistance. ISME J. 2014, 8, 564–574. [Google Scholar] [CrossRef]
- López-López, A.; Camelo-Castillo, A.; Ferrer, M.D.; Simon-Soro, Á.; Mira, A. Health-associated niche inhabitants as oral probiotics: The case of Streptococcus dentisani. Front. Microbiol. 2017, 8, 230456. [Google Scholar] [CrossRef]
- Dierksen, K.; Tagg, J. The influence of indigenous bacteriocin-producing Streptococcus salivarius on the acquisition of Streptococcus pyogenes by primary school children in Dunedin, New Zealand. In Streptococci and Streptococcal Diseases Entering the New Millenium; University of Otago: Dunedin, New Zealand, 2000; pp. 81–85. [Google Scholar]
- Millette, M.; Cornut, G.; Dupont, C.; Shareck, F.; Archambault, D.; Lacroix, M. Capacity of human nisin-and pediocin-producing lactic acid bacteria to reduce intestinal colonization by vancomycin-resistant enterococci. Appl. Environ. Microbiol. 2008, 74, 1997–2003. [Google Scholar] [CrossRef] [PubMed]
- Tagg, J.R.; Harold, L.K.; Jain, R.; Hale, J.D. Beneficial modulation of human health in the oral cavity and beyond using bacteriocin-like inhibitory substance-producing streptococcal probiotics. Front. Microbiol. 2023, 14, 1161155. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Chen, Z.; Shah, N.; El-Nezami, H. Modulation of intestinal epithelial defense responses by probiotic bacteria. Crit. Rev. Food Sci. Nutr. 2016, 56, 2628–2641. [Google Scholar] [CrossRef] [PubMed]
- Manning, J.; Dunne, E.M.; Wescombe, P.A.; Hale, J.D.; Mulholland, E.K.; Tagg, J.R.; Robins-Browne, R.M.; Satzke, C. Investigation of Streptococcus salivarius-mediated inhibition of pneumococcal adherence to pharyngeal epithelial cells. BMC Microbiol. 2016, 16, 225. [Google Scholar] [CrossRef]
- Chaffanel, F.; Charron-Bourgoin, F.; Soligot, C.; Kebouchi, M.; Bertin, S.; Payot, S.; Le Roux, Y.; Leblond-Bourget, N. Surface proteins involved in the adhesion of Streptococcus salivarius to human intestinal epithelial cells. Appl. Microbiol. Biotechnol. 2018, 102, 2851–2865. [Google Scholar] [CrossRef]
- Guglielmetti, S.; Taverniti, V.; Minuzzo, M.; Arioli, S.; Stuknyte, M.; Karp, M.; Mora, D. Oral bacteria as potential probiotics for the pharyngeal mucosa. Appl. Environ. Microbiol. 2010, 76, 3948–3958. [Google Scholar] [CrossRef]
- Petrariu, O.-A.; Barbu, I.C.; Niculescu, A.-G.; Constantin, M.; Grigore, G.A.; Cristian, R.-E.; Mihaescu, G.; Vrancianu, C.O. Role of probiotics in managing various human diseases, from oral pathology to cancer and gastrointestinal diseases. Front. Microbiol. 2024, 14, 1296447. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, Y.; Guo, Q. Probiotic species in the management of periodontal diseases: An overview. Front. Cell. Infect. Microbiol. 2022, 12, 806463. [Google Scholar] [CrossRef]
- Couvigny, B.; De Wouters, T.; Kaci, G.; Jacouton, E.; Delorme, C.; Dore, J.; Renault, P.; Blottiere, H.M.; Guedon, E.; Lapaque, N. Commensal Streptococcus salivarius modulates PPARγ transcriptional activity in human intestinal epithelial cells. PLoS ONE 2015, 10, e0125371. [Google Scholar] [CrossRef]
- Kaci, G.; Goudercourt, D.; Dennin, V.; Pot, B.; Doré, J.; Ehrlich, S.D.; Renault, P.; Blottière, H.M.; Daniel, C.; Delorme, C. Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract. Appl. Environ. Microbiol. 2014, 80, 928–934. [Google Scholar] [CrossRef]
- Li, J.; Li, S.; Jin, J.; Guo, R.; Sun, X.; Guo, J.; Hu, F.; Liu, Y.; Jin, Y.; Zhou, Y. Mining the human tonsillar microbiota as autoimmune modulator. bioRxiv 2019. [Google Scholar] [CrossRef]
- Mahdi, L.H.; Jabbar, H.S.; Auda, I.G. Antibacterial immunomodulatory and antibiofilm triple effect of Salivaricin LHM against Pseudomonas aeruginosa urinary tract infection model. Int. J. Biol. Macromol. 2019, 134, 1132–1144. [Google Scholar] [CrossRef] [PubMed]
- Taverniti, V.; Minuzzo, M.; Arioli, S.; Junttila, I.; Hämäläinen, S.; Turpeinen, H.; Mora, D.; Karp, M.; Pesu, M.; Guglielmetti, S. In vitro functional and immunomodulatory properties of the Lactobacillus helveticus MIMLh5-Streptococcus salivarius ST3 association that are relevant to the development of a pharyngeal probiotic product. Appl. Environ. Microbiol. 2012, 78, 4209–4216. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Pan, S.; Guo, Y.; Xu, P.; Zhai, Y. PPARs as nuclear receptors for nutrient and energy metabolism. Molecules 2019, 24, 2545. [Google Scholar] [CrossRef]
- Kunath, B.; Hickl, O.; Queirós, P.; Martin-Gallausiaux, C.; Lebrun, L.; Halder, R.; Laczny, C.C.; Schmidt, T.; Hayward, M.; Becher, D. Alterations of oral microbiota and impact on the gut microbiome in type 1 diabetes mellitus revealed by integrated multi-omic analyses. Microbiome 2022, 10, 243. [Google Scholar] [CrossRef]
- Yang, Y.; Song, X.; Wang, G.; Xia, Y.; Xiong, Z.; Ai, L. Understanding Ligilactobacillus salivarius from probiotic properties to omics technology: A review. Foods 2024, 13, 895. [Google Scholar] [CrossRef]
- Drago, L.; De Vecchi, E.; Gabrieli, A.; De Grandi, R.; Toscano, M. Immunomodulatory effects of Lactobacillus salivarius LS01 and Bifidobacterium breve BR03, alone and in combination, on peripheral blood mononuclear cells of allergic asthmatics. Allergy Asthma Immunol. Res. 2015, 7, 409–413. [Google Scholar] [CrossRef]
- Jia, G.; Che, N.; Xia, Y.; Lai, P.F.-H.; Xiong, Z.; Wang, G.; Zhang, H.; Ai, L. Adhesion to pharyngeal epithelium and modulation of immune response: Lactobacillus salivarius AR809, a potential probiotic strain isolated from the human oral cavity. J. Dairy Sci. 2019, 102, 6738–6749. [Google Scholar] [CrossRef]
- Taha-Abdelaziz, K.; Astill, J.; Kulkarni, R.R.; Read, L.R.; Najarian, A.; Farber, J.M.; Sharif, S. In vitro assessment of immunomodulatory and anti-Campylobacter activities of probiotic lactobacilli. Sci. Rep. 2019, 9, 17903. [Google Scholar] [CrossRef]
- Mastromarino, P.; Macchia, S.; Meggiorini, L.; Trinchieri, V.; Mosca, L.; Perluigi, M.; Midulla, C. Effectiveness of Lactobacillus-containing vaginal tablets in the treatment of symptomatic bacterial vaginosis. Clin. Microbiol. Infect. 2009, 15, 67–74. [Google Scholar] [CrossRef]
- Hemalatha, R.; Mastromarino, P.; Ramalaxmi, B.; Balakrishna, N.; Sesikeran, B. Effectiveness of vaginal tablets containing lactobacilli versus pH tablets on vaginal health and inflammatory cytokines: A randomized, double-blind study. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 3097–3105. [Google Scholar] [CrossRef]
- Mei, Z.; Li, D. The role of probiotics in vaginal health. Front. Cell. Infect. Microbiol. 2022, 12, 963868. [Google Scholar] [CrossRef] [PubMed]
- Raimundo, M.; Rodrigues, P.; Esteban, S.; Espinosa-Martos, I.; Jiménez, E. Ligilactobacillus salivarius PS11610 Enhances the Fertilization Success of IVF: A Preliminary Retrospective Analysis. Nutrients 2025, 17, 410. [Google Scholar] [CrossRef] [PubMed]
- Fernández, L.; Castro, I.; Arroyo, R.; Alba, C.; Beltrán, D.; Rodríguez, J.M. Immunomodulation of the vaginal ecosystem by Ligilactobacillus salivarius CECT 30632 improves pregnancy rates among women with infertility of unknown origin or habitual abortions. Nutrients 2023, 15, 362. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Dai, F.; Yuan, M.; Zheng, Y.; Liu, S.; Deng, Z.; Tan, W.; Chen, L.; Zhang, Q.; Zhao, X. Role of transforming growth factor-β1 in regulating fetal-maternal immune tolerance in normal and pathological pregnancy. Front. Immunol. 2021, 12, 689181. [Google Scholar] [CrossRef]
- Snyder, H.L.; Niebuhr, S.E.; Dickson, J.S. Transfer of methicillin-resistant Staphylococcus aureus from retail pork products onto food contact surfaces and the potential for consumer exposure. J. Food Prot. 2013, 76, 2087–2092. [Google Scholar] [CrossRef]
- Hayek, M.N. The infectious disease trap of animal agriculture. Sci. Adv. 2022, 8, eadd6681. [Google Scholar] [CrossRef]
- Shah, A.B.; Shim, S.H. Human microbiota peptides: Important roles in human health. Nat. Prod. Rep. 2025, 42, 151–194. [Google Scholar] [CrossRef]
- Zvanych, R.; Lukenda, N.; Kim, J.J.; Li, X.; Petrof, E.O.; Khan, W.I.; Magarvey, N.A. Small molecule immunomodulins from cultures of the human microbiome member Lactobacillus plantarum. J. Antibiot. 2014, 67, 85–88. [Google Scholar] [CrossRef]
Salivaricin Name | Bacteriocin Class | Producer Strain | Mode of Action | Highest Level of Identification/Structural Characterization | Reference |
---|---|---|---|---|---|
Salivaricin A(2) | Class I: Lantibiotic II | S. salivarius K12 | N-terminal Lipid II Binding | NMR and Mass Spectrometry | [44] |
Salivaricin B | Class I: Lantibiotic II | S. salivarius K12 | Inhibition of Transglycosylation | Genomic Prediction | [54] |
Salivaricin D | Class 1: Lantibiotic I | S. salivarius 5M6C | Unknown (Suspected to be pore formation) | Genomic Prediction | [55] |
Salivaricin E | Class I: Lantibiotic II | S. salivarius JH | Unknown | Genomic Prediction | [56] |
Salivaricin G32 | Class 1: Lantibiotic II | S. salivarius G32 | Unknown (Suspected to be pore formation) | Genomic Prediction | [57] |
Salivaricin 9 | Class I: Lantibiotic II | S. salivarius 9 | Pore Formation | Genomic Prediction | [51] |
Salivaricin 10 | Class I: Lantibiotic II | S. salivarius SALI10 | Untested (possesses anti-biofilm activities) | NMR and Mass Spectrometry | [45] |
Salivaricin L | Class II | L. salivarius DPC 6488 | Untested | Genomic Prediction | [58] |
Salivaricin P | Class II | L. salivarius DPC 6005 | Untested | Genomic Prediction | [59] |
Salivaricin T | Class II | L. salivarius DPC 6488 | Untested | Genomic Prediction | [58] |
Salivaricin APB-118 | Class II | L. salivarius UCC118 | Pore Formation | Genomic Prediction | [60] |
Salivaricin mmaye1 | Class II | L. salivarius SPW1 | Pore Formation | Chromatographic Isolation and Mass Spectrometry | [61] |
Salivaricin CRL 1328 | Class II | L. salivarius CRL 1328 | Pore Formation | Genomic Prediction | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, M.D.; Smith, L. Streptococcus salivarius and Ligilactobacillus salivarius: Paragons of Probiotic Potential and Reservoirs of Novel Antimicrobials. Microorganisms 2025, 13, 555. https://doi.org/10.3390/microorganisms13030555
Williams MD, Smith L. Streptococcus salivarius and Ligilactobacillus salivarius: Paragons of Probiotic Potential and Reservoirs of Novel Antimicrobials. Microorganisms. 2025; 13(3):555. https://doi.org/10.3390/microorganisms13030555
Chicago/Turabian StyleWilliams, McKinley D., and Leif Smith. 2025. "Streptococcus salivarius and Ligilactobacillus salivarius: Paragons of Probiotic Potential and Reservoirs of Novel Antimicrobials" Microorganisms 13, no. 3: 555. https://doi.org/10.3390/microorganisms13030555
APA StyleWilliams, M. D., & Smith, L. (2025). Streptococcus salivarius and Ligilactobacillus salivarius: Paragons of Probiotic Potential and Reservoirs of Novel Antimicrobials. Microorganisms, 13(3), 555. https://doi.org/10.3390/microorganisms13030555