Optimization of the Fermentation and Preparation of the Wettable Powder Formulation of Bacillus velezensis F0b
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Culture Conditions
2.2. Identification of Strain F0b by 16S rDNA Sequence Analysis
2.2.1. Identification by Morphological Experiments
2.2.2. Identification by 16S rDNA Sequence Analysis
2.3. Reagents
2.4. Optimizing Fermentation Medium Compositions for Bacillus velezensis F0b
2.4.1. Fermentation Medium Screening by a Single-Factor Test
2.4.2. Fermentation Medium Optimizing by Response Surface Methodology
2.5. Optimization of the Fermentation Conditions of Bacillus velezensis F0b
2.6. Preparation of Wettable Powder Formulation
2.6.1. Screening of Carriers
2.6.2. Screening of Dispersant and Wetting Agent as Well as Determination of Their Amounts
2.6.3. Screening of UV Protectant
2.7. Quality Index of the Formulation
2.7.1. Bacterial Viability
2.7.2. Suspensibility
2.7.3. Wettability
2.8. Field Experiments
2.9. Statistical Analysis
3. Results
3.1. Identification of Strain F0b
3.2. Optimizing Fermentation Medium Compositions for Bacillus velezensis F0b
3.2.1. Selection of Carbon, Nitrogen, and Mineral Sources by a Single Test
3.2.2. Response Surface Methodology for Optimization of Medium Compositions
3.2.3. Effects of Fermentation Conditions on Bacillus velezensis of Strain F0b
3.3. Screening of Carrier, Dispersant, and Wetting Agent
3.4. Screening of the Ratio and Dosage of Wetting Agent and Dispersant
3.5. Screening of UV Protectants
3.6. Physical Properties of Wettable Powder of F0b
3.7. Field Experiments
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, Y.; Chen, Z.; Ruan, C.; Xiao, R.; Lian, H.; Liu, B.; Chen, M.; Wang, J. Antifungal Activities of Bacillus velezensis FJAT-52631 and Its Lipopeptides against Anthracnose Pathogen Colletotrichum acutatum. J. Basic Microbiol. 2023, 63, 594–603. [Google Scholar] [CrossRef] [PubMed]
- Songwattana, P.; Boonchuen, P.; Piromyou, P.; Wongdee, J.; Greetatorn, T.; Inthaisong, S.; Tantasawat, P.A.; Teamtisong, K.; Tittabutr, P.; Boonkerd, N.; et al. Insights into Antifungal Mechanisms of Bacillus velezensis S141 against Cercospora Leaf Spot in Mungbean (V. Radiata). Microbes Environ. 2023, 38, ME22079. [Google Scholar] [CrossRef]
- Torres, M.; Llamas, I.; Torres, B.; Toral, L.; Sampedro, I.; Béjar, V. Growth Promotion on Horticultural Crops and Antifungal Activity of Bacillus velezensis XT1. Appl. Soil Ecol. 2020, 150, 103453. [Google Scholar] [CrossRef]
- Phae, C.G.; Shoda, M.; Kubota, H. Suppressive Effect of Bacillus subtilis and It’s Products on Phytopathogenic Microorganisms. J. Ferment. Bioeng. 1990, 69, 1–7. [Google Scholar] [CrossRef]
- Chandrashekar, B.S.; Prasannakumar, M.K.; Venkateshbabu, G.; Mahesh, H.B.; Puneeth, M.E.; Narayan, K.S.; Parivallal, P.B.; Pramesh, D.; Banakar, S.N.; Patil, S.S. Bacillus velezensis (Strains A6 & P42) as a Potential Biocontrol Agent against Klebsiella variicola, a New Causal Agent of Soft Rot Disease in Carrot. Lett. Appl. Microbiol. 2023, 76, ovac029. [Google Scholar] [CrossRef]
- Rabbee, M.F.; Hwang, B.-S.; Baek, K.-H. Bacillus velezensis: A Beneficial Biocontrol Agent or Facultative Phytopathogen for Sustainable Agriculture. Agronomy 2023, 13, 840. [Google Scholar] [CrossRef]
- Rabbee, M.F.; Ali, M.S.; Choi, J.; Hwang, B.S.; Jeong, S.C.; Baek, K. Bacillus velezensis: A Valuable Member of Bioactive Molecules within Plant Microbiomes. Molecules 2019, 24, 1046. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, F.; Wang, J.; Tian, C.; Meng, X. Characterization of Bacillus velezensis YTQ3 as a Potential Biocontrol Agent against Botrytis Cinerea. Postharvest Biol. Technol. 2025, 223, 113443. [Google Scholar] [CrossRef]
- Zhong, X.; Jin, Y.; Ren, H.; Hong, T.; Zheng, J.; Fan, W.; Hong, J.; Chen, Z.; Wang, A.; Lu, H.; et al. Research Progress of Bacillus velezensis in Plant Disease Resistance and Growth Promotion. Front. Ind. Microbiol. 2024, 2, 1442980. [Google Scholar] [CrossRef]
- Fan, B.; Wang, C.; Song, X.; Ding, X.; Wu, L.; Wu, H.; Gao, X.; Borriss, R. Bacillus velezensis FZB42 in 2018: The Gram-Positive Model Strain for Plant Growth Promotion and Biocontrol. Front. Microbiol. 2018, 9, 2491. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Pi, H.; Chandrangsu, P.; Li, Y.; Wang, Y.; Zhou, H.; Xiong, H.; Helmann, J.D.; Cai, Y. Antagonism of Two Plant-Growth Promoting Bacillus velezensis Isolates Against Ralstonia solanacearum and Fusarium oxysporum. Sci. Rep. 2018, 8, 4360. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Teng, K.; Wang, T.; Dong, E.; Zhang, M.; Tao, Y.; Zhong, J. Antimicrobial Bacillus velezensis HC6: Production of Three Kinds of Lipopeptides and Biocontrol Potential in Maize. J. Appl. Microbiol. 2020, 128, 242–254. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Shao, J.; Li, B.; Yan, X.; Shen, Q.; Zhang, R. Contribution of Bacillomycin D in Bacillus amyloliquefaciens SQR9 to Antifungal Activity and Biofilm Formation. Appl. Environ. Microbiol. 2013, 79, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.P.; Dietel, K.; Rändler, M.; Schmid, M.; Junge, H.; Borriss, R.; Hartmann, A.; Grosch, R. Effects of Bacillus amyloliquefaciens FZB42 on Lettuce Growth and Health under Pathogen Pressure and Its Impact on the Rhizosphere Bacterial Community. PLoS ONE 2013, 8, e68818. [Google Scholar] [CrossRef]
- Meng, X.; Yu, J.; Yu, M.; Yin, X.; Liu, Y. Dry Flowable Formulations of Antagonistic Bacillus subtilis Strain T429 by Spray Drying to Control Rice Blast Disease. Biol. Control 2015, 85, 46–51. [Google Scholar] [CrossRef]
- Bejarano, A.; Puopolo, G. Bioformulation of Microbial Biocontrol Agents for a Sustainable Agriculture. In How Research Can Stimulate the Development of Commercial Biological Control Against Plant Diseases; De Cal, A., Melgarejo, P., Magan, N., Eds.; Springer: Cham, Switzerland, 2020; pp. 275–293. ISBN 978-3-030-53238-3. [Google Scholar]
- Brar, S.K.; Verma, M.; Tyagi, R.D.; Valéro, J.R. Recent Advances in Downstream Processing and Formulations of Bacillus thuringiensis Based Biopesticides. Process Biochem. 2006, 41, 323–342. [Google Scholar] [CrossRef]
- Imran, M.; Ali, E.F.; Hassan, S.; Abo-Elyousr, K.A.M.; Sallam, N.M.; Khan, M.M.M.; Younas, M.W. Characterization and Sensitivity of Botrytis cinerea to Benzimidazole and Succinate Dehydrogenase Inhibitors Fungicides, and Illustration of the Resistance Profile. Australas. Plant Pathol. 2021, 50, 589–601. [Google Scholar] [CrossRef]
- Fan, Q.S.; Lin, H.J.; Hu, Y.J.; Jin, J.; Yan, H.H.; Zhang, R.Q. Biocontrol of Strawberry Botrytis Gray Mold and Prolong the Fruit Shelf-Life by Fumigant Trichoderma spp. Biotechnol. Lett. 2024, 46, 751–766. [Google Scholar] [CrossRef]
- Bardas, G.A.; Veloukas, T.; Koutita, O.; Karaoglanidis, G.S. Multiple Resistance of Botrytis cinerea from Kiwifruit to SDHIs, QoIs and Fungicides of Other Chemical Groups. Pest Manag. Sci. 2010, 66, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Hamada, M.S.; Li, N.; Li, G.Q.; Luo, C.X. Multiple Fungicide Resistance in Botrytis cinerea from Greenhouse Strawberries in Hubei Province, China. Plant Dis. 2017, 101, 601–606. [Google Scholar] [CrossRef]
- Su, Z.; Zhang, X.; Zhao, J.; Wang, W.; Shang, L.; Ma, S.; Adzavon, Y.M.; Lu, F.; Weng, M.; Han, X.; et al. Combination of Suspension Array and Mycelial Growth Assay for Detecting Multiple-Fungicide Resistance in Botrytis cinerea in Hebei Province in China. Plant Dis. 2019, 103, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, T.; Luo, X.; Li, X.; Xia, C.; Zhao, Y.; Ye, X.; Huang, Y.; Gu, X.; Cao, H.; et al. Biocontrol Potential of Myxococcus sp. Strain BS against Bacterial Soft Rot of Calla Lily Caused by Pectobacterium carotovorum. Biol. Control 2018, 126, 36–44. [Google Scholar] [CrossRef]
- Vero, S.; Garmendia, G.; Allori, E.; Sanz, J.M.; Gonda, M.; Alconada, T.; Cavello, I.; Dib, J.R.; Diaz, M.A.; Nally, C.; et al. Microbial Biopesticides: Diversity, Scope, and Mechanisms Involved in Plant Disease Control. Diversity 2023, 15, 457. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Biocontrol of Plant Diseases by Bacillus spp. Physiol. Mol. Plant Pathol. 2023, 126, 102048. [Google Scholar] [CrossRef]
- Fira, D.; Dimkić, I.; Berić, T.; Lozo, J.; Stanković, S. Biological Control of Plant Pathogens by Bacillus Species. J. Biotechnol. 2018, 285, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Serrão, C.P.; Ortega, J.C.G.; Rodrigues, P.C.; de Souza, C.R.B. Bacillus Species as Tools for Biocontrol of Plant Diseases: A Meta-Analysis of Twenty-Two Years of Research, 2000–2021. World J. Microbiol. Biotechnol. 2024, 40, 110. [Google Scholar] [CrossRef]
- Keshmirshekan, A.; de Souza Mesquita, L.M.; Ventura, S.P.M. Biocontrol Manufacturing and Agricultural Applications of Bacillus Velezensis. Trends Biotechnol. 2024, 42, 986–1001. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Wang, L.; Zhai, H.; Dong, H.; Wang, J.; Zhao, Z.; Xu, Y. Bacillus velezensis A-27 as a Potential Biocontrol Agent against Meloidogyne Incognita and Effects on Rhizosphere Communities of Celery in Field. Sci. Rep. 2025, 15, 1057. [Google Scholar] [CrossRef]
- Shi, Y.; Niu, X.; Yang, H.; Chu, M.; Wang, N.; Bao, H.; Zhan, F.; Yang, R.; Lou, K. Optimization of the Fermentation Media and Growth Conditions of Bacillus velezensis BHZ-29 Using a Plackett–Burman Design Experiment Combined with Response Surface Methodology. Front. Microbiol. 2024, 15, 1355369. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Yang, C.; Cai, F.; Cui, L.; Wang, Y. Optimizing Fermentation of Bacillus amyloliquefaciens 3–5 and Determining Disease Suppression and Growth in Cucumber (Cucumis sativus). Biol. Control 2022, 176, 105070. [Google Scholar] [CrossRef]
- He, H.; Li, Y.; Zhang, L.; Ding, Z.; Shi, G. Understanding and Application of Bacillus Nitrogen Regulation: A Synthetic Biology Perspective. J. Adv. Res. 2023, 49, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.; Sarma, S.J. The Impact of Carbon and Nitrogen Catabolite Repression in Microorganisms. Microbiol. Res. 2021, 251, 126831. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Lu, H.; Shi, W.; Zhou, X.; Ren, J.; Zhang, Y.; Ma, R. Optimization of Fermentation and Biocontrol Efficacy of Bacillus atrophaeus XHG-1-3m2. Microorganisms 2024, 12, 2134. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, C.; Jin, M.; Cui, L.; Cai, F.; AO, Y.; Wei, L. Development of Wettable Powder Formulation of Bacillus subtilis 262XY2′. Chin. J. Biol. Control 2022, 38, 414. [Google Scholar] [CrossRef]
- Yunxin, S.; Minggang, L.I.; Zhufeng, S.H.I.; Jiangyuan, Z.; Nan, W.; Zhefen, L.I.; Mingying, Y.; Qibin, C.; Peiwen, Y. Development of Wettable Powder of Bacillus velezensis SH-1471 and Its Control Effect on Tomato Fusarium Wilt. Chin. J. Biol. Control 2023, 39, 904. [Google Scholar] [CrossRef]
- Russi, A.; Granada, C.E.; Schwambach, J. Optimization of Bacillus velezensis S26 Sporulation for Enhanced Biocontrol of Gray Mold and Anthracnose in Postharvest Strawberries. Postharvest Biol. Technol. 2024, 210, 112737. [Google Scholar] [CrossRef]
Code | Variables | Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
A | Rice flour concentration (%) | 1 | 3 | 5 |
B | Ammonium chloride concentration (%) | 3 | 5 | 7 |
C | Disodium phosphate concentration (%) | 1 | 2 | 3 |
Run Numbers | A | B | C | The Number of Viable Bacteria (1 × 109 CFU/mL) |
---|---|---|---|---|
1 | −1 | 1 | 0 | 3.74 |
2 | 0 | 0 | 0 | 4.16 |
3 | 0 | 0 | 0 | 4.19 |
4 | 0 | 1 | −1 | 3.84 |
5 | 0 | 1 | 1 | 3.77 |
6 | −1 | 0 | 1 | 3.90 |
7 | −1 | 0 | −1 | 3.96 |
8 | 1 | 1 | 0 | 4.05 |
9 | 0 | 0 | 0 | 4.18 |
10 | 0 | −1 | −1 | 3.95 |
11 | 1 | 0 | 1 | 4.01 |
12 | 0 | −1 | 1 | 3.89 |
13 | 1 | −1 | 0 | 3.97 |
14 | −1 | −1 | 0 | 4.03 |
15 | 1 | 0 | −1 | 4.02 |
16 | 0 | 0 | 0 | 4.17 |
17 | 0 | 0 | 0 | 4.18 |
Wetting-Agent-to-Dispersant Ratio | Suspension Rate (%) | Wetting Time (s) |
---|---|---|
1:9 | 70.54 ± 1.03 bc | 120.00 ± 1.47 a |
2:8 | 72.07 ± 0.70 b | 112.00 ± 0.71 bc |
3:7 | 75.24 ± 1.46 a | 99.75 ± 1.44 e |
4:6 | 68.35 ± 0.76 c | 115.25 ± 1.32 ab |
5:5 | 69.85 ± 0.79 bc | 108.75 ± 1.18 cd |
6:4 | 68.17 ± 0.90 c | 116.00 ± 2.12 ab |
7:3 | 63.95 ± 0.88 d | 117.25 ± 2.93 ab |
8:2 | 68.07 ± 0.55 c | 115.50 ± 1.44 ab |
9:1 | 64.91 ± 0.79 d | 104.75 ± 1.65 d |
Wetting Agent (%) | Suspension Rate (%) | Wetting Time (s) |
---|---|---|
2 | 64.99 ± 1.44 g | 115.00 ± 1.41 a |
4 | 64.87 ± 0.64 g | 109.00 ± 1.63 b |
6 | 67.71 ± 0.80 f | 109.75 ± 1.38 b |
8 | 70.90 ± 0.93 e | 106.00 ± 1.47 b |
10 | 73.97 ± 0.93 d | 100.75 ± 1.49 c |
12 | 75.08 ± 0.70 cd | 97.00 ± 0.71 cd |
14 | 76.91 ± 0.37 bc | 95.25 ± 0.95 d |
16 | 80.92 ± 0.41 a | 89.25 ± 0.85 e |
18 | 78.33 ± 0.22 b | 85.50 ± 1.19 e |
20 | 78.47 ± 0.72 b | 85.75 ± 1.89 e |
Properties | Description |
---|---|
Spore viability (108 CFU g−1) | 70 |
pH | 6.44 |
Wetting time (s) | 86.33 |
Suspension rate (%) | 78.55 |
Treatment | 7 Days After Spraying | 14 Days After Spraying | ||
---|---|---|---|---|
Disease Incidence (%) | Control Efficiency (%) | Disease Incidence (%) | Control Efficiency (%) | |
1 | 12.70 ± 0.57 b | 50.58 b | 14.60 b | 58.29 c |
2 | 11.40 ± 0.26 bc | 55.64 ab | 12.00 b | 65.14 b |
3 | 9.20 ± 0.71 c | 64.20 a | 9.40 c | 73.14 a |
4 | 11.00 ± 1.67 bc | 57.20 ab | 12.70 b | 63.71 bc |
5 | 25.70 ± 0.38 a | - | 35.00 a | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, J.; Pi, N.; He, F.; Zeng, Y.; Weng, Q.; Luo, J. Optimization of the Fermentation and Preparation of the Wettable Powder Formulation of Bacillus velezensis F0b. Microorganisms 2025, 13, 560. https://doi.org/10.3390/microorganisms13030560
Wen J, Pi N, He F, Zeng Y, Weng Q, Luo J. Optimization of the Fermentation and Preparation of the Wettable Powder Formulation of Bacillus velezensis F0b. Microorganisms. 2025; 13(3):560. https://doi.org/10.3390/microorganisms13030560
Chicago/Turabian StyleWen, Jiaqi, Nana Pi, Fengting He, Yuhao Zeng, Qunfang Weng, and Jianjun Luo. 2025. "Optimization of the Fermentation and Preparation of the Wettable Powder Formulation of Bacillus velezensis F0b" Microorganisms 13, no. 3: 560. https://doi.org/10.3390/microorganisms13030560
APA StyleWen, J., Pi, N., He, F., Zeng, Y., Weng, Q., & Luo, J. (2025). Optimization of the Fermentation and Preparation of the Wettable Powder Formulation of Bacillus velezensis F0b. Microorganisms, 13(3), 560. https://doi.org/10.3390/microorganisms13030560