Global Dermatophyte Infections Linked to Human and Animal Health: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microsporum canis (Order: Onygenales; Family: Arthrodermataceae)
3.2. Nannizia gypsea (Order: Onygenales; Family: Arthrodermataceae)
3.3. Trichophyton verrucosum (Order: Onygenales; Family: Arthrodermataceae)
3.4. Trichophyton mentagrophytes Complex (Order: Onygenales; Family: Arthrodermataceae)
3.4.1. Trichophyton mentagrophytes var. erinacei
3.4.2. Trichophyton mentagrophytes var. benhamiae
3.5. Other Trichophyton spp.
3.6. Diagnostic Challenge of Dermatophyte Zoonoses
3.7. Antifungal Resistance (In Vitro and Clinical Resistance)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, C.; Ahmed, S.A.; Deng, S.; Zhang, L.; Zoll, J.; Al-Hatmi, A.M.S.; Meis, J.F.; Thakur, R.; Kang, Y.; de Hoog, G.S. Detection of Emerging Genotypes in Trichophyton mentagrophytes Species Complex: A Proposal for Handling Biodiversity in Dermatophytes. Front. Microbiol. 2022, 13, 960190. [Google Scholar] [CrossRef] [PubMed]
- Chermette, R.; Ferreiro, L.; Guillot, J. Dermatophytoses in Animals. Mycopathologia 2008, 166, 385–405. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Kong, X.; Ahmed, S.A.; Thakur, R.; Chowdhary, A.; Nenoff, P.; Uhrlass, S.; Verma, S.B.; Meis, J.F.; Kandemir, H.; et al. Taxonomy of the Trichophyton mentagrophytes/T. interdigitale Species Complex Harboring the Highly Virulent, Multiresistant Genotype T. indotineae. Mycopathologia 2021, 186, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Chiriac, A.; Diaconeasa, A.; Voicu, C.; Ivaniciuc, M.; Miulescu, R.; Chiriac, A.E.; Nenoff, P.; Wollina, U. Kerion Celsi in Infants and Children-A Narrative Review 2010-2023. Mycoses 2024, 67, e13675. [Google Scholar] [CrossRef]
- Morrell, J.; Stratman, E. Primary Care and Specialty Care Delays in Diagnosing Trichophyton verrucosum Infection Related to Cattle Exposure. J. Agromedicine 2011, 16, 244–250. [Google Scholar] [CrossRef]
- U.S. Centers for Disease Control and Prevention One Health and Fungal Diseases. Available online: https://www.cdc.gov/fungal/about/one-health.html (accessed on 28 January 2025).
- Day, M.J. Human-Animal Health Interactions: The Role of One Health. Am. Fam. Physician 2016, 93, 344–346. [Google Scholar]
- Langfeldt, A.; Gold, J.A.W.; Chiller, T. Emerging Fungal Infections: From the Fields to the Clinic, Resistant Aspergillus fumigatus and Dermatophyte Species: A One Health Perspective on an Urgent Public Health Problem. Curr. Clin. Microbiol. Rep. 2022, 9, 46–51. [Google Scholar] [CrossRef]
- Kottferová, L.; Molnár, L.; Major, P.; Sesztáková, E.; Kuzyšinová, K.; Vrabec, V.; Kottferová, J. Hedgehog Dermatophytosis: Understanding Trichophyton erinacei Infection in Pet Hedgehogs and Its Implications for Human Health. J. Fungi 2023, 9, 1132. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Segal, E.; Elad, D. Human and Zoonotic Dermatophytoses: Epidemiological Aspects. Front. Microbiol. 2021, 12, 713532. [Google Scholar] [CrossRef]
- de Hoog, G.S.; Dukik, K.; Monod, M.; Packeu, A.; Stubbe, D.; Hendrickx, M.; Kupsch, C.; Stielow, J.B.; Freeke, J.; Göker, M.; et al. Toward a Novel Multilocus Phylogenetic Taxonomy for the Dermatophytes. Mycopathologia 2017, 182, 5–31. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Anzawa, K.; Mochizuki, T. Molecular Epidemiology of Microsporum canis Isolated from Japanese Cats and Dogs, and from Pet Owners by Multilocus Microsatellite Typing Fragment Analysis. Jpn. J. Infect. Dis. 2022, 75, 105–113. [Google Scholar] [CrossRef] [PubMed]
- da Costa, F.V.A.; Farias, M.R.; Bier, D.; de Andrade, C.P.; de Castro, L.A.; da Silva, S.C.; Ferreiro, L. Genetic Variability in Microsporum canis Isolated from Cats, Dogs and Humans in Brazil. Mycoses 2013, 56, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Liang, T.; Wu, W.; Al-Odaini, N.; Pan, K.; Huang, L.; Huang, G.; Tang, L.; Li, X.; He, S.; et al. The Epidemiology of Tinea Capitis in Guangxi Province, China. Mycopathologia 2023, 188, 489–496. [Google Scholar] [CrossRef]
- Courtellemont, L.; Chevrier, S.; Degeilh, B.; Belaz, S.; Gangneux, J.P.; Robert-Gangneux, F. Epidemiology of Trichophyton verrucosum Infection in Rennes University Hospital, France: A 12-Year Retrospective Study. Med. Mycol. 2017, 55, 720–724. [Google Scholar] [CrossRef]
- Kheffache, H.; Seklaoui, N.; Bouchara, J.P.; Boukhemza-Zemmouri, N.; Boukhemza, M. Tinea Capitis at the University Hospital of Tizi-Ouzou, Algeria, and First Isolation of Trichophyton tonsurans. J. Mycol. Med. 2020, 30, 101040. [Google Scholar] [CrossRef]
- Gnat, S.; Łagowski, D.; Nowakiewicz, A.; Zięba, P. Tinea Corporis by Microsporum canis in Mycological Laboratory Staff: Unexpected Results of Epidemiological Investigation. Mycoses 2018, 61, 945–953. [Google Scholar] [CrossRef]
- Aboueisha, A.M.; El-Mahallawy, H. Public Health Significance of Dermatophytes in Ismailia and Port Said Provinces, Egypt. Med. Mycol. J. 2013, 54, 123–129. [Google Scholar] [CrossRef]
- Jarjees, K.I.; Issa, N.A. First Study on Molecular Epidemiology of Dermatophytosis in Cats, Dogs, and Their Companions in the Kurdistan Region of Iraq. Vet. World 2022, 15, 2971–2978. [Google Scholar] [CrossRef]
- Piorunek, M.; Kubisiak-Rzepczyk, H.; Dańczak-Pazdrowska, A.; Trafas, T.; Walkowiak, J. Superficial Zoonotic Mycoses in Humans Associated with Cats. J. Fungi 2024, 10, 244. [Google Scholar] [CrossRef]
- Gamage, H.; Sivanesan, P.; Hipler, U.C.; Elsner, P.; Wiegand, C. Superficial Fungal Infections in the Department of Dermatology, University Hospital Jena: A 7-Year Retrospective Study on 4556 Samples from 2007 to 2013. Mycoses 2020, 63, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Wang, S.; Guo, L.; Lv, S.; Shan, B.; Liu, Z.; Li, F. Pediatric Tinea Capitis in Jilin Province: Analyzing Previous Results from a New Perspective. Mycopathologia 2023, 188, 515–522. [Google Scholar] [CrossRef]
- Arabatzis, M.; Kyprianou, M.; Velegraki, A.; Makri, A.; Voyatzi, A. Microsporum canis Antifungal Susceptibilities: Concerns Regarding Their Clinical Predictability. Int. J. Antimicrob. Agents 2010, 36, 385–386. [Google Scholar] [CrossRef]
- Oanţà, A.; Irimie, M. Tinea on a Tattoo. Acta Dermatovenerologica Croat. 2016, 24, 223–224. [Google Scholar]
- Takahashi, C.; Asakura, R.; Chaya, A.; Ota, M.; Harada, K.; Inukai, T.; Nakamura, S.; Hata, Y.; Watanabe-Okada, E. Identification of Familial Infections Using Multilocus Microsatellite Typing in Tinea Corporis Due to Microsporum canis: A Case Report. Med. Mycol. J. 2024, 65, 1–5. [Google Scholar] [CrossRef]
- Dogo, J.; Afegbua, S.L.; Dung, E.C. Prevalence of Tinea Capitis among School Children in Nok Community of Kaduna State, Nigeria. J. Pathog. 2016, 2016, 9601717. [Google Scholar] [CrossRef] [PubMed]
- Zhi, H.L.; Xia, X.J.; Shen, H.; Lv, W.W.; Zhong, Y.; Sang, B.; Li, Q.P.; Liu, Z.H. Trichoscopy for Early Diagnosis and Follow-up of Pet-Related Neonatal Tinea Capitis. Mycopathologia 2023, 188, 571–575. [Google Scholar] [CrossRef]
- Watanabe, M.; Tsuchihashi, H.; Ogawa, T.; Ogawa, Y.; Komiyama, E.; Hirasawa, Y.; Hiruma, M.; Kano, R.; Ikeda, S. Microsporum canis Infection in a Cat Breeder Family and an Investigation of Their Breeding Cats. Med. Mycol. J. 2022, 63, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Xiao, Y.; Ran, Y.; Kang, D.; Dai, Y.; Lama, J. Microsporum canis Infection in Three Familial Cases with Tinea Capitis and Tinea Corporis. Mycopathologia 2013, 176, 259–265. [Google Scholar] [CrossRef]
- Cafarchia, C.; Weigl, S.; Figueredo, L.A.; Otranto, D. Molecular Identification and Phylogenesis of Dermatophytes Isolated from Rabbit Farms and Rabbit Farm Workers. Vet. Microbiol. 2012, 154, 395–402. [Google Scholar] [CrossRef]
- Khiewplueang, K.; Leeyaphan, C.; Bunyaratavej, S.; Jirawattanadon, P.; Saengthong-aram, P.; Matthapan, L.; Prasong, W.; Panyawong, C.; Plengpanich, A. Tinea Faciei Clinical Characteristics, Causative Agents, Treatments and Outcomes; a Retrospective Study in Thailand. Mycoses 2024, 67, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, T.; Kaneko, M.; Makimura, K. Cluster Analysis of Microsporum canis Isolated from a Patient with Tinea Corporis and an Infected Cat Based on the DNA Sequences of Nuclear Ribosomal Internal Transcribed Spacer 1. Mycoses 2011, 54, e867–e869. [Google Scholar] [CrossRef]
- Brosh-Nissimov, T.; Ben-Ami, R.; Astman, N.; Malin, A.; Baruch, Y.; Galor, I. An Outbreak of Microsporum canis Infection at a Military Base Associated with Stray Cat Exposure and Person-to-Person Transmission. Mycoses 2018, 61, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Hariu, M.; Watanabe, Y.; Shimada, D.; Imai, H.; Takano, K.; Kamioka, Y.; Seki, M. A Household Microsporum canis Dermatophytosis Suggested by Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry Analysis. Am. J. Case Rep. 2021, 22, e930713-1–e930713-4. [Google Scholar] [CrossRef]
- Limphoka, P.; Bunyaratavej, S.; Leeyaphan, C. Fingernail Onychomycosis Caused by Microsporum canis in a Teenager. Pediatr. Dermatol. 2021, 38, 524–525. [Google Scholar] [CrossRef]
- Sanguansook, P.; Tuangpermsub, S.; Leelakarnsakul, B.; Phaisansomsuk, S.; Hunprasit, V.; Del Río, L.; Niyomtham, W.; Prapasarakul, N.; Sukhumavasi, W. Zoonotic Enteric Nematodes and Dermatophytes in Cat Cafés: An Investigation in the Bangkok Metropolitan Area, Thailand. Vet. Sci. 2024, 11, 358. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Maeda, K.Y.; Martínez-Hernández, F.; Arenas, R.; Boeta-Ángeles, L.; Martínez-Chavarría, L.C.; Rodríguez-Colín, S.F.; Xicohtencatl-Cortes, J.; Hernández-Castro, R. Tinea Corporis Intrafamilial Infection in Pets Due to Microsporum canis. Rev. Inst. Med. Trop. Sao Paulo 2024, 66, 788–789. [Google Scholar] [CrossRef] [PubMed]
- Capoor, M.R.; Sharma, S.; Goenka, S.; Das, S.; Rudramurthy, S.M.; Khunger, N.; kamra, N. Tinea Capitis Caused by Microsporum canis: A Case Study of Three Family Members in India, a Non-Endemic Region. Indian J. Med. Microbiol. 2024, 50, 100621. [Google Scholar] [CrossRef]
- Allizond, V.; Tullio, V.; Cuffini, A.M.; Roana, J.; Scalas, D.; Marra, E.S.; Piersigilli, G.; Merlino, C.; Mandras, N.; Banche, G. Advances in Microbiology, Infectious Diseases and Public Health: Fungal Occurrence in the Hair and Skin of Symptomatic Pets in Turin, Italy. Adv. Exp. Med. Biol. 2016, 1, 55–62. [Google Scholar] [CrossRef]
- Dong, C.; Angus, J.; Scarampella, F.; Neradilek, M. Evaluation of Dermoscopy in the Diagnosis of Naturally Occurring Dermatophytosis in Cats. Vet. Dermatol. 2016, 27, 275-e65. [Google Scholar] [CrossRef]
- Spergser, J.; Neuhuber, T.; Haupt, H.; Kaltenegger, G.; Wittek, T. Agreement between Clinical Assessment and Laboratory Diagnosis of Ringworm in Calves at Auction Markets. Animals 2024, 14, 390. [Google Scholar] [CrossRef]
- Shokri, H.; Khosravi, A.R. An Epidemiological Study of Animals Dermatomycoses in Iran. J. Mycol. Med. 2016, 26, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.; Garcês, A.; Silva, A.; Brilhante-Simões, P.; Martins, Â.; Cardoso, L.; Duarte, E.L.; Coelho, A.C. Dermatophytosis in Companion Animals in Portugal: A Comprehensive Epidemiological Retrospective Study of 12 Years (2012–2023). Microorganisms 2024, 12, 1727. [Google Scholar] [CrossRef]
- Minnat, T.R.; Khalf, J.M. Feline Dermatophytosis: Epidemiological, Clinical and Laboratory Features in Baghdad Governorate, Iraq. Biochem. Cell. Arch. 2019, 19, 4025–4033. [Google Scholar] [CrossRef]
- Drouot, S.; Mignon, B.; Fratti, M.; Roosje, P.; Monod, M. Pets as the Main Source of Two Zoonotic Species of the Trichophyton mentagrophytes Complex in Switzerland, Arthroderma vanbreuseghemii and Arthroderma benhamiae. Vet. Dermatol. 2009, 20, 13–18. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Nobre, M.; Negri Mueller, E.; Teixeira Tillmann, M.; da Silva Rosa, C.; Normanton Guim, T.; Vives, P.; Fernandes, M.; Martins Madrid, I.; Gevehr Fernandes, C.; Araújo Meireles, M.C. Disease Progression of Dermatophytic Pseudomycetoma in a Persian Cat. Rev. Iberoam. Micol. 2010, 27, 98–100. [Google Scholar] [CrossRef]
- Cho, J.; Park, C.; Park, J.; Yoon, J.S. Case Report: Dermatophytic Pseudomycetoma in a Domestic Korean Short Hair Cat Treated with Intralesional Injection of Amphotericin B and Oral Terbinafine Administration. Front. Vet. Sci. 2024, 11, 1–5. [Google Scholar] [CrossRef]
- Duangkaew, L.; Larsuprom, L.; Kasondorkbua, C.; Chen, C.; Chindamporn, A. Cutaneous Blastomycosis and Dermatophytic Pseudomycetoma in a Persian Cat from Bangkok, Thailand. Med. Mycol. Case Rep. 2017, 15, 12–15. [Google Scholar] [CrossRef]
- Bianchi, M.V.; Laisse, C.J.M.; Vargas, T.P.; Wouters, F.; Boabaid, F.M.; Pavarini, S.P.; Ferreiro, L.; Driemeier, D. Intra-Abdominal Fungal Pseudomycetoma in Two Cats. Rev. Iberoam. Micol. 2017, 34, 112–115. [Google Scholar] [CrossRef]
- Bernhardt, A.; Von Bomhard, W.; Antweiler, E.; Tintelnot, K. Molecular Identification of Fungal Pathogens in Nodular Skin Lesions of Cats. Med. Mycol. 2015, 53, 132–144. [Google Scholar] [CrossRef]
- Hobi, S.; Tam, W.Y.J.; Tse, M.; Nekouei, O.; Chai, Y.; Hill, F.I.; Cheung, E.; Botes, W.; Saulnier-Troff, F.; McDermott, C.T.; et al. Microsporum canis Causes Cutaneous and Extracutaneous Feline Dermatophytic Pseudomycetomas: Molecular Identification and Clinicopathological Characteristics. J. Fungi 2024, 10, 576. [Google Scholar] [CrossRef] [PubMed]
- Kano, R.; Edamura, K.; Yumikura, H.; Maruyama, H.; Asano, K.; Tanaka, S.; Hasegawa, A. Confirmed Case of Feline Mycetoma Due to Microsporum canis. Mycoses 2009, 52, 80–83. [Google Scholar] [CrossRef]
- da Cunha, M.M.; Capote-Bonato, F.; Capoci, I.R.G.; Bonato, D.V.; Ghizzi, L.G.; Paiva-Lima, P.; Baeza, L.C.; Svidzinski, T.I.E. Epidemiological Investigation and Molecular Typing of Dermatophytosis Caused by Microsporum canis in Dogs and Cats. Prev. Vet. Med. 2019, 167, 39–45. [Google Scholar] [CrossRef]
- Hnilica, K.A.; Medleau, L. Evaluation of Topically Applied Enilconazole for the Treatment of Dermatophytosis in a Persian Cattery. Vet. Dermatol. 2002, 13, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Seker, E.; Dogan, N. Isolation of Dermatophytes from Dogs and Cats with Suspected Dermatophytosis in Western Turkey. Prev. Vet. Med. 2011, 98, 46–51. [Google Scholar] [CrossRef]
- Long, S.; Carveth, H.; Chang, Y.-M.; O’Neill, D.; Bond, R. Isolation of Dermatophytes from Dogs and Cats in the South of England between 1991 and 2017. Vet. Rec. 2020, 187, e87. [Google Scholar] [CrossRef] [PubMed]
- Adesiji, Y.O.; Oluwayelu, D.O.; Aiyedun, J.O. Prevalence and Risk Factors Associated with Canine Dermatophytoses among Dogs in Kwara and Osun States, Nigeria. African J. Clin. Exp. Microbiol. 2023, 24, 195–203. [Google Scholar] [CrossRef]
- Jańczak, D.; Górecki, P.; Maj, A.K. PCR-Based Methods in Detection and Identification of Dermatophytes in Dogs and Cats with Suspected Dermatophytosis in 2021 in Poland. Pol. J. Vet. Sci. 2023, 26, 629–634. [Google Scholar] [CrossRef]
- Nikaein, D.; Yaghuti, P.; Sharifzadeh, A.; Khosravi, A.; Balal, A. Descriptive Epidemiology of Dermatophytosis in Rodents. Vet. Med. Sci. 2023, 9, 167–173. [Google Scholar] [CrossRef]
- Cafarchia, C.; Camarda, A.; Coccioli, C.; Figueredo, L.A.; Circella, E.; Danesi, P.; Capelli, G.; Otranto, D. Epidemiology and Risk Factors for Dermatophytoses in Rabbit Farms. Med. Mycol. 2010, 48, 975–980. [Google Scholar] [CrossRef]
- Li, D.-J.; Zhou, Y.-F.; Jing-Bo, L.; Mingliang, Z.; Yu-Mei, C.; Zeng-Min, M. Prevalence Investigation of Dermatophytes in Rabbits in Qingdao Region, China. J. Anim. Vet. Adv. 2012, 11, 883–885. [Google Scholar]
- Maurice, M.N.; Kazeem, H.M.; Kwanashie, C.N.; Maurice, N.A.; Ngbede, E.O.; Adamu, H.N.; Mshelia, W.P.; Edeh, R.E. Equine Dermatophytosis: A Survey of Its Occurrence and Species Distribution among Horses in Kaduna State, Nigeria. Scientifica 2016, 2016, 6280646. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, J.M.; Minnat, T.R.; Hussein, R.A. Equine Dermatophytosis: Clinical, Epidemiological and Species Distribution among Horses of Equestrian Club in Baghdad Governorate, Iraq. Vet. Pract. 2020, 21, 457–463. [Google Scholar]
- El Damaty, H.M.; Tartor, Y.H.; Mahmmod, Y.S. Species Identification, Strain Differentiation, and Antifungal Susceptibility of Dermatophyte Species Isolated From Clinically Infected Arabian Horses. J. Equine Vet. Sci. 2017, 59, 26–33. [Google Scholar] [CrossRef]
- Ahdy, A.M.; Sayed-Ahmed, M.Z.; Younis, E.E.; Baraka, H.N.; El-khodery, S.A. Prevalence and Potential Risk Factors of Dermatophytosis in Arabian Horses in Egypt. J. Equine Vet. Sci. 2016, 37, 71–76. [Google Scholar] [CrossRef]
- Ogbonna, A.I.; Ogbonna, C.I.C.; Ogueri, S.C.; Nwadiaro, R.; Ishaku, H.L. Superficial Fungal Infections amongst Some Occupational Groups and HIV/AIDS Patients in Nigeria. Asian J. Microbiol. Biotechnol. Environ. Sci. 2014, 16, 7–10. [Google Scholar]
- Romano, C.; Massai, L.; Gallo, A.; Fimiani, M. Microsporum gypseum Infection in the Siena Area in 2005-2006. Mycoses 2009, 52, 67–71. [Google Scholar] [CrossRef]
- Starace, M.; Carpanese, M.A.; Alessandrini, A.; Piraccini, B.M.; Patrizi, A.; Neri, I. Tinea Corporis Incognito Due to Microsporum gypseum: Report of Eight Cases in Children. Pediatr. Dermatol. 2021, 38, 652–654. [Google Scholar] [CrossRef]
- Tobeigei, F.H.; Joseph, M.R.; Al-Hakami, A.; Hamid, M.E. Microsporum gypseum Infection Among Two Related Families with a Zoonotic Aspect: A Prospective Case Series. Cureus 2023, 15, e51402. [Google Scholar] [CrossRef]
- Vanam, H.P.; Mohanram, K.; Reddy, K.S.R.; Rengasamy, M.; Rudramurthy, S.M. Naive Tinea Corporis et Cruris in an Immunocompetent Adult Caused by a Geophile Nannizzia gypsea Susceptible to Terbinafine–Rarity in the Current Scenario of Dermatophytosis in India. Access Microbiol. 2019, 1, e000022. [Google Scholar] [CrossRef]
- Wei, S.; Wang, H.; Li, A.; Yuan, C. Kerion Celsi Caused by Microsporum gypseum in a Chinese Child, a Case Report. Medicine 2022, 101, E28936. [Google Scholar] [CrossRef]
- Agnetti, F.; Righi, C.; Scoccia, E.; Felici, A.; Crotti, S.; Moretta, I.; Moretti, A.; Maresca, C.; Troiani, L.; Papini, M. Trichophyton verrucosum Infection in Cattle Farms of Umbria (Central Italy) and Transmission to Humans. Mycoses 2014, 57, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Cruciani, D.; Papini, M.; Broccatelli, S.; Agnetti, F.; Spina, S.; Natalini, Y.; Crotti, S. Presumptive Zoonotic Kerion by Nannizzia gypsea: Case Report. Front. Vet. Sci. 2021, 8, 1–5. [Google Scholar] [CrossRef]
- Demitsu, T.; Yamada, T.; Umemoto, N.; Kakurai, M.; Maeda, T.; Harada, K.; Kawase, M. Disseminated Dermatophytosis Due to Nannizzia gypsea (Microsporum gypseum) in an Elderly Patient. J. Dermatol. 2019, 46, e169–e170. [Google Scholar] [CrossRef]
- Gergovska, M.; Hitova, M.; Manuelyan, K.; Kazandjieva, J. Acute Inflammatory Tinea Manuum Caused by Nannizzia gypsea Transmitted by an African Pygmy Hedgehog. J. Eur. Acad. Dermatology Venereol. 2024, 38, e767–e768. [Google Scholar] [CrossRef]
- Hackworth, C.E.; Eshar, D.; Nau, M.; Bagladi-Swanson, M.; Andrews, G.A.; Carpenter, J.W. Diagnosis and Successful Treatment of a Potentially Zoonotic Dermatophytosis Caused by Microsporum gypseum in a Zoo-Housed North American Porcupine (Erethizon Dorsatum). J. Zoo Wildl. Med. 2017, 48, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Minnat, T.R. Epidemiological, Clinical and Laboratory Study of Canine Dermatophytosis in Baghdad Governorate, Iraq. Iraqi J. Vet. Med. 2019, 43, 183–196. [Google Scholar] [CrossRef]
- Neves, J.J.A.; Paulino, A.O.; Vieira, R.G.; Nishida, E.K.; Coutinho, S.D.A. The Presence of Dermatophytes in Infected Pets and Their Household Environment. Arq. Bras. Med. Vet. Zootec. 2018, 70, 1747–1753. [Google Scholar] [CrossRef]
- Nikkholgh, S.; Pchelin, I.M.; Zarei Mahmoudabadi, A.; Shabanzadeh-Bardar, M.; Gharaghani, M.; Sharifzadeh, A.; Mokhtari Hooyeh, M.; Mohammadi, R.; Nouripour-Sisakht, S.; Katiraee, F.; et al. Sheep Serve as a Reservoir of Trichophyton mentagrophytes Genotype V Infection. Med. Mycol. 2023, 61, myad066. [Google Scholar] [CrossRef]
- Chah, K.F.; Majiagbe, K.A.; Kazeem, H.M.; Ezeanyika, O.; Agbo, I.C. Dermatophytes from Skin Lesions of Domestic Animals in Nsukka, Enugu State, Nigeria. Vet. Dermatol. 2012, 23, 522–525. [Google Scholar] [CrossRef]
- Abd-Elmegeed, M.; El-Mekkawi, M.; El-Diasty, E.; Fawzi, E. Dermatophytosis among Ruminants in Egypt: The Infection Rate, Identification and Comparison between Microscopic, Cultural and Molecular Methods. Zagazig Vet. J. 2020, 48, 116–127. [Google Scholar] [CrossRef]
- Le Barzic, C.; Cmokova, A.; Denaes, C.; Arné, P.; Hubka, V.; Guillot, J.; Risco-Castillo, V. Detection and Control of Dermatophytosis in Wild European Hedgehogs (Erinaceus europaeus) Admitted to a French Wildlife Rehabilitation Centre. J. Fungi 2021, 7, 74. [Google Scholar] [CrossRef]
- Gnat, S.; Łagowski, D.; Dyląg, M.; Nowakiewicz, A. European Hedgehogs (Erinaceus europaeus L.) as a Reservoir of Dermatophytes in Poland. Microb. Ecol. 2022, 84, 363–375. [Google Scholar] [CrossRef]
- Guebeli, A.; Honigmann, P.; Mertz, K.; Willi, N.; Claas, G.J.; Keller, M. A Rare Case of Cutaneous Trichophyton verrucosum of the Forearm in a 51-Year-Old Cattle Farmer. J. Hand Surg. Am. 2021, 46, 1128.e1–1128.e4. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhan, P.; Al-Hatmi, A.M.S.; Shi, G.; Wei, Y.; van den Ende, A.H.G.G.; Meis, J.F.; Lu, H.; de Hoog, G.S. Extensive Tinea Capitis and Corporis in a Child Caused by Trichophyton verrucosum. J. Mycol. Med. 2019, 29, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Łagowski, D.; Gnat, S.; Nowakiewicz, A.; Osińska, M.; Trościańczyk, A.; Zięba, P. In Search of the Source of Dermatophytosis: Epidemiological Analysis of Trichophyton verrucosum Infection in Llamas and the Breeder (Case Report). Zoonoses Public Health 2019, 66, 982–989. [Google Scholar] [CrossRef]
- Özkanlar, Y.; Aktas, M.S.; Kirecci, E. Mycozoonosis Associated with Ringworm of Calves in Erzurum Province, Turkey. Kafkas Univ. Vet. Fak. Derg. 2009, 15, 141–144. [Google Scholar] [CrossRef]
- Aghamirian, M.R.; Ghiasian, S.A. Dermatophytes as a Cause of Epizoonoses in Dairy Cattle and Humans in Iran: Epidemiological and Clinical Aspects. Mycoses 2011, 54, e52–e56. [Google Scholar] [CrossRef]
- Gnat, S.; Łagowski, D.; Nowakiewicz, A.; Trościańczyk, A.; Zięba, P. Infection of Trichophyton verrucosum in Cattle Breeders, Poland: A 40-Year Retrospective Study on the Genomic Variability of Strains. Mycoses 2018, 61, 681–690. [Google Scholar] [CrossRef]
- Tartor, Y.H.; El-Neshwy, W.M.; Merwad, A.M.A.; Abo El-Maati, M.F.; Mohamed, R.E.; Dahshan, H.M.; Mahmoud, H.I. Ringworm in Calves: Risk Factors, Improved Molecular Diagnosis, and Therapeutic Efficacy of an Aloe Vera Gel Extract. BMC Vet. Res. 2020, 16, 421. [Google Scholar] [CrossRef]
- Akbarmehr, J. The Prevalence of Cattle Ringworm in Native Dairy Farms of Sarab City (East Azarbayjan Province), Iran. African J. Microbiol. Res. 2011, 5, 1268–1271. [Google Scholar] [CrossRef]
- Papini, R.; Nardoni, S.; Fanelli, A.; Mancianti, F. High Infection Rate of Trichophyton verrucosum in Calves from Central Italy. Zoonoses Public Health 2009, 56, 59–64. [Google Scholar] [CrossRef]
- Çam, Y.; Koç, A.N.; Silici, S.; Günes, V.; Buldu, H.; Onmaz, A.C.; Kasap, F.F. Treatment of Dermatophytosis in Young Cattle with Propolis and Whitfield’s Ointment. Vet. Rec. 2009, 165, 57–58. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, M.; Cinar, M.; Ocal, N.; Yagci, B.B.; Askar, S. Prevalence of Clinical Dermatophytosis and Oxidative Stress in Cattle. J. Anim. Vet. Adv. 2010, 9, 1978–1982. [Google Scholar] [CrossRef]
- Dalis, J.S.; Kazeem, H.M.; Kwaga, J.K.P.; Kwanashie, C.N. Prevalence and Distribution of Dermatophytosis Lesions on Cattle in Plateau State, Nigeria. Vet. World 2019, 12, 1484–1490. [Google Scholar] [CrossRef]
- Tresamol, P.V.; Saseendranath, M.R.; Subramanian, H.; Pillai, U.N.; Mini, M.; Ajithkumar, S. Identification of Dermatophilus Congolensis from Lower Leg Dermatitis of Cattle in Kerala, India. OIE Rev. Sci. Tech. 2015, 34, 849–854. [Google Scholar] [CrossRef]
- Begum, J.; Kumar, R. Prevalence of Dermatophytosis in Animals and Antifungal Susceptibility Testing of Isolated Trichophyton and Microsporum Species. Trop. Anim. Health Prod. 2021, 53, 3. [Google Scholar] [CrossRef]
- Duarte, E.R.; Oliveiraa, N.J.F.; Medeirosb, A.O.; Rosa, C.A.; Facury-Filho, E.J. Yeasts Isolated from Beef Heifers with Ringworm Levaduras Aisladas de Terneras de Carne Con Dermatofitosis. Arch. Med. Vet. 2013, 45, 71–75. [Google Scholar] [CrossRef]
- Almuzaini, A.M.; Osman, S.A.; Saeed, E.M.A. An Outbreak of Dermatophytosis in Camels (Camelus dromedaríus) at Qassim Region, Central of Saudi Arabia. J. Appl. Anim. Res. 2016, 44, 126–129. [Google Scholar] [CrossRef]
- Tuteja, F.C.; Patil, N.V.; Narnaware, S.D.; Nagarajan, G.; Dahiya, S.S. Camel Dermal Mycoses Caused by Dermatophytes. J. Camel Pract. Res. 2013, 20, 157–165. [Google Scholar]
- Dewal, V.S.; Chahar, A.; Tuteja, F.C.; Tanwar, R.K.; Singh, A.P.; Rathore, N.S. Savita Dermatophytosis in Dromedary Camel (Camelus dromedarius). Vet. Pract. 2017, 18, 233–236. [Google Scholar]
- Švarcová, M.; Větrovský, T.; Kolařík, M.; Hubka, V. Defining the Relationship between Phylogeny, Clinical Manifestation, and Phenotype for Trichophyton mentagrophytes/interdigitale Complex; a Literature Review and Taxonomic Recommendations. Med. Mycol. 2023, 61, myad042. [Google Scholar] [CrossRef]
- Nenoff, P.; Verma, S.B.; Vasani, R.; Burmester, A.; Hipler, U.-C.; Wittig, F.; Krüger, C.; Nenoff, K.; Wiegand, C.; Saraswat, A.; et al. The Current Indian Epidemic of Superficial Dermatophytosis Due to Trichophyton mentagrophytes—A Molecular Study. Mycoses 2019, 62, 336–356. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.; Ahmadi, B.; Tabatabaeifar, S.N.; Hedayati, M.T.; Javidnia, J.; Taghizadeh Armaki, M.; Shokoohi, G.R.; Rezaei-Matehkolaei, A. Familial Cases of Trichophyton benhamiae Infection Transmitted from a Guinea Pig in Iran. Mycopathologia 2021, 186, 119–125. [Google Scholar] [CrossRef]
- Berlin, M.; Kupsch, C.; Ritter, L.; Stoelcker, B.; Heusinger, A.; Gräser, Y. German-Wide Analysis of the Prevalence and the Propagation Factors of the Zoonotic Dermatophyte Trichophyton benhamiae. J. Fungi 2020, 6, 161. [Google Scholar] [CrossRef]
- Borges-Costa, J.; Martins, M.d.L. Trichophyton erinacei Skin Infection after Recreational Exposure to an Elephant in Southeast Asia. Pathog. Glob. Health 2014, 108, 58–59. [Google Scholar] [CrossRef]
- Budihardja, D.; Freund, V.; Mayser, P. Widespread Erosive Tinea Corporis by Arthroderma benhamiae in a Renal Transplant Recipient: Case Report. Mycoses 2010, 53, 530–532. [Google Scholar] [CrossRef]
- Choi, E.; Huang, J.; Chew, K.L.; Jaffar, H.; Tan, C. Pustular Tinea Manuum from Trichophyton erinacei Infection. JAAD Case Rep. 2018, 4, 518–520. [Google Scholar] [CrossRef]
- Chollet, A.; Wespi, B.; Roosje, P.; Unger, L.; Venner, M.; Goepfert, C.; Monod, M. An Outbreak of Arthroderma vanbreuseghemii Dermatophytosis at a Veterinary School Associated with an Infected Horse. Mycoses 2015, 58, 233–238. [Google Scholar] [CrossRef]
- Concha, M.; Nicklas, C.; Balcells, E.; Guzmán, A.M.; Poggi, H.; León, E.; Fich, F. The First Case of Tinea Faciei Caused by Trichophyton mentagrophytes var. erinacei Isolated in Chile. Int. J. Dermatol. 2012, 51, 283–285. [Google Scholar] [CrossRef]
- Cukierman, E.; Camargo, T.Z.S.; Millan, L.P.B.; Freire, M.R.d.M.; Carneiro, L.F.M.; Waksman, R.D. Alopecia and Pet: A Case Report. Einstein 2022, 20, eRC6881. [Google Scholar] [CrossRef] [PubMed]
- Czaika, V.A. Misdiagnosed Zoophile Tinea Faciei and Tinea Corporis Effectively Treated with Isoconazole Nitrate and Diflucortolone Valerate Combination Therapy. Mycoses 2013, 56, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Czaika, V.A. Effective Treatment of Tinea Corporis Due to Trichophyton mentagrophytes with Combined Isoconazole Nitrate and Diflucortolone Valerate Therapy. Mycoses 2013, 56, 30–32. [Google Scholar] [CrossRef]
- de Freitas, R.S.; de Freitas, T.H.P.; Siqueira, L.P.M.; Gimenes, V.M.F.; Benard, G. First Report of Tinea Corporis Caused by Arthroderma benhamiae in Brazil. Braz. J. Microbiol. 2019, 50, 985–987. [Google Scholar] [CrossRef] [PubMed]
- Drira, I.; Neji, S.; Hadrich, I.; Sellami, H.; Makni, F.; Ayadi, A. Tinea Manuum Due to Trichophyton erinacei from Tunisia. J. Mycol. Med. 2015, 25, 200–203. [Google Scholar] [CrossRef]
- Hsieh, C.W.; Sun, P.L.; Wu, Y.H. Trichophyton erinacei Infection from a Hedgehog: A Case Report from Taiwan. Mycopathologia 2010, 170, 417–421. [Google Scholar] [CrossRef]
- Ito, A.; Yamada, N.; Kimura, R.; Anzawa, K.; Mochizuki, T.; Yamamoto, O. Tinea Barbae Due to Trichophyton mentagrophytes Contracted from Calves. Acta Derm. Venereol. 2019, 99, 925–926. [Google Scholar] [CrossRef]
- Iznardo, H.; Garcia-Melendo, C.; Berengua, C. Tinea Facei from Trichophyton benhamiae from a Pet Guinea Pig. JAMA Dermatol. 2021, 157, 1115. [Google Scholar] [CrossRef]
- Jakubowicz, O.; Łuczkowska, M.; Zaba, R.; Adamski, Z. Tinea Cutis Glabrae: Causes of Diagnostic Challenge. Postep. Dermatologii i Alergol. 2014, 31, 421–424. [Google Scholar] [CrossRef]
- Jang, M.S.; Park, J.B.; Jang, J.Y.; Yang, M.H.; Kim, J.H.; Lee, K.H.; Hwangbo, H.; Suh, K.S. Kerion Celsi Caused by Trichophyton erinacei from a Hedgehog Treated with Terbinafine. J. Dermatol. 2017, 44, 1070–1071. [Google Scholar] [CrossRef]
- Jaspers, G.J.; Werrij, B.G.; Jagtman, B.A.; Loza, B. Severe Kerion Celsi Due to Trichophyton mentagrophytes: A Case Report. Acta Paediatr. Int. J. Paediatr. 2011, 100, 183–185. [Google Scholar] [CrossRef]
- Kim, J.; Tsuchihashi, H.; Hiruma, M.; Kano, R.; Ikeda, S. Tinea Corporis Due to Trichophyton erinacei Probably Transmitted from a Hedgehog: The Second Case Report from Japan. Med. Mycol. J. 2018, 59, E77–E79. [Google Scholar] [CrossRef] [PubMed]
- Kromer, C.; Nenoff, P.; Uhrlaß, S.; Apel, A.; Schön, M.P.; Lippert, U. Trichophyton erinacei Transmitted to a Pregnant Woman From Her Pet Hedgehogs. JAMA Dermatol. 2018, 154, 967–968. [Google Scholar] [CrossRef]
- Łagowski, D.; Gnat, S.; Dyląg, M.; Nowakiewicz, A. Laboratory Diagnosis and In Vitro Antifungal Susceptibility of Trichophyton quinckeanum from Human Zoonoses and Cats. Antibiotics 2022, 11, 739. [Google Scholar] [CrossRef]
- Larralde, M.; Gomar, B.; Boggio, P.; Abad, M.E.; Pagotto, B. Neonatal Kerion Celsi: Report of Three Cases. Pediatr. Dermatol. 2010, 27, 361–363. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-W.; Yang, J.-H.; Choi, S.-J.; Won, C.-H.; Chang, S.-E.; Lee, M.-W.; Choi, J.-H.; Moon, K.-C.; Kim, M.-N. An Unusual Clinical Presentation of Tinea Faciei Caused by Trichophyton mentagrophytes var. erinacei. Pediatr. Dermatol. 2011, 28, 210–212. [Google Scholar] [CrossRef] [PubMed]
- Longo, C.L.S.; Hercules, F.M.; de Azevedo, F.S.; Ferreira, A.L.P.; Orofino-Costa, R. Tinea Corporis Caused by Trichophyton benhamiae: Report of the First Case Transmitted by Guinea Pig in Brazil. An. Bras. Dermatol. 2024, 99, 475–479. [Google Scholar] [CrossRef]
- Lysková, P.; Dobiáš, R.; Čmoková, A.; Kolařík, M.; Hamal, P.; Šmatláková, K.; Hušek, J.; Mencl, K.; Mallátová, N.; Poláčková, Z.; et al. An Outbreak of Trichophyton quinckeanum Zoonotic Infections in the Czech Republic Transmitted from Cats and Dogs. J. Fungi 2021, 7, 684. [Google Scholar] [CrossRef]
- Mazur, M.; Lodyga, M.; Łańczak, A.; Adamski, Z. Majocchi’s Granuloma (granuloma trichophyticum) in a Guinea Pig Owner: A Case Report and Literature Review. J. Mycol. Med. 2018, 28, 523–526. [Google Scholar] [CrossRef]
- Mesquita, J.R.; Vasconcelos-Nóbrega, C.; Oliveira, J.; Coelho, C.; Vala, H.; Fratti, M.; Arabatzis, M.; Velegraki, A.; Michel, M. Epizootic and Epidemic Dermatophytose Outbreaks Caused by Trichophyton mentagrophytes from Rabbits in Portugal, 2015. Mycoses 2016, 59, 668–673. [Google Scholar] [CrossRef]
- Mochizuki, T.; Kobayashi, H.; Takeda, K.; Anzawa, K.; Ishizaki, H. The First Human Cases of Americano-European Race of Arthroderma benhamiae Infection in Japan. Jpn. J. Infect. Dis. 2012, 65, 558–559. [Google Scholar] [CrossRef] [PubMed]
- Phaitoonwattanakij, S.; Leeyaphan, C.; Bunyaratavej, S.; Chinhiran, K. Trichophyton erinacei Onychomycosis: The First to Evidence a Proximal Subungual Onychomycosis Pattern. Case Rep. Dermatol. 2019, 11, 198–203. [Google Scholar] [CrossRef]
- Rhee, D.Y.; Kim, M.S.; Chang, S.E.; Lee, M.W.; Choi, J.H.; Moon, K.C.; Koh, J.K.; Choi, J.S. A Case of Tinea Manuum Caused by Trichophyton mentagrophytes var. erinacei: The First Isolation in Korea. Mycoses 2009, 52, 287–290. [Google Scholar] [CrossRef]
- Rivaya, B.; Fernández-Rivas, G.; Cabañes, F.J.; Bielsa, I.; Castellá, G.; Wang, J.H.; Matas, L. Trichophyton erinacei: An Emergent Pathogen of Pediatric Dermatophytosis. Rev. Iberoam. Micol. 2020, 37, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Sidwell, R.U.; Chan, I.; Francis, N.; Bunker, C.B. Trichophyton erinacei Kerion Barbae from a Hedgehog with Direct Osculatory Transfer to Another Person. Clin. Exp. Dermatol. 2014, 39, 38–40. [Google Scholar] [CrossRef]
- Tan, J.; Liu, X.; Gao, Z.; Yang, H.; Yang, L.; Wen, H. A Case of Tinea Faciei Caused by Trichophyton benhamiae: First Report in China. BMC Infect. Dis. 2020, 20, 171. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, H.; Abe, N.; Anzawa, K. A Case of Tinea Corporis Caused by Trichophyton benhamiae var. luteum from a Degu and Evolution of the Pathogen’s Taxonomy. J. Fungi 2023, 9, 1122. [Google Scholar] [CrossRef]
- Agnetti, F.; Ciavarella, R.; Cruciani, D.; Epidanio, E.M.; Golinelli, D.; Papa, P.; Sgariglia, E.; Valentini, A.; Crotti, S. Ringworm by Trichophyton erinacei in Calves: Description of Two Italian Outbreaks. Large Anim. Rev. 2020, 26, 141–143. [Google Scholar]
- Veraldi, S.; Guanziroli, E.; Schianchi, R. Epidemic of Tinea Corporis Due to Trichophyton mentagrophytes of Rabbit Origin. Pediatr. Dermatol. 2012, 29, 392–393. [Google Scholar] [CrossRef]
- Walsh, A.L.; Merchan, N.; Harper, C.M. Hedgehog-Transmitted Trichophyton erinacei Causing Painful Bullous Tinea Manuum. J. Hand Surg. Am. 2021, 46, 430.e1–430.e3. [Google Scholar] [CrossRef]
- Wang, F.Y.; Sun, P.L. Tinea Blepharo-Ciliaris in a 13-Year-Old Girl Caused by Trichophyton benhamiae. J. Mycol. Med. 2018, 28, 542–546. [Google Scholar] [CrossRef] [PubMed]
- Weishaupt, J.; Kolb-Mäurer, A.; Lempert, S.; Nenoff, P.; Uhrlaß, S.; Hamm, H.; Goebeler, M. A Different Kind of Hedgehog Pathway: Tinea Manus Due to Trichophyton erinacei Transmitted by an African Pygmy Hedgehog (Atelerix albiventris). Mycoses 2014, 57, 125–127. [Google Scholar] [CrossRef]
- Yang, Y.P.; Sheng, P.; Liu, Z.; Li, W.; Di Wang, J.; Huang, W.M.; Fan, Y.M. Kerion and Tinea Corporis Caused by Rabbit-Derived Trichophyton interdigitale in Three Siblings and One Consulting Doctor Using β-Tubulin Gene to Identify the Pathogen. Mycopathologia 2016, 181, 539–546. [Google Scholar] [CrossRef]
- Yin, B.; Ran, X.; Zhang, C.; Xie, Z.; Ran, Y.; Fu, L.; Pradhan, S. Tinea Incognito Infection with Trichophyton erinacei from a Pet Hedgehog. Br. J. Dermatol. 2020, 183, e92. [Google Scholar] [CrossRef]
- Zeng, X.; Zheng, Q.; Chi, X. A Case of Trichophyton mentagrophytes Infection in Rabbits Accompanied by Farm Staff Infection in China. Kafkas Univ. Vet. Fak. Derg. 2017, 23, 497–501. [Google Scholar] [CrossRef]
- Zhang, H.; Ran, Y.; Liu, Y.; Zhang, R.; Lin, X.; Yan, W.; Dai, Y. Arthroderma vanbreuseghemii Infection in Three Family Members with Kerion and Tinea Corporis. Med. Mycol. 2009, 47, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Luo, W.; Tang, C.; Sybren de Hoog, G.; Lu, H.; Jiang, Y. Possible Rabbit Breeders’ Trichophyton mentagrophytes Infection Characterized by Majocchi’s Granuloma in Immunocompetent Host: Case Report. Med. Mycol. Case Rep. 2019, 26, 19–22. [Google Scholar] [CrossRef]
- Moreira, F.; Miranda, A.; Coelho, A.M.; Monteiro, J.; Coelho, A.C. Epidemiological Survey of Dermatophytosis in Meat Rabbits with Alopecia in Portugal. World Rabbit Sci. 2012, 20, 43–48. [Google Scholar] [CrossRef]
- Abarca, M.L.; Castellá, G.; Martorell, J.; Cabañes, F.J. Trichophyton erinacei in Pet Hedgehogs in Spain: Occurrence and Revision of Its Taxonomic Status. Med. Mycol. 2017, 55, 164–172. [Google Scholar] [CrossRef]
- Sieklucki, U.; Oh, S.H.; Hoyer, L.L. Frequent Isolation of Arthroderma benhamiae from Dogs with Dermatophytosis. Vet. Dermatol. 2014, 25, 39-e14. [Google Scholar] [CrossRef]
- Larsen, J.; Raisen, C.L.; Ba, X.; Sadgrove, N.J.; Padilla-González, G.F.; Simmonds, M.S.J.; Loncaric, I.; Kerschner, H.; Apfalter, P.; Hartl, R.; et al. Emergence of Methicillin Resistance Predates the Clinical Use of Antibiotics. Nature 2022, 602, 135–141. [Google Scholar] [CrossRef]
- Peano, A.; Hubka, V.; Cavana, P.; Ottino, C.; Blandolino, M.; Molinar Min, A.R.; Pasquetti, M. Cases of Dermatophytosis Caused by Trichophyton benhamiae var. luteum and T. europaeum, Newly Described Dermatophytes within the T. benhamiae Complex. Vet. Dermatol. 2022, 33, 440–445. [Google Scholar] [CrossRef]
- Needle, D.B.; Gibson, R.; Hollingshead, N.A.; Sidor, I.F.; Marra, N.J.; Rothenheber, D.; Thachil, A.J.; Stanhope, B.J.; Stevens, B.A.; Ellis, J.C.; et al. Atypical Dermatophytosis in 12 North American Porcupines (Erethizon dorsatum) from the Northeastern United States 2010–2017. Pathogens 2019, 8, 171. [Google Scholar] [CrossRef] [PubMed]
- Łagowski, D.; Gnat, S.; Nowakiewicz, A.; Osińska, M.; Zięba, P. Diagnostic and Epidemiological Analysis of Trichophyton benhamiae Infection on an Alpaca (Vicugna pacos) Farm in Poland. Vet. Ital. 2021, 57, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.Y.; Li, Y.; Chen, M.Y.; Mei, Q.Y.; Zhang, R.Z. Majocchi’s Granuloma on the Forearm Caused by Trichophyton tonsurans in an Immunocompetent Patient. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 1–4. [Google Scholar] [CrossRef]
- Veraldi, S.; Genovese, G.; Peano, A. Tinea Corporis Caused by Trichophyton equinum in a Rider and Review of the Literature. Infection 2018, 46, 135–137. [Google Scholar] [CrossRef]
- Brasch, J.; Lögering, B.; Gräser, Y. Tinea Capitis Caused by Trichophyton equinum. Acta Derm. Venereol. 2009, 89, 204–205. [Google Scholar] [CrossRef]
- Gnat, S.; Łagowski, D.; Nowakiewicz, A.; Dyląg, M. Tinea Corporis Caused by Trichophyton equinum Transmitted from Asymptomatic Dogs to Two Siblings. Braz. J. Microbiol. 2020, 51, 1433–1438. [Google Scholar] [CrossRef]
- Krajden, S.; Summerbell, R.C.; Datt, A.; Hawke, M.; Scott, J. Monkey Finger Mycology? First Case of Otomycosis Externa Caused by Trichophyton simii after Encounter with a Monkey. Med. Mycol. Case Rep. 2022, 37, 17–18. [Google Scholar] [CrossRef]
- Bailiff, O.A.; Mowad, C.M. Mimics of Dermatitis. Immunol. Allergy Clin. N. Am. 2021, 41, 493–515. [Google Scholar] [CrossRef]
- Kramer, K.E.; Yaar, M.; Andersen, W. Purpuric Drug Eruption Secondary to Itraconazole. J. Am. Acad. Dermatol. 1997, 37, 994–995. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Porges, A.J. Hypersensitivity Syndrome Reaction to Oral Terbinafine. Australas. J. Dermatol. 1998, 39, 171–172. [Google Scholar] [CrossRef]
- Hryncewicz-Gwózdz, A.; Wojciechowska-Zdrojowy, M.; Maj, J.; Baran, W.; Jagielski, T. Paradoxical Reaction During a Course of Terbinafine Treatment of Trichophyton interdigitale Infection in a Child. JAMA Dermatol. 2016, 152, 342–343. [Google Scholar] [CrossRef]
- Hsiao, Y.H.; Chen, C.; Han, H.S.; Kano, R. The First Report of Terbinafine Resistance Microsporum canis from a Cat. J. Vet. Med. Sci. 2018, 80, 898–900. [Google Scholar] [CrossRef] [PubMed]
- Katiraee, F.; Kosari, Y.K.; Soltani, M.; Shokri, H.; Minooieanhaghighi, M.H. Molecular Identification and Antifungal Susceptibility Patterns of Dermatophytes Isolated from Companion Animals with Clinical Symptoms of Dermatophytosis. J. Vet. Res. 2021, 65, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Oladzad, V.; Nasrollahi Omran, A.; Haghani, I.; Nabili, M.; Guillot, J.; Seyedmousavi, S.; Hedayati, M.T. Asymptomatic Colonization of Stray Dogs and Domestic Cats with Trichophyton mentagrophytes II* in Northern Iran. J. Med. Mycol. 2024, 34, 101496. [Google Scholar] [CrossRef]
- Oladzad, V.; Nasrollahi Omran, A.; Haghani, I.; Nabili, M.; Seyedmousavi, S.; Hedayati, M.T. Multi-Drug Resistance Trichophyton indotineae in a Stray Dog. Res. Vet. Sci. 2024, 166, 105105. [Google Scholar] [CrossRef]
- Thakur, S.; Spruijtenburg, B.; Abhishek; Shaw, D.; de Groot, T.; Meijer, E.F.J.; Narang, T.; Dogra, S.; Chakrabarti, A.; Meis, J.F.; et al. Whole Genome Sequence Analysis of Terbinafine Resistant and Susceptible Trichophyton Isolates from Human and Animal Origin. Mycopathologia 2025, 190, 13. [Google Scholar] [CrossRef]
Symptoms | Regimen | Outcome |
---|---|---|
M. canis | ||
Pediatric tinea capitis (N = 1) [35]: pruritus, erythema, alopecia | Oral antibiotics and anti-allergy medications × 2 weeks | Symptoms became severe with the appearance of erythema and alopecia |
Itraconazole 50 mg/d × 1 month | Improved | |
Pediatric tinea corporis (N = 1) [26]: erythema, scales, pruritus | Topical steroid ointments | Lesion spread |
Oral itraconazole + topical ketoconazole | Drug eruption | |
Oral terbinafine | Resolved | |
Pediatric tinea faciei, corporis (N = 1) [38]: erythema, scales, pruritus | Loratadine, diphenhydramine, fluocinolone acetonide for presumed allergy | Worsened |
Acyclovir 600 mg/d × 3 days for presumed viral infection | Nausea, vomiting, headache | |
Terbinafine 250 mg/d × 1 month | Resolved | |
N. gypsea | ||
Pediatric tinea capitis with kerion (N = 1) [74]: swelling, pain, pustular, alopecia | Topical hydrocortisone butyrate, ciclopirox, amikacin creams applied daily | No improvement |
Added oral fluconazole × 2 weeks | Lesion became swollen, painful, and suppurating | |
Oral griseofulvin 25 mg/kg/d × 8 weeks + topical isoconazole and diflucortolone dressings then topical terbinafine 1% dressings applied daily | Resolved | |
Pediatric tinea capitis with kerion (N = 1) [72]: pustules, swelling, alopecia, fever, abscesses | Oral cefixime 50 mg/kg/d + topical mupirocin ointment twice daily × 4 days | No improvement |
Itraconazole 150 mg/kg/d × 8 weeks then oral prednisolone 30 mg/d + topical terbinafine twice daily | Resolved | |
Pediatric tinea corporis, faciei (N = 8) [69]: erythema, scales, perifollicular casts | Topical corticosteroids for presumed eczema | Minimal improvement |
Topical ciclopirox olamine 1% twice daily × 3 weeks | Resolved | |
T. verrucosum | ||
Adult tinea corporis (N = 1) [85]: erythema, swelling | Surgical incision; oral amoxicillin-clavulanic acid; oral ciprofloxacin | Further swelling, pruritus, new satellite lesions |
Surgical incision; terbinafine 250 mg/d × 2 weeks | Symptoms improved; drug eruption | |
Itraconazole 200 mg/d | Resolved | |
Pediatric tinea capitis, corporis (N = 1) [86]: erythema, scales, abscesses, alopecia, crusting, purulent discharge | Topical clobetasone butyrate cream | Dermatophytid; modified lesion appearance to maculopapular, strong pruritus, lymph node swelling without fever |
Itraconazole 100 mg/d × 10 weeks + glycyrrhizin 200 mg/d × 2 weeks + topical butenafine hydrochloride cream | Resolved | |
T. mentagrophytes complex | ||
Adult tinea barbae (N = 1) [136]: purulent crusted lesion | Oral clarithromycin for presumed impetigo | No improvement |
Intravenous clindamycin and acyclovir (changed to oral after 2 days) + potassium permanganate soak daily | NR | |
Added itraconazole 200 mg/d × 6 weeks and oral ciprofloxacin × 3 weeks | Resolved | |
Adult tinea barbae (N = 1) [118]: papules, pustules, swelling | Topical and oral antibiotics × 2 weeks | NR |
Itraconazole 100 mg/d × 2 months | Relapsed | |
Itraconazole 100 mg/d × 2 months | Resolved | |
Adult tinea corporis (N = 1) [138]: acne-like papules, scales, circumscribed erythema | Oxytetracycline 30 mg/g; hydrocortisone alcohol 10 mg/g | Enlarged papules |
Oral tetracycline; topical sodium fusidate | No improvement | |
Terbinafine 125 mg/d × 2 months | Dermatophytid; treatment continued and symptoms improved | |
Adult tinea corporis (N = 1) [107]: highly pruritic, erythema | Topical gentamicin-betamethasone dipropionate | Minimal improvement of pruritus |
Itraconazole 200mg/d × 10 days | Improved | |
Adult tinea corporis (N = 1) [123]: erythema, pruritus, seropapules, scales, crusts | Topical corticosteroid | Enlarged lesion |
Topical corticosteroid continued for presumed contact dermatitis × 2 weeks | No improvement | |
Itraconazole pulse + topical luliconazole × 7 days | Improved | |
Adult tinea corporis with Majocchi’s granuloma (N = 1) [130]: pustules, papules, nodules, erythema, desquamation, pruritus | Topical glucocorticosteroids + antibacterial agents | Relapsed with increased severity |
Oral antibiotics | No improvement | |
Oral terbinafine + topical isoconazole, mazipredone with miconazole and econazole × 6 weeks | Resolved | |
Adult tinea corporis, cruris (N = 1) [120]: erythema, papules, plaques | Oral doxycycline | No improvement |
Methylprednisolone 32/16 mg/d × 6 months for presumed disseminated eczema | No improvement | |
Itraconazole 200 mg/d × 14 days then 400 mg/d × 7 days + topical antifungal-glucocorticosteroids | Improved | |
Adult tinea manuum (N = 1) [141]: pruritus, bullae, pain | Oral corticosteroid taper + topical antibiotic | NR |
Oral doxycycline | Increasing pain and tense bullae | |
Oral terbinafine + topical econazole × 4 weeks | Resolved | |
Adult tinea manuum (N = 1) [109]: pustule, pain, pruritus, fever | Oral Augmentin + topical betamethasone dipropionate + topical gentamicin + topical miconazole + potassium permanganate compresses for presumed contact dermatitis with secondary pyoderma | New pustules developed |
Oral terbinafine × 2 weeks | Resolved | |
Pediatric tinea capitis with kerion (N = 1) [122]: swelling, desquamation, pain, fever | Oral clarithromycin 15 mg/kg/d + topical miconazole + topical terbinafine | Enlarged lesion |
Terbinafine 62.5 mg/d × 7 days | Drug eruption | |
Griseofulvin 10 mg/kg × 6 months | Relapsed | |
Griseofulvin 10 mg/kg × 2 months | Improved | |
Pediatric tinea capitis, corporis with Majocchi’s granuloma (N = 1) [148]: erythema, scales, alopecia, pruritus, papules, pustules, abscesses | Topical dexamethasone acetate cream twice daily | Enlarged lesions |
Oral itraconazole 100 mg/d × 12 weeks + oral glycyrrhizin 100 mg/d × 4 weeks + topical butenafine hydrochloride 1% daily | Resolved | |
Pediatric tinea capitis, faciei, corporis (N = 1) [147]: scale, pustule, inflammation, alopecia, and subcutaneous nodules on the scalp; erythema on the face and trunk | Debridement, topical and oral antibacterial treatment for presumed impetigo | Lesions became severe; fever and chills |
| Resolved | |
Pediatric tinea corporis (N = 1) [114]: papules, seropapules, pustules, erythrosquamous lesion | Topical ointment for presumed eczema | No improvement |
Topical isoconazole 1%/diflucortolone valerate 0.1% twice daily × 2 weeks | Resolved | |
Pediatric tinea faciei (N = 1) [137]: pruritus, erythematous, annular plaque | Topical clobetasol propionate/ketoconazole cream × 15 days | No improvement |
Topical pimecrolimus/hydrocortisone butyrate cream | Lesion became tender, pruritic, and transformed into a “ring” shape | |
Terbinafine 125 mg/d + topical sertaconazole nitrate cream twice daily × 4 weeks | Improved | |
Pediatric tinea faciei (N = 1) [135]: pruritus, erythema, scales | Topical corticosteroids | No improvement |
Itraconazole + topical betamethasone-clotrimazole | Worsened after cessation of itraconazole | |
Terbinafine + topical clotrimazole | Resolved | |
Pediatric tinea faciei, corporis (N = 1) [113]: erythema, scales, pruritus | Topical cortisone + antibiotic for presumed microbial eczema | Relapsed with severe inflammation |
Terbinafine 125 mg/d × 5 weeks + topical isoconazole 1%-diflucortolone valerate 0.1% × 10 days then topical ciclopirox | Improved | |
Pediatric tinea manuum (N = 1) [134]: pruritic, pustules, erythema, web space maceration | Topical steroids × 4 weeks | Lesion spread |
Itraconazole 200 mg/d + topical isoconazole/diflucortolone valerate cream × 4 weeks | Resolved | |
T. tonsurans | ||
Adult tinea corporis with Majocchi’s granuloma (N = 1) [156]: swelling, nodules, pain, pruritus, pustular, scales | Oral cephalosporin | No improvement |
Itraconazole 200 mg/d; moxibustion on the swollen area | Resolved |
Country (Year) | Antifungal | MIC Range (µg/mL) | AFST | Reference |
---|---|---|---|---|
M. canis | ||||
China (2018) | Terbinafine | >32 | CLSI M38-A2 | [165] |
Itraconazole | 0.023 | |||
China (2013) | Terbinafine | 0.03 | CLSI M38-A2 | [30] |
Ketoconazole | 2 | |||
Itraconazole | 0.5 | |||
Egypt (2017) | Griseofulvin | 1 | CLSI M38-A2 | [65] |
Terbinafine | 1 | |||
Fluconazole | 32 | |||
Itraconazole | 0.5 | |||
Greece (2010) | Griseofulvin | 0.064–8 | CLSI M38-A2 | [24] |
Terbinafine | 0.032–4 | |||
Fluconazole | 0.25–64 | |||
Itraconazole | 0.064–1 | |||
Posaconazole | 0.032–0.5 | |||
India (2024) | Griseofulvin | 4 | CLSI M27A4 | [39] |
Terbinafine | 0.06 | |||
Itraconazole | 0.125 | |||
Iran (2021) | Griseofulvin | 0.064–2 | CLSI M38-A2 | [166] |
Terbinafine | 0.016–0.064 | |||
Ketoconazole | 0.016–0.064 | |||
Fluconazole | 0.25–4 | |||
Itraconazole | 0.002–0.5 | |||
Poland (2022) | Griseofulvin | 0.25 | CLSI M38Ed3 | [84] |
Terbinafine | 0.016 | |||
Ketoconazole | 0.125 | |||
Fluconazole | 16 | |||
Itraconazole | 0.125 | |||
Voriconazole | 0.064 | |||
N. gypsea | ||||
India (2019) | Griseofulvin | 16 | CLSI M38-A2 | [71] |
Terbinafine | 0.0156 | |||
Itraconazole | 0.0625 | |||
Iran (2021) | Griseofulvin | 0.064–2 | CLSI M38-A2 | [166] |
Terbinafine | 0.016–0.064 | |||
Ketoconazole | 0.016–0.064 | |||
Fluconazole | 0.25–4 | |||
Itraconazole | 0.002–0.5 | |||
Poland (2022) | Griseofulvin | 0.5 | CLSI M38Ed3 | [84] |
Terbinafine | 0.0125 | |||
Ketoconazole | 0.125 | |||
Fluconazole | 8 | |||
Itraconazole | 0.25 | |||
Voriconazole | 0.016 | |||
T. verrucosum | ||||
China (2019) | Terbinafine | 0.004 | CLSI M38-A2 | [86] |
Itraconazole | 0.5 | |||
Voriconazole | 0.0625 | |||
Egypt (2020) | Griseofulvin | 0.5–4 | CLSI M38-A2 | [91] |
Terbinafine | 0.03–0.25 | |||
Fluconazole | 16–64 | |||
Itraconazole | 1–4 | |||
Egypt (2017) | Griseofulvin | 0.5 | CLSI M38-A2 | [65] |
Terbinafine | 0.5 | |||
Fluconazole | 16 | |||
Itraconazole | 1 | |||
T. mentagrophytes complex | ||||
China (2019) * | Terbinafine | 0.0315 | CLSI | [148] |
Itraconazole | 0.125 | |||
Voriconazole | 0.0625 | |||
Posaconazole | 0.0625 | |||
China (2018) † | Terbinafine | 0.015 | CLSI M38-A2 | [137] |
Fluconazole | 4 | |||
Itraconazole | 1 | |||
Voriconazole | 0.6 | |||
Posaconazole | 0.6 | |||
Czech Republic (2021) ‡ | Terbinafine | 0.004–0.016 | EUCAST E.Def 11.0 | [129] |
Ketoconazole | 0.016–1 | |||
Fluconazole | 2–64 | |||
Itraconazole | 0.008–0.125 | |||
Efinaconazole | 0.008–0.064 | |||
Egypt (2020) * | Griseofulvin | 0.25–2 | CLSI M38-A2 | [91] |
Terbinafine | 0.06–0.5 | |||
Fluconazole | 8–32 | |||
Itraconazole | 0.25–1 | |||
Egypt (2017) * | Griseofulvin | 0.5 | CLSI M38-A2 | [65] |
Terbinafine | 0.03 | |||
Fluconazole | 8 | |||
Itraconazole | 1 | |||
Iran (2024) * | Griseofulvin | 0.5–16 | CLSI M38-A3 | [167] |
Terbinafine | 0.016 | |||
Ketoconazole | 0.016–2 | |||
Itraconazole | 0.016–0.125 | |||
Iran (2024) § | Griseofulvin | ≥16 | CLSI M38-A3 | [168] |
Terbinafine | ≥16 | |||
Ketoconazole | ≥16 | |||
Itraconazole | ≥16 | |||
Iran (2021) * | Griseofulvin | 0.128–2 | CLSI M38-A2 | [166] |
Terbinafine | 0.016–0.125 | |||
Ketoconazole | 0.016–0.128 | |||
Fluconazole | 0.5–4 | |||
Itraconazole | 0.002–1 | |||
Iran (2020) † | Griseofulvin | 1 | CLSI M38-A2 | [105] |
Terbinafine | 0.063 | |||
Ketoconazole | 1 | |||
Itraconazole | 0.25 | |||
Voriconazole | 0.125 | |||
Posaconazole | 0.063 | |||
Poland (2022) * | Griseofulvin | 1 | CLSI M38Ed3 | [84] |
Terbinafine | (growth on terbinafine agar) | |||
Ketoconazole | 0.5 | |||
Fluconazole | 32 | |||
Itraconazole | 0.5 | |||
Voriconazole | 0.016 | |||
Poland (2022) † | Griseofulvin | 0.5 | CLSI M38Ed3 | [84] |
Terbinafine | 0.008 | |||
Ketoconazole | 0.25 | |||
Fluconazole | 16 | |||
Itraconazole | 0.125 | |||
Voriconazole | 0.032 | |||
Poland (2022) ¶ | Griseofulvin | 1 | CLSI M38Ed3 | [84] |
Terbinafine | 0.004 | |||
Ketoconazole | 0.5 | |||
Fluconazole | 16 | |||
Itraconazole | 0.25 | |||
Voriconazole | 0.032 | |||
Poland (2018) ‡ | Terbinafine | 0.004–0.016 | CLSI M38Ed3 | [125] |
Ketoconazole | 0.125–1 | |||
Fluconazole | 2–32 | |||
Itraconazole | 0.03–0.25 | |||
Voriconazole | 0.03–0.25 | |||
T. equinum | ||||
Egypt (2017) | Griseofulvin | 1 | CLSI M38-A2 | [65] |
Terbinafine | 1 | |||
Fluconazole | 16 | |||
Itraconazole | 0.25 | |||
Poland (2018) | Griseofulvin | 0.125–0.25 | CLSI M38Ed3 | [159] |
Terbinafine | 0.125–0.5 | |||
Ketoconazole | 0.125–0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, A.K.; Wang, T.; Susmita; Talukder, M.; Bakotic, W.L. Global Dermatophyte Infections Linked to Human and Animal Health: A Scoping Review. Microorganisms 2025, 13, 575. https://doi.org/10.3390/microorganisms13030575
Gupta AK, Wang T, Susmita, Talukder M, Bakotic WL. Global Dermatophyte Infections Linked to Human and Animal Health: A Scoping Review. Microorganisms. 2025; 13(3):575. https://doi.org/10.3390/microorganisms13030575
Chicago/Turabian StyleGupta, Aditya K., Tong Wang, Susmita, Mesbah Talukder, and Wayne L. Bakotic. 2025. "Global Dermatophyte Infections Linked to Human and Animal Health: A Scoping Review" Microorganisms 13, no. 3: 575. https://doi.org/10.3390/microorganisms13030575
APA StyleGupta, A. K., Wang, T., Susmita, Talukder, M., & Bakotic, W. L. (2025). Global Dermatophyte Infections Linked to Human and Animal Health: A Scoping Review. Microorganisms, 13(3), 575. https://doi.org/10.3390/microorganisms13030575